
P
os
te
d
on

10
M
ar

20
20

—
C
C
0
1.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
41
67
49
3.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

A Systematic View of Leakage Risks in Deep Neural Network

Systems

Xing Hu 1, Ling Liang 2, chen xiaobing 2, Lei Deng 2, Yu Ji 2, Yufei Ding 2, Zidong Du 2,
Qi Guo 2, Timothy Sherwood 2, and Yuan Xie 2

1State Key Lab-oratory of Computer Architecture
2Affiliation not available

October 30, 2023

Abstract

As deep neural networks (DNNs) continue their reach into a wide range of application domains, the neural network architecture

of DNN models becomes an increasingly sensitive subject, due to either intellectual property protection or risks of adversarial

attacks. In observing the large gap between the architectural surfaces exploration and the model integrity study, this paper first

presents the formulated schema of the model leakage risks. Then, we propose DeepSniffer, a learning-based model extraction

framework, to obtain the complete model architecture information without any prior knowledge of the victim model. It is robust

to architectural and system noises introduced by the complex memory hierarchy and diverse run-time system optimizations.

Taking GPU platforms as a showcase, DeepSniffer performs model extraction by learning both the architecture-level execution

features of kernels and the inter-layer temporal association information introduced by the common practice of DNN design. We

demonstrate that DeepSniffer works experimentally in the context of an off-the-shelf Nvidia GPU platform running a variety

of DNN models. The extracted models are directly helpful to the attempting of crafting adversarial inputs. The DeepSniffer

project has been released in https://github.com/xinghu7788/DeepSniffer.

1

1

A Systematic View of Leakage Risks in
Deep Neural Network Systems

Xing Hu, Ling Liang, Xiaobing Chen, Lei Deng, Yu Ji, Yufei Ding, Zidong Du, Qi Guo,
Timothy Sherwood, Yuan Xie, Fellow, IEEE

Abstract—As deep neural networks (DNNs) continue their reach into a wide range of application domains, the neural network
architecture of DNN models becomes an increasingly sensitive subject, due to either intellectual property protection or risks of
adversarial attacks. In observing the large gap between the architectural surfaces exploration and the model integrity study, this paper
first presents the formulated schema of the model leakage risks. Then, we propose DeepSniffer, a learning-based model extraction
framework, to obtain the complete model architecture information without any prior knowledge of the victim model. It is robust to
architectural and system noises introduced by the complex memory hierarchy and diverse run-time system optimizations. Taking GPU
platforms as a showcase, DeepSniffer performs model extraction by learning both the architecture-level execution features of kernels
and the inter-layer temporal association information introduced by the common practice of DNN design. We demonstrate that
DeepSniffer works experimentally in the context of an off-the-shelf Nvidia GPU platform running a variety of DNN models. The
extracted models are directly helpful to the attempting of crafting adversarial inputs. The DeepSniffer project has been released in
https://github.com/xinghu7788/DeepSniffer.

Index Terms—domain-specific architecture; deep learning security; model security;

F

1 INTRODUCTION

MACHINE learning approaches, especially deep neural
networks (DNNs), are transforming a wide range

of application domains, such as computer vision [1], [2],
speech recognition [3], and language processing [4]. In com-
puter vision, specifically, maturing DNN technologies have
achieved better prediction accuracy than human-beings [5],
which start to power existing industries. For example, au-
tonomous driving, whose market is predicted to leap to $77
billion (25% of the whole automotive market) by 2035 [6],
has attracted the attention of giants including Tesla, Audi,
and Waymo [7]. Due to the promising opportunities and
rising importance of DNN techniques, DNN vulnerability
emerges as an important problem – especially for mission-
critical applications [8].

The high level structure of a DNN model might be de-
scribed by a few, but very important, characteristics (e.g. the
connection topology and dimensionality of the network).
These characteristics shape the behavior of the resulting
model is significant ways and, if learned by an adversary,
give them a significant foothold into exploring and exploit-
ing other vulnerabilities. By extracting such information,
attackers can not only counterfeit the intellectual property

The preliminary version is published in ASPLOS2020. Xing Hu,
Xiaobing Chen, Zidong Du, Qi Guo are with State Key Lab-
oratory of Computer Architecture, Institute of Computing Tech-
nology, Chinese Academy of Sciences, Beijing 100190, China.(E-
mail:huxing,chenxiaobing,duzidong,guoqi@ict.ac.cn) Ling Liang, Lei
Deng and Yuan Xie are with the Department of Electrical and Com-
puter Engineering, University of California, Santa Barbara, USA. (E-
mail: lingliang, leideng, yuanxie@cs.ucsb.edu). Yufei Ding and Timo-
thy Sherwood are with the Department of Computer Science, Univer-
sity of California, Santa Barbara, USA. (E-mail: yufeiding@cs.ucsb.edu,
sherwood@cs.ucsb.edu). Yu Ji is with Tsinghua University, China,
also with University of California, Santa Barbara, USA. (E-mail:
jiy15@mails.tsinghua.edu.cn).

of the DNN design, but can also perform more efficient ad-
versarial attacks that manipulate the DNN model to output
malicious outputs [9], [10]. Due to the significance of these
model characteristics, model extraction attacks represent an
important class of threat to consider when deploying a DNN
system accessible to untrusted parties [10], [11], [12].

Algorithm-level studies mainly perform model extrac-
tion through detecting the decision boundary of the victim
black-box DNN models [10]. However, such approaches
demand significant computational resources and huge time
overhead. Even worse, this approach cannot accommo-
date state-of-the-art DNNs with complex topologies, e.g.,
DenseNet [13] and ResNet [5], due to the enlarged search
space of possible network architectures.

However, DNN models are deployed in the DNN system
stack, which may reveal the architectural events or behav-
iors (referred to as architectural hints in the following) dur-
ing execution. Architectural execution hints and algorithmic
decision boundary collaboratively depict the internal model
characteristics. Based on our prior work [14], This work aims
to explore the leakage risks in DNN systems in a systematic
way and answer the following fundamental questions: how
do the algorithmic vulnerabilities and system vulnerabilities
combine to produce model leakage risks and how do we
then quantitatively evaluate the increased leakage risks. We
also showcase an end-to-end attack study, which indicates
the synergy of algorithmic vulnerability and system vulner-
ability make this problem practical and urgent.

First, we experimentally explore the criticality of model
characteristics and present the formulation of the model
leakage risks in DNN systems. The key idea is to evaluate
the gap between the two data representations of the model
and the system attack surface. For instance, if the adversary-
visible architectural hints in one DNN system have a high

https://github.com/xinghu7788/DeepSniffer

2

correlation with model characteristics, this DNN system has
higher leakage risks. Such a simple, yet effective problem
formulation can be generally applicable to many DNN
explorational attacks.

Further, we propose DeepSniffer, a framework to obtain
the complete model architecture with no prior knowledge
of the victim model and it is robust to system-level and
architecture-level noises. The complete model architecture
extraction includes the following steps: run-time layer se-
quence identification, layer topology reconstruction, and dimen-
sion size estimation. Among these steps, the run-time layer
sequence identification is the most fundamental one and is
missing in previous work [15], [16], [17], since they either
take the layer type or neural network architecture as known
information or impractically assume that the single-layer
architecture hints can be easily distinguished. We map
the run-time layer sequence identification to a sequence-to-
sequence prediction problem and address it using learning-
based approaches. One of the most important differences
that DeepSniffer distinguishes from previous work is that
it decouples layer sequence prediction from dimension size
prediction, thus being more generally applicable and robust
to noises.

We also propose and experimentally demonstrate end-
to-end attacks in the context of an off-the-shelf Nvidia GPU
platform with full system stacks, which urges the demand
to design secure architecture and system to ensure DNN
security. In summary, we make the following contributions:

• We propose the scheme of exploring the model leak-
age risks of DNN systems. We analyze the criticality
of various model characteristics, and formalize the
architecture leakage risks of model extraction.

• We propose DeepSniffer framework to utilize archi-
tectural hints for model extraction. It maps the fun-
damental step of model extraction, i.e, run-time layer
sequence identification, to a sequence-to-sequence
prediction problem and adopts learning-based ap-
proaches to perform accurate and robust run-time
layer sequence prediction.

• We showcase the effectiveness of DeepSniffer to
conduct model extraction under one specific at-
tack scenario. We experimentally demonstrate our
methodologies on an off-the-shelf GPU platform.
With the easy-to-get off-chip bus communication
information, the extracted network architectures ex-
hibit very small differences from those of the victim
DNN models.

• We perform two end-to-end attack scenarios to show
that the extracted neural network architectures boost
adversarial attack effectiveness, improving the attack
success rate (ASR) significantly. For adversarial ex-
ample attack, the ASR is boosted from 14.6%∼25.5%
to 75.9% compared to cases without neural network
architecture knowledge. For adversarial patch attack,
the ASR is boosted from 41% to 83%.

2 A SYSTEMATIC APPROACH TO DNN VULNERA-
BILITIES

In this section, we described a more systematic approach to
reasoning about DNN vulnerabilities, as shown in Figure 1.

We specifically consider a model under which an algorith-
mic DNN is deployed on a DNN platform that takes in the
environmental inputs and executes in a way that produces
predicted results as outputs. Thus, the DNN system, includ-
ing hardware platform, OS/VM/docker, and framework,
provide the actual attack surfaces for the adversary who
either spies on the model information or tempers the input
data.

To explore the relation and synergy between the architec-
tural vulnerability and algorithmic model vulnerability, this
work aims to answer the following three essential questions:
1) What model characteristics are more critical in terms
of DNN security? The target protection objects in DNN
systems are not a well understood as those in traditional
security problems. For example, it is clear that secret keys
are highly critical for cybersecurity and must be protected
with highest priority. However, it is not obvious what is the
most critical data of a DNN model. Network architecture,
model parameters, and hyper-parameters determine the
decision boundary of DNN models, all of which might be
leveraged by the adversary to perform DNN attacks.
2) What attack surfaces are exposed in DNN systems?
Attack surfaces give a chance for the adversary to explore
or temper the model characteristics. We systematize the
potential attack surfaces through the DNN system stack in
both cloud and edge scenarios.
3) How do we formalize the leakage risks of DNN systems?
The state of DNN deployment evolves rapidly with ded-
icated system stacks and brand new application scenarios
introduced on incredibly short time scales. It is essential
to formalize how the attack surfaces damage the model
characteristics privacy or integrity. Many prior attack stud-
ies claim that they reduce the search spaces of the model
characteristics. However, the quantitative measure of the
attack effectiveness is missing and it is unclear whether the
system attack really affects the model security.

The following subsections explore these questions
through a mix of mathematical analysis and experiment,
and set the stage for understanding a deeper dive into a
powerful new approach to model extraction in later sections.

2.1 Model Vulnerability
Many algorithm-level studies contribute to explore the vul-
nerability of DNN models, which can be classified into two
categories for different spotlights on model privacy and
model integrity. The former category of studies aims to
explore the internal information of the DNN models. The
latter aims to induce the model to output unexpected results
by either adversarial inputs or tempering the model training
process. This work focuses on the former one, model extrac-
tion attack, since obtaining model internal information can
help to turn a black-box integrity attack into a white or grey-
box attack with astonishing boosted attack success rate, and
thus is essential for further advanced attack methodologies
to damage model integrity.

2.1.1 Model Characteristics
Model extraction attacks aim to explore the model charac-
teristics of DNNs for establishing a near-equivalent DNN
model with a similar decision boundary [11]. Model charac-
teristics include: Network sketch consists of layer types and

3

DNN System(A)

DNN Model (M)

A’ M’= R(A)A’ M’= R(A)

Arch Leakage Risks

DNN System(A)

DNN Model (M)

A’ M’= R(A)

Arch Leakage Risks

 (a) (b) (c)

Hardware

Framework

OS/VM

Info leakage Malicious input

Model

Attack Surface

Hardware

Framework

OS/VM

Info leakage Malicious input

Model

Attack Surface

Model Vulnerability

Exploration

System Vulnerability

Exploration

What model data

really matter?
What surfaces

attackers have?
bus events...

performance counter,

 communicated data,

Co-location side channels

Net arch,

parameter,

hyper-parameter...

Model Vectors
(M)

Arch Vectors
(A)

D(M，M’)

Fig. 1. Schema overview. (a) DNN system stack; (b) The correlation between model security and system vulnerability; (c) The formulated schema
of model leakage risks in DNN system.

the connection topology between layers. Dimension sizes
include layer dimensions (the number of channels, feature
map size, weight kernel size, stride, and padding in each
layer). The network sketch and dimension sizes constitute
the network architecture knowledge. Parameters include the
weights, biases, and Batch Normalization (BN) parameters.
They are updated during the stochastic gradient descent
(SGD) in the training process. Hyper-parameters refer to the
configurations during training, including the learning rate,
regularization factors, and momentum coefficients, etc. All
these model characteristics may have their own impact on
the decision boundary of a DNN model. With the extracted
model characteristics, the adversary is able to build the
substitute models for adversarial examples generation and
then use these examples to attack the victim black-box
model [8], [18], [19], [20].

2.1.2 Security Sensitivity of Model Characteristics

We perform experiments to empirically show how does
the knowledge of model characteristics affect the effective-
ness of integrity attack. The detailed experimental setup is
Section 6.3. With ResNet18 as the golden victim model, we
test the adversarial attacks under the following scenarios: 1)
‘White-box’ with all the details of the victim DNN model;
2) ‘W/O-Para’ refers to the scenarios perform an adversarial
attack with without the knowledge of parameters (weights
and BN parameters), but knowing the network architectures
exactly; 3)‘W/O-Dim’ refers to the scenarios perform ad-
versarial attack without the knowledge of parameters and
precise dimension sizes of network architectures, but know-
ing the network sketch with different layer dimensions; 4)
‘W/O-NetArch’ refers to the scenario perform adversarial
attack without any information of the network architecture,
even the network model family. Results show that, white
box attack has very high attack success rate (nearly 100%
without adversarial training), which indicates the impor-
tance of protecting model privacy. Without knowledge of
parameters, we can retrain the neural network models based
on the network architecture information, the attack success
rate drops to 70% on average. With the network sketch
(layer type and interconnection), the attack success rate re-
mains about 70%. Without the network sketch, an adversary
has to use random substitute model architectures that have
distinct decision boundary with the victim. Hence the attack
success rate drops drastically to 17% on average. The results
indicate that the network sketch is very important for model

privacy protection and adversarial attack effectiveness. Such
an observation is consistent with prior studies [9], [10],
which reveal that network sketch is essential for attack
transferability.

In summary, among all of the model characteristics,
the network architecture is the most fundamental one for
DNN security. In addition to boosting the effectiveness of
advanced adversarial attacks, previous studies also demon-
strate that with the knowledge of the network architecture,
the adversary is able to explore the extraction of model
parameters, hyper-parameters, and even training data [11],
[12]. In this work, we select the network architecture as the
target information, because network architecture is not both
fundamental for model security and more relevant to the
DNN system and architectural hints.

White-box W/O-Para W/O-Dim W/O-NetSketch

Fig. 2. Attack success rate distribution with different knowledge of neural
network models.

2.2 Architectural Leakage Surfaces

In the real deployment scenarios, the DNN system stack
provides additional attack surfaces other than the visible
input and output pairs of the victim model. Across the
system stack, both hardware-level, framework-level, and
service-level vulnerabilities provide threats knobs for the
adversary to explore the internal states of DNN models:
Hardware vulnerabilities. Hardware platforms may reveal
architectural vectors through the physical signal snooping
in buses or memory, or side channel attacks in shared
queues/memory. For instances, the attacker can obtain the
bus events and the communication data through bus snoop-
ing. Based on the side channel of the power consumption,
the adversary can infer the utilization rate of processing
units or the input vectors. With the side channel of operation
execution time, the control flow, data dependency, cache
miss rate, or the pipeline stall may be inferred by the
adversary.

4

Framework vulnerabilities: Deep learning frameworks pro-
vide basic operations and commonly-used building blocks
of neural network layers, which ease the programming bur-
den of the developers. However, the implementation com-
plexity of the framework and libraries may lead to software
vulnerabilities, which are not only introduced by the deep
learning framework, but also the dependency packages
used by them. For instance, librosa, numpy, OpenCV, and
Libjasper are commonly used to accomplish tasks such as
video and audio processing or model data representations
in the deep learning framework. Several types of flaws in the
libraries or frameworks, such as heap overflow, integer over-
flow, result in denial-of-service attacks, evasion attacks, or
system compromises, as summarized in previous work [21].
Service vulnerabilities: DNN techniques can be deployed
in both the edge devices and cloud with machine learning
as a service (MaaLS). In addition to the edge devices that are
physically accessible, the cloud services may exhibit shared
tenancy vulnerabilities and poor access control vulnerabil-
ities. Additionally, the APIs of training services also reveal
the decision boundary information.

TABLE 1
Vulnerabilities in the DL system stack

Service
Shared tenancy vulnerabilities;

Poor access control vulnerabilities;
API information leakage

Framework Integer overflow; Heap overflow; Crash; DoS

Hardware
Bus snooping; Memory eavesdropping;

Side channels: Time or delay; Power and current;
Performance counter; EM emission; Optical

As a brief summary, different architectural vectors are
available under different attack surfaces in the system stack
(as summarized in Table 1). However, it is unclear how these
architectural vectors relevant to model characteristics and
what risks do they bring towards DNN models. Hence, we
present the formulated schema of the model leakage risks in
DNN systems in the following subsection.

2.3 Quantitatively Analysis of Attack Objective
DNN architecture provides additional attack surfaces for
advanced and practical attack models, while model security
research inspires the system/architecture security work to
understand what are the critical model features for attack
or protection. It is essential and urgent to explore the deep
learning system security with collaboratively taking care of
the model security and system security. In this work, we
consider how the system leakage surface reveals the internal
model characteristics which assist the adversary to perform
model extraction attack.

Specifically, we propose the formalization description
of model extraction as illustrated in Figure 1c. A DNN
model M is described as a computational graph in the
deep learning framework and being processed in the hard-
ware accelerator with triggering architecture events A. The
adversary may obtain the architecture hint vectors A′ in
the attack surfaces. The model extraction technique R tries
to reverse the architecture vectors to obtain the predicted
model M ′ = R(A′), with the minimum distance between
M ′ and M . The distance between M ′ and M reveals the

architectural leakage risks in this model extraction attack.
This problem can be derived from the optimization of cross
entropy between M ′ and M .

In the following, We propose DeepSniffer framework to
perform model extraction based on available architecture
hints. Then, we take a demonstrative case study to show
the overall DNN system paradigm by proposing the attack
model and effective attack methodology. We not only quan-
titatively evaluate the effectiveness of the proposed method
based on such formalization, but also showcase an end-to-
end attack to validate the rationality of the methodology.

3 A CASE STUDY OF MODEL EXTRACTION

3.1 Attack Model

In this work, we showcase the adoption of DeepSniffer in
one attack scenario, the detailed threat model of which is
as shown in Figure 3. It is a common practice to train a
powerful DNN model in the cloud and deploy it in many
edge devices. When the attacker physically accesses one
edge platform encapsulating a victim DNN model for model
extraction, it is able to attack all the other devices sharing
the same DNN model.Such ”Hack-one-Attack-all-others”
threats are practical and destructive.

We adopt the commonly-used GPU platforms as the
basic architecture of edge devices, which are widely used in
many industrial products, including most of the existing L3
autopilot systems [7], [22]. In such an architecture, the CPU
and GPU are connected by the PCIe bus, and the host and
device memories are attached to the CPU and GPU through
DDR and GDDR memory buses respectively, as shown in
Figure 3b [23]. With bus snooping technologies [24], the ad-
versary passively monitors the memory bus and PCIe events
and obtain the following architectural hints:by observing
the memory access trace through the GDDR memory bus,
the adversary obtains the kernel read/write access volume
(Rv/Wv) and memory address traces. Since there are control
messages passing through the PCIe bus when a kernel is
launched and completed, the adversary can determine the
kernel execution latency (ExeLat) by monitoring the time
between kernel launching and completing.

Note that, we consider a threat model in which the
adversary does not have any knowledge about the victim
models including what family the DNN models belong to,
what software code those models are implemented with,
or any other information about the operation of the device
under attack that is not directly exposed through externally
accessible connections. The extraction attack is fully passive
and only has the ability to observe architectural side-channel
information over time.

3.2 Challenges

It is a challenging task to recover the model architecture
through the architectural hints because of the system and
architectural noises through the DNN system stack. The
detailed system stack is shown in Figure 4a. The com-
putational graph of a DNN model is processed by the
deep learning framework, hardware primitive libraries, and
hardware platform. First, the deep learning framework
optimizes the network architecture of the DNN model to

5

Snooped Bus Info

Device
Memory

CPU GPU
PCIE GDDR5

(a)

Model

Attacker

Hardware Platform

Network Architecture of the Victim model
(b)

Fig. 3. Illustration of the attack model. (a) Hack-one, attack-all-others
with the extracted model. (b) GPU platform overview.

form a framework-level computational graph of layers that
is a representation of a composite function as a graph of
connected layer operations. The framework then transforms
this high-level computational graph abstraction to hardware
primitives of run-time layer execution sequence. Then, the
run-time hardware primitive libraries, such as cuDNN li-
brary [25], launch the well-optimized kernel sequence ac-
cording to the layer type. Finally, such kernel sequences
are executed on the hardware platform, which exhibits
architectural hints, including the memory access pattern and
the kernel execution latency. Both the architectural design
and the run-time system stack introduces noises in the
kernel-level architecture vectors which hinder the attacker
to perform accurately model extraction.

Architectural noise: The comprehensive memory system
optimization, such as the shuffling address mapping and
complex memory hierarchy, raises the difficulty to obtain
and identify the complete memory traces for accurate di-
mension size estimation.

Run-time layer sequence

C
o

n
v

C
o

n
v

R
e

L
U

R
e

L
U

P
o
o

l
P

o
o

l

C
o

n
v

C
o

n
v

R
e

L
U

R
e

L
U

C
o

n
v

C
o

n
v

C
o

n
v

C
o

n
v

R
e

L
U

R
e

L
U

R
e

L
U

R
e

L
U

P
o
o

l
P

o
o

l

C
o

n
v

C
o

n
v

R
e

L
U

R
e

L
U

C
o

n
v

C
o

n
v

Run-time Noises Run-time kernel sequence

(a)

(b)
(VGG)

Framework

Network
architecture

Computational graph
of layers

Run-time
kernel sequence

Leakage Architecture Hints

Pytorch
Tensorflow

mxnet

+
S

y
s
te

m
N

o
is

e

DNN Model

N
N

 A
rc

h
ite

c
tu

re

E
x
tra

c
tio

n

Run-time
layer sequence

Arch-hint vector sequence

Hardware
Primitive

CUDA
OpenCL

Hardware
Platform

GDDR5 Device
Memory

GPU
PCIE

CPU

+
A

rc
h

ite
c

tu
ra

l
N

o
is

e

Framework

Network
architecture

Computational graph
of layers

Run-time
kernel sequence

Leakage Architecture Hints

Pytorch
Tensorflow

mxnet

+
S

y
s
te

m
N

o
is

e

DNN Model

N
N

 A
rc

h
ite

c
tu

re

E
x
tra

c
tio

n

Run-time
layer sequence

Arch-hint vector sequence

Hardware
Primitive

CUDA
OpenCL

Hardware
Platform

GDDR5 Device
Memory

GPU
PCIE

CPU

+
A

rc
h

ite
c

tu
ra

l
N

o
is

e

(c)

Layer Sequence

Identification

Network

Topology

Reconstruction

Dim

Estimation
Candidate

Graphs

Kernel-wise
arch-hint
vectors

DeepSniffer Framework

Run-time Layer

Sequence Identifier

A
rc

h
-H

in
t

V
e

c
to

rs

Run-time Layer Sequence

C
o

n
v
 1

-1
C

o
n
v
 1

-1

C
o

n
v
 1

-2
C

o
n
v
 1

-2

C
o

n
v
 2

-1
C

o
n
v
 2

-1

C
o

n
v
 2

-2
C

o
n
v
 2

-2

P
o
o

l
P

o
o

l

…

… R
e

L
U

R
e

L
U

Run-time Kernel Sequence

R
e

L
U

R
e

L
U

R
e

L
U

R
e

L
U

A
rc

h
-H

in
t

V
e

c
to

rs

A
rc

h
-H

in
t

V
e

c
to

rs

L
a

t
R

v
W

v
R

/W
k

d
d

L
a

t
R

v
W

v
R

/W
k

d
d

Layer Sequence

Identification

Network

Topology

Reconstruction

Dim

Estimation
Candidate

Graphs

Kernel-wise
arch-hint
vectors

DeepSniffer Framework

Run-time Layer

Sequence Identifier

A
rc

h
-H

in
t

V
e

c
to

rs

Run-time Layer Sequence

C
o

n
v
 1

-1

C
o

n
v
 1

-2

C
o

n
v
 2

-1

C
o

n
v
 2

-2

P
o
o

l

…

… R
e

L
U

Run-time Kernel Sequence

R
e

L
U

R
e

L
U

A
rc

h
-H

in
t

V
e

c
to

rs

A
rc

h
-H

in
t

V
e

c
to

rs

L
a

t
R

v
W

v
R

/W
k

d
d

Fig. 4. (a) Computational graph transformations through DNN system
stack. (b) System noise during run-time layer sequence to kernel se-
quence transformations. (c) DeepSniffer overview.

System noise: System run-time dynamics introduces the
noises to the architectural hint sequence in the further step.
DNN layers are transformed into GPU-kernels dynamically
during run-time, with various implementations (e.g. Wino-
grad and FFT). The dynamic, not one-to-one correspondence
mapping between layers and kernels makes it difficult to
even figure out the number of layers and layer boundary in
a kernel sequence, not to mention the corresponding layer
dimension size. To analyze the influence of such dynamics,
we perform experiments on an off-the-shelf GPU platform
with PyTorch [26] and cuDNN [25]. Figure 4b shows the
transformations from the layer sequence of DNN models to
the run-time kernel sequence, taking the VGG and Inception
as illustrative examples. We observe that run-time kernel
implementations vary across different models and even

across time for the same model. For example, in the run-time
kernel sequence of Figure 4b, the blue bars represent Conv
kernels. The boxed two sets of Conv kernels in the VGG
kernel sequence are different from each other with different
implementations.

4 DEEPSNIFFER DESIGN

We envision that accurately predicting the dimension sizes
for identifying the model architecture is infeasible in com-
plex system stacks with the existence of architectural and
system noises, while such a methodology is commonly used
in previous studies [16], [17] that target a specific architec-
ture. Instead, we propose the DeepSniffer framework for
effective model extraction without relying on the accurate
dimension parameter estimation that is hence more robust
and generally applicable.

Design Overview: The design overview of DeepSniffer
is shown in Figure 4c, with the following three stages: 1)
run-time layer sequence identification; 2) layer topology re-
construction; and 3) dimension size estimation. DeepSniffer
proposes a run-time layer sequence identification method-
ology that learns the single kernel feature of architectural
hints during kernel execution and inter-kernel/layer context
probability for higher prediction accuracy. With the pre-
dicted layer sequence, DeepSniff then performs the layer
topology reconstruction and dimension size estimation to
get the complete DNN architecture.

As the most fundamental step, run-time layer sequence
identification translates the kernel-grained architectural hint
sequence back to the run-time layer sequence. Based on the
observation that it can be mapped to a typical sequence-to-
sequence translation problem, we propose a run-time layer
sequence identification methodology based on deep learn-
ing techniques that learn both the single kernel feature and
inter-kernel/layer context association for high prediction
accuracy. Unlike previous work [16], [17], the run-time layer
sequence prediction does not rely on the exact calculation
of the dimension size parameters and but aims to learn the
computational graph transformations through the systems
stack. The following sections introduce these three steps of
model extraction in DeepSniffer in details.

4.1 Run-time Layer Sequence Identification

After comprehensively investigating modern DNN models,
we consider the following layers in this work: Conv (con-
volution), FC (fully-connected), BN (batch normalization),
ReLU (rectified linear unit), Pool (pooling), Add, and Con-
cat (concatenation), because most of the state-of-art neural
network architectures can be represented by these basic
layers [2], [5], [27], [28], [29], [30]. Note that it is easy to
integrate other layers into DeepSniffer if necessary.

4.1.1 Problem Formalization
Formally, the run-time layer sequence identification prob-
lem can be described as follows: We obtain the architectural
hint vectors of kernel sequence X with temporal length
of T as an input. At each time step t, kernel feature
Xt (0 ≤ t < T) can be described as a multiple-dimension
tuple of architectural hints. Note that this tuple can be

6

CTC

decoder

Run-time

Kernel Sequence Architectural Hint Vectors

GPU Kernel feature frames

Exe
Lat

Rv Wv R/W kdd

Kernel probability Sequence probability

Kernel Model Squence Model

X

Speech

Audio Sequence Acoustic Signal Vectors

Character probability Sequence probability

Acoustic Model Squence Model

X

CTC

decoder

L …

Layer

seq

L
Words

Run-time kernel seq in GPU

CTC decoder (beam search)

L = Conv, ReLU, Pool

MAX!

...

...
Acoustic feature frames

Sequence Searching

(a) (b)

Fig. 5. Context-aware layer sequence identification. (a) Identification flow (map the layer sequence identification to a speech recognition problem);
(b) CTC decoder searches the sequence with highest probability.

extended if the attack scenarios expose more architectural
hints. The label space is a set of layer sequences comprised
of all typical layers. The goal is to train a layer sequence
identifier h to predict the run-time layer sequence (L) hav-
ing the minimal distance to the ground-truth layer sequence
(L∗).

The run-time layer sequence identification involves two
internal correlation models: kernel model and layer-sequence
model. The kernel model correlates the relationship between
the architectural hints and the kernel type. The layer-sequence
model correlates the probabilistic distribution between the
layers. We observe that the process of predicting the run-
time layer sequence is similar to that of the speech recogni-
tion, as shown in Figure 5, which also involves two parts: an
acoustic model converting acoustic signals to phonemes and
a language model computing sequence probabilistic distri-
bution on the words or sentences. Therefore this problem
can be mapped to a speech recognition problem due to the
high similarity of these two problems. Based on this insight,
DeepSniffer leverages the auto speech recognition (ASR)
techniques [31], [32] as a tool for run-time layer sequence
identification. In the following subsection, we first show the
intrinsic features of these two models.

4.1.2 Kernel and Layer Features

Architectural Hints of A Single Kernel. During DNN
model execution, every layer conducts a series of kernel
operation(s) for the input data and delivers output results
to the next kernel(s), thus dataflow volume through kernels
and the computation complexity constitutes the major parts
of kernel features. As introduced in Section 3, we can de-
termine the following architecture hints in Attack Scenario-
1: 1) Kernel execution time (ExeLat); 2) The kernel read
volume (Rv) and write volume (Wv) through the memory
bus; We can also calculate: 3) Input/output data volume
ratio (Iv/Ov) of each kernel, where the output volume (Ov)
is equal to the write volume of this kernel and input volume
(Iv) is equal to the write volume of the previously executed
kernel. For the bus snooping attack scenario, we addition-
ally use 4) kernel dependency distance (kdd) to indicate the
topology influence. kdd is defined as the maximum distance
between this kernel and the previous dependent kernels
during the kernel sequence execution, which is a metric to
encode the layer topology information in the kernel features.
We regard this tuple (ExeLat, Rv , Wv , Iv/Ov , kdd) as one
frame of kernel features.

We observe that although the kernels of different layers
have their own features according to their functionality, it
is still challenging to predict which layer a kernel belongs
to, based on kernel model only. Our experiment results show
that, on average, 30% of kernels are identified incorrectly
with the executed features only and this error rate increases
drastically with deeper network architectures (above 50%).
The details of the experimental results are shown in Sec-
tion 5.2.3. In summary, it is challenging to accurately predict
layer sequence by considering single kernel architectural
features only.
Inter-Layer Sequence Context. We observe that the tempo-

ral association of the layer sequence offers the opportunity
for better model extraction. Specifically, given the previous
layer, there is a non-uniform likelihood for the following
layer type, which is referred to as the inter-layer context.
Such temporal association information between layers (aka.
layer context) is inherently brought by the DNN model
design philosophy. For example, there is a small likelihood
that an FC layer follows a Conv layer in DNN models,
because it does not make sense to have two consecutive
linear transformation layers. Recalling the design philoso-
phy of some typical NN models, e.g., VGG [2], ResNet [5],
GoogleNet [27], and DenseNet [13], there are some common
empirical evidence in building the network architecture: 1)
the architecture consists of several basic blocks iteratively
connected, 2) the basic blocks usually include linear oper-
ation first (Conv, FC), possibly the following normalization
to improve the convergence (BN), then non-linear transfor-
mation (ReLU), then possible down-sampling of the feature
map (Pool), and possible tensor reduction or merge (Add,
Concat).

Although DNN architectures evolve rapidly, the basic
design philosophy remains the same. Even for the state-of-
the-art autoML technical direction of Neural Architecture
Search (NAS), which uses the reinforcement learning search
method to optimize the DNN architecture, it also follows
the similar empirical experience [29]. Therefore, such layer
context generally exists in the network architecture design,
which can be leveraged for layer identification.

4.1.3 Context-aware Layer Sequence Identification

Based on the analysis of kernel and inter-layer features,
we adopt the Long Short-Term Memory (LSTM) model
with a Connectionist Temporal Classification (CTC) de-
coder to build the context-aware layer sequence identifier
h. The combination of the LSTM model and CTC decoder

7

is commonly used in automatic speech recognition [31],
[32]. As shown in Figure 5, given the input sequence
X = (X1, .., XT), the object function of training layer
sequence identifier h is to minimize the CTC cost for a
given target layer sequence L∗. The CTC cost is calculated
as follows:

cost (X) = −logP (L∗|h (X)) (1)

where P (L∗|h (X)) denotes the total probability of an emis-
sion result L∗ in the presence of input X .

An Example for Layer Sequence Prediction. The layer
sequence prediction workflow is simplified as shown in
Figure 5a. For the (i)th frame of the kernel sequence, its
kernel architectural hint vectors are Xi. The layer sequence
identifier first conducts the kernel classification based on Xi

and obtains its probability distribution Ki of being Conv,
ReLU, BN, Pool, Concat, Add, and FC.

Ki = {Pconv, Prelu, Pbn, Ppool, Pconcat, Padd, Pfc}i (2)

The layer sequence identifier then uses a sequence model
to estimate the conditional probability with the probability
distribution of prior kernels: (K0, K1, ..., Ki). With the
whole kernel feature sequence, the CTC decoder uses the
beam search to find out the layer sequence with the largest
conditional possibility as output (L). The layer sequence
predictor has better prediction accuracy when there is less
difference between the predicted layer sequence (L) and the
ground-truth layer sequence (L*). The experimental details
of the model training, validation, and testing are introduced
in Section 5.1.

In the further step, we illustrate the detailed working
mechanisms of a simplified CTC decoder in Figure 5b. In
the monitor window (Xi, Xi+1, Xi+2), the CTC decoder
searches throughout the searching space containing all of
the potential layer sequences, such as (Conv, ReLU, Pool),
(FC, ReLU, Conv), (Conv, Conv, Conv), etc. Then it outputs
the layer sequence with the largest probability as output,
which is (Conv, ReLU, Pool) in this case. In real cases,
the CTC decoder is more complex and it considers the
reduplication removing and adopts advanced searching al-
gorithms [31], [32].

4.2 Layer Topology Reconstruction

DeepSniffer then reconstructs the layer topology by
monitoring the memory access pattern of the layers. In this
subsection, we show how the memory traffic reveals the
interconnections between layers.

Before going deeper, we first explain the definition of
the layer interconnections. In the computational graph of a
neural network architecture, if the feature map data of layer
a is fed as the input of layer b, there should be a directed
topology connection from a to b. Since this work focuses on
the inference stage, there is only forward propagation across
the whole network architecture. We first analyze the cache
behaviors of feature map data and report the following
observations:
Observation-1: Only feature map data (activation data) can
introduce read-after-write (RAW) memory access pattern
in the memory bus. There are several types of memory
traffic data during the DNN inference: input images, weight

parameters, and feature map data. Only feature map data
is updated during inference. Feature map data is written
to the memory hierarchy and read as the input data of the
following layer(s). The input image and parameter data are
not updated during the entire inference procedure. There-
fore, the RAW memory access pattern is introduced only by
the feature map data.
Observation-2: Feature map data has a very high possibility
to introduce RAW access pattern, especially for the
convergent and divergent layers. We examine the read cache
misses of the feature map data in kernels of convergent and
divergent layers at branches. The convergent layer receives
feature map data from layers in different branches. For
example, Add and Concat are the main convergent layers in
neural network models. The read cache-miss rate of an Add
layer is more than 98% and that of a Concat layer is more
than 50%, as shown in Figure 6. The divergent layer outputs
feature map data to several successor layers on different
branches. We observe that GPU kernels execute the layers
through one branch by one branch manner. Moreover, the
memory traffic volume in the convergent layer and the suc-
cessors of divergent layers have much higher memory traffic
volume than the ground-truth weight data size. Since the
CUDA library implements extreme data reuse optimizations
that prioritize the weight tensor, the feature map needs to
be flushed into memory and then read again due to a long
reuse distance [23].

These two observations indicate that the RAW access
pattern can be used to determine the interconnections
among different layers. We propose a layer topology recon-
struction scheme as follows: DeepSniffer scans all the layers
in the run-time layer sequence. For layer i, all the addresses
of its read requests constitute ReadSeti and that of write re-
quests constitute WriteSeti. DeepSniffer searches all its an-
tecedent layers layerj ∈ (layer0, layer1, ..., layeri−1) in the
sequence and checks whether ReadSeti∩WriteSetj = ∅. If
it is not ∅, DeepSniffer adds the connection between layer i
and layer j. At the end, DeepSniffer checks whether there is
any layer that doesn’t have any successors in the topology,
and eliminates the orphan layers by adding the connection
to their following layer in the run-time layer sequence.

Note that, we do not require the complete memory
address trace of all the feature map data, but only partial
segments in order to identify the connections between dif-
ferent layers, which is robust to the memory traffic filtering.

4.3 Dimension Size Estimation

After completing the first two steps, we obtain the skeleton
of the neural network architecture. Then DeepSniffer per-
forms the dimension size estimation. Noted, we do not need
the exact precise dimension sizes according to the analysis
of Section 2.1.2, but just make a rough estimation about the
potential dimension spaces. The dimension size estimation
includes the following two steps: 1) Layer feature map size
prediction; 2) Dimension space exploration. In this section,
we explain how to estimate the dimension size parameters
according to the memory traffics.

Layer feature map size prediction is based on the estima-
tion of ReLU sizes. We observe that, for most DNN models,
ReLU kernels have a stable high cache miss rate, surpassing

8

0 20 40 60 80
ResNet

0

0.5

1
C

ac
he

-m
is

s
ra

te

0 10 20 30 40
VGG

0

0.5

1

0 50 100 150 200 250 300 350 400
Inception

0

0.5

1

C
ac

he
-m

is
s

ra
te

conv relu bn pool add fc concat

Fig. 6. Read cache-miss rate of kernels in VGG11, ResNet18, and
Inception.

98%, as shown in Figure 6. Hence, the read volume through
the bus Rv is almost the same as the input feature map
size of the DNN model. Then the write volume Wv can be
estimated which is equal to Rv . Based on this observation,
we can obtain the input and output sizes of ReLU layers.
Then, given the input size of a ReLU layer, the output size
of the previous BN/Add/Conv/FC layer and the input size
of the next Conv/FC layer can be estimated. Since the ReLU
layer is almost a standard layer in every basic block, the
feature map sizes of the layers in the victim model can be
estimated by broadcasting the ReLU size to their adjacent
layers.

With the constructed layer topology and input/output
size of every layer, we calculate the following dimension
space: the input (output) channel size ICi (OCi), the in-
put (output) height IHi (OHi), the input (output) width
IWi (OWi), the weight size (K × K), and the convolution
padding P and stride S.

Based on the fact that the input size of each layer is
the same as the output size of the previous layer, and the
basic tensor computation constraints,we are able to search
the possible solution for every layer. Since we target the
computer vision applications, the IC0 = 3. We assume the
feature map height and weight are the same and stride=1
(which are the common configuration in lots of DNN mod-
els). By iterating over possible kernel sizes (1, 3, 5 ..), we can
estimate the other configuration parameters with the basic
tensor computing constraints.

Notice that, we neither assure nor need to obtain the
precise dimension size parameters. Instead, we randomly
select the possible sets of dimension parameters that satisfy
the tensor computation constraints as the configuration of
the extracted DNN architecture. With the accurate extracted
network sketch, we can achieve good attack effectiveness
though the dimension parameters are different from the
victim model (More analysis in Section 6.3).

5 MODEL EXTRACTION EFFECTIVENESS

In this section, we evaluate the effectiveness of the proposed
network architecture extraction technique.

5.1 Setup
To validate the feasibility of stealing the memory informa-
tion during inference execution, we conduct the experiments
on the hardware platform equipped with Nvidia K40 GPU
[33]. The DNN models are implemented based on PyTorch
framework [26], with CUDA8.0 [34] and cuDNN optimiza-
tion library [25]. We use the GPU performance counter [35]
to emulate bus snooping for kernel execution latency, kernel
write, and read access volume information collection.

As an initial step for network architecture extraction, we
first train the layer sequence identifier based on an LSTM-
CTC model for layer sequence identification. The detailed
training procedure is as follows.

Training: In order to prepare the training data, we
first generate 8500 random computational graphs of DNN
models and obtain the kernel architectural features.Two
kinds of randomness are considered during random graph
generation: topological randomness and dimensional ran-
domness. At every step, the generator randomly selects one
type of block from sequential, Add, and Concat blocks.
The sequential block candidates include (Conv, ReLU), (FC,
ReLU), and (Conv, ReLU, Pool) with or without BN. The
FC layer only occurs when the feature map size is smaller
than a threshold. The Add block is randomly built based
on the sequential blocks with shortcut connections. The
Concat block is built with randomly generated subtrack
number, possibly within Add blocks and sequential blocks.
The dimension size parameters – such as the channel, stride,
padding, and weight size of Conv and neuron size of FC
layer – are randomly generated to improve the diversity of
the random graphs. The input size of the first layer and
the output size of the last layer are fixed during random
graph generation, considering that they are usually fixed in
one specific target platform. We randomly select 80% of the
random graphs as the training set and other 20% as the
validation set to validate whether the training is overfitting
or not.

Testing: To verify the effectiveness and generalization
of our layer sequence identifier framework, we examine
various commonly-used DNN models as the test set, in-
cluding VGG [2], ResNet [5], and Nasnet [29] to cover the
representative state-of-the-art DNN models.

5.2 Layer Sequence Identification Accuracy
In this section, we first evaluate the layer sequence identi-
fication accuracy. Then we analyze the importance of the
layer context information and the influence of noises in
architectural hints.

5.2.1 Evaluation Metric
We quantify the prediction accuracy with the layer pre-
diction error rate (LER), similar to those being used in
speech recognition problems. It is the mean normalized edit
distance between the predicted sequence and label sequence
which quantifies the prediction accuracy [31], [32]. The
detailed prediction calculation is as follows [32].

LER =
ED (L,L∗)

|L∗|
(3)

where ED (L,L∗) is the edit distance between the predicted
layer sequences L and the ground-truth layer sequence L∗,

9

i.e. the minimum number of insertions, substitutions, and
deletions required to change L into L∗. |L∗| is the length of
the ground-truth layer sequence.
5.2.2 Run-time Layer Sequence Prediction Accuracy
We first evaluate the accuracy of the randomly generated
DNN models.For DNN models with chained topology only,
the average prediction error rate of layer sequence identi-
fication is about 0.06. For neural networks with shortcut
and concat topology, the average LER of layer sequence
identification is about 0.06 and 0.1, respectively. The LER
is higher for DNN models with more complex topology.

Furthermore, we evaluate the accuracy in identifying
several state-of-the-art DNN models, as shown in Table
3. The LER of AlexNet and VGG19 are 0.02 and 0.017
respectively, as shown in Table 3. For ResNet families, the
prediction LER is lower than 0.07. For NasNet, the LER
increases slightly due to the much deeper and complex
connections. We take ResNet34 as an example to present
the detailed results in Table 2. In summary, our proposed
method is generally effective in correctly identifying the
layer sequence. There may exist a small deviation between
the predicted sequence and ground-truth sequence. Thus we
conduct end-to-end experiments in Section 6, which shows
that the extracted neural network architecture, although
having a little deviation from the victim architecture, can
still boost the attacking effectiveness.

TABLE 2
Identification results

DNN
Model

Ground-truth Sequence Predicted Sequence

ResNet18
(ErrorRate
0.032)

Conv BN ReLU MaxPool Conv
BN ReLU Conv BN ADD ReLU
Conv BN ReLU Conv BN ADD
ReLU Conv BN ReLU Conv BN
Conv BN Add ReLU Conv BN
ReLU Conv BN ADD ReLU Conv
BN ReLU Conv BN Conv BN
Add ReLU Conv BN ReLU Conv
BN ADD ReLU Conv BN ReLU
Conv BN Conv BN Add ReLU
Conv BN ReLU Conv BN FC

Conv BN ReLU MaxPool Conv
BN ReLU Conv BN ADD ReLU
Conv BN ReLU Conv BN ADD
ReLU Conv BN ReLU Conv BN
Conv BN Add ReLU Conv BN
ReLU Conv BN ADD ReLU Conv
BN ReLU Conv BN Conv BN
Add ReLU Conv BN ReLU Conv
BN ADD ReLU Conv BN ReLU
Conv BN Conv BN Add ReLU
Conv BN ReLU Conv BN ReLU
FC

TABLE 3
Prediction error rate on typical networks.

Chained Topology Complex Topology
AlexNet VGG19 ResNet34 ResNet101 ResNet152 Nasnet large

0.020 0.017 0.040 0.067 0.068 0.144

5.2.3 Why is Inter-Layer Context Important?
To analyze the importance of inter-layer context information
in this section, we compare the prediction error rate of
two methods: a context-aware identifier considering layer
context in our work and a single-kernel identifier based on a
multi-layered perception model. The key difference between
these two identifiers is whether including the sequence
model in Figure 5.

We compare both the prediction error rate along the
identifier training processes from the 1st to 100th epochs
(Figure 7a and prediction error rate for DNN models with
different architectures (Figure 7b). We draw two conclusions
from this experiment: 1) DeepSniffer can achieve much
better prediction accuracy with considering the layer context
information. The results show that the average LER of the
context-aware identifier is three times lower than the single-
layer identifier (Figure 7a). 2) Layer context information

is increasingly important when identifying more complex
network architectures. As shown in Figure 7b, compared to
the simple network architecture with only chain typologies,
the more complex architectures with remote connections
(e.g. Add or Concat) cause higher error rates. For the single-
layer identifier, the LER dramatically increases when the
network is more complex (from 0.18 to 0.5); while, for the
context-aware identifier, the average LER demonstrates a
non-significant increase (from 0.065 to 0.104). The exper-
imental results indicate that the layer context with inter-
layer temporal association is a very important information
source, especially for the deeper and more complex neural
networks.

A
v
g

L
E

R

0

0.2

0.4

0.6

Chain Shortcut Complex

Single-kernel identifier

Context-aware identifier

0 50 100
0

0.2

0.4

0.6
Single-kernel identifier

Context-aware identifier

A
v
g

L
E

R

(a) (b)

Fig. 7. (a) Average prediction error rate comparison between single-
kernel identifier and context-aware identifier during training process. (b)
Average prediction rate comparison with different victim DNNs

5.3 Model Size Estimation

In this section, we show the feature map size estimation
results of the input and output for every layer, which is
the prerequisite for dimension space estimation. For both
the side-channel and bus snooping attacks, the input and
output feature map sizes of every layer in the DNN model
are calculated based on the ReLU memory traffic volume.
Therefore, we show estimation accuracy under bus snoop-
ing scenario as an example in Figure 8, which is calculated
as 1 minus the deviation between the estimated size and
actual size. For Conv, BN, ReLU, Add, and Concat, the
estimation accuracy can reach up to 98%. The FC presents
lower accuracy since the FC layer is usually at the end of
the network and the neuron number decreases. Thus, the
activation data of the ReLU layer may be filtered, and it is
not accurate to use ReLU read transactions to estimate the
FC size. We use the read access volume to predict the input
and output sizes of FC layers instead. The dimension size
prediction results may be platform-dependent. However,
we take the dimension size prediction as the less important
step than the other two and experimentally validate the
effectiveness of the extracted architectures with imprecise
dimension sizes.

Fig. 8. Layer input and output feature map size estimation (normalized
to the ground-truth size).

10

6 HOW VALUABLE ARE EXTRACTED MODELS?

The extracted network architectures not only endanger
the intelligence property. Even worse, they can be adopted
to perform advanced attacks in the further step. In this
study, we test one of the most important attack model, ex-
plorational attacks, as the end-to-end attack case to show the
effectiveness of the extracted neural network architectures.

6.1 Advanced Attacks with Extracted DNN Archs

Explorational attack crafts the inputs with malicious
perturbations to mislead the victim model to produce an
arbitrary (untargeted attack) [18] or a pre-assigned incorrect
output (targeted attack) [36], [37], [38]. It does not poison
the victim model and is one of the most important attack
model during the inference stage [8]. According to different
restriction of input perturbations, it can be classified into
two major categories: adversarial example attack and ad-
versarial patch attack.
Adversarial example attacks add input-dependent, but im-
perceptible noises in the input images to manipulate the
outputs [18]. Adversarial example attack have been studied
broadly and being considered as one of the most important
attack models to explore the DNN vulnerability.
Adversarial patch attacks add input-independent patch
perturbation in the input images to manipulate the victim
model to output malicious results [39]. Compared to adver-
sarial example attacks, patch attacks are more practical due
to the reasons: 1) Better universality across different input
images. Such a scene-independent feature enables practical
physical-world attack without prior knowledge of the scene.
2) Better robustness to environmental noises and geometric
distortion. It is not only effective in a static figure input, but
also in complex scenarios like walking, sitting, and running.
Attack flow: For both of these two attacks, to perform the
adversarial attack against a black-box model, the adversary
normally builds a substitute model first by querying the
input and output of the victim model. Then the adversary
generates the adversarial examples based on the white-
box substitute model [36], [40], [41]. Finally, they use these
adversarial examples to attack the black-box model.

In summary, the transfer-based adversarial attack flow is
illustrated in Figure 9, which consists of the following steps:
1): Build substitute models. Baseline selects the typical net-
work architectures from model zoo to build the substitute
model, while DeepSniffer trains substitute models with the
extracted network architectures, as shown in Figure 9 .
2): Adversarial Attacks. Both adversarial example attacks
and adversarial patch attacks have the same attack flow:
first, generate the adversarial examples or adversarial
patches on the subsitute models. Then, apply the adversarial
inputs to the black-box victim model.

In this section, we show that the adversarial attack
efficiency can be significantly improved with the extracted
network architectures.

6.2 Attack Setup

Configurations: In these experiments, we use ResNet18 [5]
as the victim model for targeted attacks. Our work
adopts the extracted neural network architecture to

build the substitute models. For comparison, the base-
line examines the substitute models established from
the following networks: V GG family [2] (VGG11,
VGG13, VGG16, VGG19), ResNet family [5] (ResNet34,
ResNet50, ResNet101, ResNet152), DenseNet fam-
ily [13] (DenseNet121, DenseNet161, DenseNet169,
DenseNet201), SqueezeNet [42], and Inception [27].
Extracted DNN Architectures: Based on the architectural
hints of ResNet18, we extract DNN architectures following
the three steps: run-time sequence identification, layer topol-
ogy reconstruction, and dimension estimation, as shown
in the Figure 10. In the run-time layer sequence identifi-
cation, DeepSniffer accurately predicts the layer sequence
with small errors in red color. In dimension size estimation,
we randomly select four dimension sets from the potential
dimension space which satisfy the layer size and constraints.
The four dimension sets are different from the original
victim ResNet18. Therefore, we validate the effectiveness
of these extracted neural network models that are slightly
different from the original victim model in the following.

6.3 Adversarial Example Attack Effectiveness

First, we randomly select 10 classes, each class with 100
images from ImageNet dataset [43] as the original inputs
for targeted attack tests. Then, we compare the attack effec-
tiveness of adversarial examples generated by the following
five solutions: ensembled substitute models from V GG
family, DenseNet family, Mix architectures (squeezeNet,
inception, AlexNet, DenseNet), ResNet family, and from
extracted architectures using our proposed model extrac-
tion.

The attack success rate results are shown in Table 4.
We report several observations: 1) The attack success rate
is generally low for the cases without network architecture
knowledge. The adversarial examples generated by substi-
tute models with V GG family, DenseNet family, and Mix
architectures only complete successful attacks in 14%–25.5%
of the cases. 2) With some knowledge of the victim archi-
tecture, the attack success rate is significantly improved.
For example, the substitute models within ResNet family
achieve the attack success rate of 43%. 3) With our extracted
network architectures – although it still has differences from
the original network – the attack success rate is boosted
to 75.9%. These results indicate that our model extraction
significantly improves the success rate of consequent adver-
sarial attacks.

In a further step, we take a deep look at the targeted
attack which leads the images in Class-755 to be misclassi-
fied as Class-255 in the ImageNet dataset. We explore the
effectiveness of ensembled models with various substitute
combinations, by randomly picking four substitute models
from the candidate model zoo. The results are shown in
the blue bars of Figure 11. We also compare the results
to the cases using substitute models 1) from V GG family;
2) from DenseNet family; 3) from squeezeNet, inception,
AlexNet, and DenseNet (’Mix’ bar in the figure); 4) from
ResNet family; and 5) from extracted cognate ResNet18
model (our method) to generate the adversarial examples.
As shown in Figure 11, the average success rate of random
cases is only 17% and the best random-picking case just

11

Baseline
Ensembled Model

Substitute Model0

Build Substitute Model Attack on the Victim ModelBuild Adv Examples

Victim
modelRandom

model Archs

Extracted
Model Archs

Adversarial Example Attack

Adversarial Patch AttackSubstitute Model1

Substitute Model2

Substitute Model3DeepSniffer

Build Adv PatchesModel Extraction

Victim
model

targeted
output

+

+

+

Attack on the Victim Model

targeted
output

Fig. 9. Flows of adversarial example attack and patch attack.

B0: Conv (BN) ReLU MaxPool

B1: Conv BN ReLU Conv BN ADD ReLU

B2: Conv BN ReLU Conv BN Conv BN
 Add ReLU
B2: Conv BN ReLU Conv BN Conv BN
 Add ReLU

B3: Conv BN ReLU Conv BN ReLU
 Add ReLU
B3: Conv BN ReLU Conv BN ReLU
 Add ReLU

F1: AvgPool FC

B0 B1 B1 B2 B1 B2 B1 B2 B3 F1B0 B1 B1 B2 B1 B2 B1 B2 B3 F1

C
o

n
v

B
N

R
e

L
U

C
o

n
v

B
N

R
e

L
U

R
e

L
U

C
o

n
v

B
NB1 B2 B3

B0
FM:803008

B1
FM1:200968
FM2:200968

B1
FM1:200968
FM2:200968

B2
FM1:100616
FM2:100544

B1
FM1:100544
FM2:100616

F1
B3

FM1:25280
FM2:25280

B2
FM1:25352
FM2:25280

B1
FM1:50368
FM2:50368

B2
FM1:50368
FM2:50440

❸

Feature map size

❶ ❷

Fig. 10. Extracted DNN architectures.

achieves the attack success rate of 34%. We observe that
all good cases in random-picking (attack success rate ¿
20%) include substitute models from ResNet family. Our
method with accurate extracted DNN models performs the
best attack success rate across all the cases, 40% larger than
the best random-picking case and ResNet family cases.
To summarize, with the help of the effective and accurate
model extraction, the consequent adversarial attack achieves
a much better attack success rate. Therefore, it is extremely
important to protect the neural network architectures in the
DNN system stack, which can boost the adversarial attack
effectiveness.

TABLE 4
Success rate with different substitute models.

VGG DenseNet Mix ResNet Extracted
family family family DNN

Success rate 18.1% 25.5% 14.6% 43% 75.9%

0%

10%

20%

30%

40%

50%

60%

70%

80%

attack w/ random model

attack w/ VGG

attack w/ DenseNet

attack w/ mixed Model

attack w/ ResNet

Our Method

A
tt

a
c
k
in

g
 S

u
c
c
e

s
s
 R

a
te

Fig. 11. Explore the targeted attack success rate across different cases.
Our method performs best.

6.4 Adversarial Patch Attack Effectiveness
We additionally test the effectiveness of extracted network
architectures on adversarial patch attacks. Patch attack is
to generate a uniform adversarial patch for any arbitrary
inputs that manipulate the victim model to output targeted
or untargeted labels [39]. The major difference between an
adversarial example and patch attack is that the adversar-
ial patches are not dependent on the inputs while every

different input desires a customized adversarial example.
Adversarial patch attacks eliminate the necessity to obtain
the attack scene in advance, which is more robust and
feasible in physical world.

We randomly select 10 classes, each class with 100 im-
ages from ImageNet dataset for adversarial patch attack.
We examine the transferability across both different models
and input images. Specifically, the victim model is ResNet18.
We first generate adversarial patches on the training dataset
for VGG family, DenseNet family, Mix architectures, ResNet
family, and our extracted model. Then, we test the model
transferability of these patches by applying adversarial
patches on the training set and take the patched images to
the victim model. The attack success rate results are shown
in the category of ‘TrainSet’ in Figure12. We also test data
transferability by applying patches on testing dataset and
take the patched images into the victim model. The attack
success rate results are shown in the category of ‘TestSet’ in
Figure12.

Consistently, the attack success rate for adversarial patch
attack is generally low for the cases without network archi-
tecture knowledge. Under the training set, the adversarial
patch generated by substitute models with VGG family,
DenseNet family, and Mix architectures complete success
attacks in 41% - 44% of the cases. With the knowledge of
the victim architecture, the attack success rate is improved
largely. For example, the substitute models within ResNet
family achieve the attack success rate of 62%. With the
extracted model architectures by DeepSniffer, the attack suc-
cess rate is 83%. In addition to the model transferability, we
also test the transferability of the adversarial patch on the
test input set. In the test set, the adversarial patch generated
by the DeepSniffer can still achieve 82% of attack success
rate. Such experiment results not only reveal the importance
of model knowledge protection, but also demonstrate the
effectiveness of the model extraction technique in this work.

0

0.2

0.4

0.6

0.8

1

TrainSet TestSet

A
S

R

VGG family DenseNet family Mix

ResNet family Extracted DNN

Fig. 12. The patch attack success rate with different substitute models.

12

7 ANALYSIS OF DEFENSIVE APPROACHES

7.1 Microarchitecture Methodologies
There are a few architectural memory protection methods.
Oblivious Memory: To reduce the information leakage on
the bus, previous work proposes oblivious RAM (ORAM)
[44] which hides the memory access pattern by encrypting
the data addresses. With ORAM, attackers cannot identify
two operations even when they are accessing the same phys-
ical address [44]. However, ORAM techniques incur a sig-
nificant memory bandwidth overhead (up to an astonishing
10x), which is impractical for bandwidth-sensitive GPUs.
Dummy Read/Write Operations: Another potential defense
solution is to introduce fake memory traffic to disturb the
statistics of memory events. Unfortunately, the noises exert
only a small degradation of the layer sequence prediction
accuracy. As such, fake RAW operations to obfuscate the
layer dependencies identification may be a more fruitful
defensive technique to explore.

Robustness to Hint Noises We conduct experiments to
analyze the accuracy sensitivity of the identifier taking in the
kernel features with noises. Taking the bus snooping attack
as an example, When kernel execution feature statistics are
affected by random noises within 5%, 10%, 20%, or 30%
of amplitude, the average error rate of the layer prediction
increases from 0.08 to 0.16. The results indicate that the
layer sequence identifier is not sensitive to architectural hint
noises.

7.2 System Methodologies
The essence of our work is to learn the compilation and
scheduling graphs of the system stack. Although the com-
putational graphs go through multiple levels of the system
stack, we demonstrate that it is still possible to recover the
original computational graph based on the raw information
stolen from the hardware. At the system level, one could: 1)
customize the overall NN system stack with TVM, which is
able to implement the graph level optimization for the op-
erations and the data layout [45]. The internal optimization
possibly increases the difficulty for the attackers to learn
the scheduling and compilation graph, or 2) make security-
oriented scheduling between different batches during the
front-end graph optimization. Although such optimizations
may have a negative impact on performance, they may
obfuscate the adversary a view of kernel information.

8 RELATED WORK

The security problem for the DNN system has emerged
as an urgent and severe problem, since DNN techniques
have infiltrated into many security-critical applications. The
related research mainly comes from the algorithm and hard-
ware aspects.

Algorithm researchers originally observe that model
characteristics leakage may heavily reveal the vulnerability
of DNN models to attackers. By extracting such information,
attackers not only counterfeit the intellectual property of
the DNN design, but also perform more efficient adver-
sarial attacks that manipulate the DNN model to output
malicious outputs [9], [10]. Due to the significance of model
characteristics, model extraction attack that steals the model

characteristics of victim models, consequently, becomes an
important attack model for exploring the DNN model vul-
nerability [10], [11], [12]. The network architecture extrac-
tion is the most fundamental step for stealing other model
characteristics, such as the parameter, and hyperparameter,
or even training data [11], [12]. It is also challenging that
relies on the meta-learning and network structure searching,
which introduces significant computing overhead [10].

Exploiting the exposed information in the hardware
attack surfaces can strengthen the model extraction effec-
tiveness. Several studies are proposed, either aiming to
conduct model extraction [17] or input inversion based on
memory access pattern and power traces. However, their
methodologies rely on the specific design features in hard-
ware platforms and cannot be generally applicable to GPU
platforms with the full system stack. CathyTelepathy [16]
explores side-channel techniques in caches to reduce the
hyper-parameter space of victim DNN models by inferring
the configurations of GEMM operations. Naghibijouybari et
al. show that side-channel effect in GPU platform can reveal
the neuron numbers [15]. However, none of these studies
show that how these obtained statistics are useful to the
attacking effectiveness. This work is the FIRST to propose
the DNN model extraction framework and experimentally
conduct an end-to-end attack on an off-the-shelf GPU plat-
form immune to full system stack noises. Inspired by Deep-
Sniffer, more studies leverage learning-based methodology
to perform model extraction [46]. The formalized schema in
this work can be extended to comprehensive passive attacks
that explore what DNN system attack surfaces matter and
how bad are the architectural risk

9 CONCLUSION

The widespread use of neural network-based applications
raises stronger and stronger incentive for attackers to ex-
tract the neural network architectures of DNN models. In
observing the limitations of previous work, we propose a
robust learning-based methodology to extract the DNN ar-
chitecture. Through the acquisition of memory access events
from bus snooping, layer sequence identification by the
LSTM-CTC model, layer topology connection according to
the memory access pattern, and layer dimension estimation
under data volume constraints, we demonstrate one can
accurately recover a similar network architecture as the
attack starting point. These reconstructed neural network
architectures present significant increase in attack success
rates, which demonstrate the importance of establishing
secure DNN system stack.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Proceedings
of the 25th International Conference on Neural Information
Processing Systems - Volume 1, ser. NIPS’12. USA: Curran
Associates Inc., 2012, pp. 1097–1105.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” CoRR, vol.
abs/1409.1556, 2014. [Online]. Available: http://arxiv.org/abs/
1409.1556

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

13

[3] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke,
D. Yu, and G. Zweig, “The microsoft 2016 conversational speech
recognition system,” in Acoustics, Speech and Signal Processing
(ICASSP), 2017 IEEE International Conference on. IEEE, 2017,
pp. 5255–5259.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems, 2017, pp.
6000–6010.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[6] G. M. Consulting, “Autonomous vehicle adoption study,” 2016.
[7] TechCrunch, “Nvidia is powering the world’s first level 3 self-

driving production car.” 2017.
[8] N. Akhtar and A. Mian, “Threat of adversarial attacks on

deep learning in computer vision: A survey,” CoRR, vol.
abs/1801.00553, 2018.

[9] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transfer-
able adversarial examples and black-box attacks,” ICLR, vol.
abs/1611.02770, 2017.

[10] S. J. Oh, M. Augustin, B. Schiele, and M. Fritz, “Towards
reverse-engineering black-box neural networks,” ICLR, vol.
abs/1605.07277, 2018. [Online]. Available: https://arxiv.org/abs/
1711.01768

[11] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Steal-
ing machine learning models via prediction apis,” in Proceedings
of the 25th USENIX Conference on Security Symposium, ser.
SEC’16. Berkeley, CA, USA: USENIX Association, 2016, pp. 601–
618.

[12] B. Wang and N. Z. Gong, “Stealing hyperparameters in machine
learning,” CoRR, vol. abs/1802.05351, 2018.

[13] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in CVPR 2017.

[14] X. Hu, L. Liang, S. Li, L. Deng, P. Zuo, Y. Ji, X. Xie, Y. Ding, C. Liu,
T. Sherwood et al., “Deepsniffer: A dnn model extraction frame-
work based on learning architectural hints,” in Proceedings of the
Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2020, pp.
385–399.

[15] H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh,
“Rendered insecure: Gpu side channel attacks are practical,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’18. New York, NY, USA:
ACM, 2018, pp. 2139–2153.

[16] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepathy: Lever-
aging shared resource attacks to learn DNN architectures,” CoRR,
vol. abs/1808.04761, 2018.

[17] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convolu-
tional neural networks through side-channel information leaks,”
in Proceedings of the 55th Annual Design Automation Conference,
ser. DAC ’18. New York, NY, USA: ACM, 2018, pp. 4:1–4:6.

[18] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and har-
nessing adversarial examples,” Proceedings of the International
Conference on Learning Representations, 2015.

[19] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Re-
thinking the inception architecture for computer vision,” CoRR,
vol. abs/1512.00567, 2015.

[20] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards
the science of security and privacy in machine learning,” arXiv
preprint arXiv:1611.03814, 2016.

[21] Q. Xiao, K. Li, D. Zhang, and W. Xu, “Security risks in deep
learning implementations,” in 2018 IEEE Security and Privacy
Workshops (SPW). IEEE, 2018, pp. 123–128.

[22] Waymo, “Introducing waymo’s suite of custom-
build, self-driving hardware,” 2017. [Online]. Avail-
able: https://medium.com/waymo/introducing-waymos-suite-o
f-custom-built-self-driving-hardware-c47d1714563/

[23] M. Rhu, M. O’Connor, N. Chatterjee, J. Pool, Y. Kwon, and
S. W. Keckler, “Compressing dma engine: Leveraging acti-
vation sparsity for training deep neural networks,” in 2018
IEEE International Symposium on High Performance Computer
Architecture (HPCA), Feb 2018, pp. 78–91.

[24] “Hmtt: Hybrid memory trace toolkit,” 2019. [Online]. Available:
http://asg.ict.ac.cn/hmtt/

[25] Nvidia., “Nvidia cudnn gpu accelerated deep learning,” 2017.
[Online]. Available: https://developer.nvidia.com/cudnn

[26] PyTorch., “Pytorch tutorials.” [Online]. Available: http://pytorch.
org/tutorials/

[27] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-
v4, inception-resnet and the impact of residual connections on
learning.” in AAAI, 2017, pp. 4278–4284.

[28] X. Zhang, Z. Li, C. C. Loy, and D. Lin, “Polynet: A pursuit of struc-
tural diversity in very deep networks,” CoRR, vol. abs/1611.05725,
2016.

[29] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning trans-
ferable architectures for scalable image recognition,” CoRR, vol.
abs/1707.07012, 2017.

[30] J.-H. Tao, Z.-D. Du, Q. Guo, H.-Y. Lan, L. Zhang, S.-Y. Zhou,
C. Liu, H.-F. Liu, S. Tang, and A. Rush, “Benchip: Benchmarking
intelligence processors,” arXiv preprint arXiv:1710.08315, 2017.

[31] A. Graves and N. Jaitly, “Towards end-to-end speech recogni-
tion with recurrent neural networks,” in Proceedings of the 31st
International Conference on International Conference on Machine
Learning - Volume 32, ser. ICML’14, 2014, pp. II–1764–1772.

[32] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connec-
tionist temporal classification: Labelling unsegmented sequence
data with recurrent neural networks,” in Proceedings of the 23rd
International Conference on Machine Learning, ser. ICML ’06.
New York, NY, USA: ACM, 2006, pp. 369–376.

[33] NVIDIA, “Nvidia tesla k40 active gpu accelerator,” http://www.
pny.com/nvidia-tesla-k40-active-gpu-accelerator, 2016.

[34] N. Wilt, The cuda handbook: A comprehensive guide to gpu
programming. Pearson Education, 2013.

[35] Nvidia., “Cuda toolkit documentation.” [Online]. Available:
http://docs.nvidia.com/cuda/profiler-users-guide/index.html

[36] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,”
arXiv preprint arXiv:1312.6199, 2013.

[37] S. Alfeld, X. Zhu, and P. Barford, “Data poisoning attacks against
autoregressive models,” in Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, ser. AAAI’16. AAAI Press,
2016, pp. 1452–1458.

[38] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples
in the physical world,” arXiv preprint arXiv:1607.02533, 2016.

[39] K. Xu, G. Zhang, S. Liu, Q. Fan, M. Sun, H. Chen, P.-Y. Chen,
Y. Wang, and X. Lin, “Adversarial t-shirt! evading person detectors
in a physical world,” in ECCV, 2020, pp. 665–681.

[40] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,”
in Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security, ser. ASIA CCS ’17. New York, NY,
USA: ACM, 2017, pp. 506–519.

[41] N. Papernot, P. D. McDaniel, and I. J. Goodfellow, “Transferability
in machine learning: from phenomena to black-box attacks using
adversarial samples,” CoRR, vol. abs/1605.07277, 2016. [Online].
Available: http://arxiv.org/abs/1605.07277

[42] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer, “Squeezenet: Alexnet-level accuracy with
50x fewer parameters and¡ 0.5 mb model size,” arXiv preprint
arXiv:1602.07360, 2016.

[43] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2009. IEEE, 2009, pp. 248–255.

[44] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and
S. Devadas, “Path oram: An extremely simple oblivious ram
protocol,” in Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, ser. CCS ’13. New
York, NY, USA: ACM, 2013, pp. 299–310.

[45] T. Chen, T. Moreau, Z. Jiang, H. Shen, E. Q. Yan, L. Wang, Y. Hu,
L. Ceze, C. Guestrin, and A. Krishnamurthy, “TVM: end-to-end
optimization stack for deep learning,” CoRR, vol. abs/1802.04799,
2018.

[46] S. Banerjee, P. Ramrakhyani, S. Wei, and M. Tiwari, “Sesame:
Software defined enclaves to secure inference accelerators with
multi-tenant execution,” arXiv preprint arXiv:2007.06751, 2020.

https://arxiv.org/abs/1711.01768
https://arxiv.org/abs/1711.01768
https://medium.com/waymo/introducing-waymos-suite-of-custom-built-self-driving-hardware-c47d1714563/
https://medium.com/waymo/introducing-waymos-suite-of-custom-built-self-driving-hardware-c47d1714563/
http://asg.ict.ac.cn/hmtt/
https://developer.nvidia.com/cudnn
http://pytorch.org/tutorials/
http://pytorch.org/tutorials/
http://www.pny.com/nvidia-tesla-k40-active-gpu-accelerator
http://www.pny.com/nvidia-tesla-k40-active-gpu-accelerator
http://docs.nvidia.com/cuda/profiler-users-guide/index.html
http://arxiv.org/abs/1605.07277

14

Xing Hu received the B.S. degree from
Huazhong University of Science and Technol-
ogy, Wuhan, China, and Ph.D. degree from Uni-
versity of Chinese Academy of Sciences, Beijing,
China, in 2009 and 2014, respectively. She is
currently an associate professor of State Key
Laboratory of Computer Architecture, Institute of
Computing Technology (ICT), Chinese Academy
of Sciences (CAS), Beijing, China. Her current
research interests include domain-specific hard-
ware architectures and deep learning system

security.

Ling Liang received the B.E. degree from Bei-
jing University of Posts and Telecommunications,
Beijing, China, in 2015, and M.S. degree from
University of Southern California, CA, USA, in
2017. He is currently pursuing the Ph.D. degree
at Department of Electrical and Computer Engi-
neering, University of California, Santa Barbara,
CA, USA. His current research interests include
machine learning security and computer archi-
tecture.

Lei Deng received the B.E. degree from Univer-
sity of Science and Technology of China (USTC),
Hefei, China in 2012, and the Ph.D. degree
from Tsinghua University (THU), Beijing, China
in 2017. He is currently a Postdoctoral Fellow at
the Department of Electrical and Computer Engi-
neering, University of California, Santa Barbara
(UCSB), CA, USA. His research interests span
the area of brain-inspired computing, machine
learning, neuromorphic chip, computer architec-
ture, tensor analysis, and complex networks.

Timothy Sherwood is a Professor of Computer
Science at the University of California, Santa
Barbara. He is a co-founder of the hardware se-
curity startup Tortuga Logic and the 2016 ACM
SIGARCH Maurice Wilkes Awardee “for con-
tributions to novel program analysis advancing
architectural modeling and security.” Professor
Sherwood received a B.S. degree in computer
science from UC Davis, and a M.S. and Ph.D.
degrees from UC San Diego.

Yuan Xie received his Ph.D. degrees from Elec-
trical Engineering Department, Princeton Uni-
versity, Princeton, NJ, USA in 2002. He was with
IBM, Armonk, NY, USA, from 2002 to 2003, and
AMD Research China Lab, Beijing, China, from
2012 to 2013. He was a Professor with Pennsyl-
vania State University, State College, PA, USA,
from 2003 to 2014. He is currently a Professor
with the Department of Electrical and Computer
Engineering, University of California at Santa
Barbara, Santa Barbara, CA, USA.

Dr. Xie is an expert in computer architecture who has been inducted
to ISCA/MICRO/HPCA Hall of Fame. He has been an IEEE Fellow since
2015. He served as the TPC Chair for HPCA 2018 and he is Editor-in-
Chief for ACM Journal on Emerging Technologies in Computing Sys-
tems (JETC), Senior Associate Editor (SAE) for ACM Transactions on
Design Automations for Electronics Systems (TODAES), and Associate
Editor for IEEE Transactions on Computers (TC). His current research
interests include computer architecture, Electronic Design Automation,
and VLSI design.

	Introduction
	A Systematic Approach to DNN Vulnerabilities
	Model Vulnerability
	Model Characteristics
	Security Sensitivity of Model Characteristics

	Architectural Leakage Surfaces
	Quantitatively Analysis of Attack Objective

	A Case Study of Model Extraction
	Attack Model
	Challenges

	DeepSniffer Design
	Run-time Layer Sequence Identification
	Problem Formalization
	Kernel and Layer Features
	 Context-aware Layer Sequence Identification

	Layer Topology Reconstruction
	Dimension Size Estimation

	Model Extraction Effectiveness
	Setup
	Layer Sequence Identification Accuracy
	Evaluation Metric
	Run-time Layer Sequence Prediction Accuracy
	Why is Inter-Layer Context Important?

	Model Size Estimation

	How Valuable are Extracted Models?
	Advanced Attacks with Extracted DNN Archs
	Attack Setup
	Adversarial Example Attack Effectiveness
	Adversarial Patch Attack Effectiveness

	Analysis of Defensive Approaches
	Microarchitecture Methodologies
	System Methodologies

	Related Work
	Conclusion
	References
	Biographies
	Xing Hu
	Ling Liang
	Lei Deng
	Timothy Sherwood
	Yuan Xie

