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Abstract

Smart contracts are Turing-complete programs that are executed across a blockchain. Unlike traditional programs, once

deployed, they cannot be modified. As smart contracts carry more value, they become more of an exciting target for attackers.

Over the last years, they suffered from exploits costing millions of dollars due to simple programming mistakes. As a result,

a variety of tools for detecting bugs have been proposed. Most of these tools rely on symbolic execution, which may yield

false positives due to over-approximation. Recently, many fuzzers have been proposed to detect bugs in smart contracts.

However, these tend to be more effective in finding shallow bugs and less effective in finding bugs that lie deep in the execution,

therefore achieving low code coverage and many false negatives. An alternative that has proven to achieve good results in

traditional programs is hybrid fuzzing, a combination of symbolic execution and fuzzing. In this work, we study hybrid fuzzing

on smart contracts and present ConFuzzius, the first hybrid fuzzer for smart contracts. ConFuzzius uses evolutionary fuzzing

to exercise shallow parts of a smart contract and constraint solving to generate inputs that satisfy complex conditions that

prevent evolutionary fuzzing from exploring deeper parts. Moreover, ConFuzzius leverages dynamic data dependency analysis

to efficiently generate sequences of transactions that are more likely to result in contract states in which bugs may be hidden.

We evaluate the effectiveness of ConFuzzius by comparing it with state-of-the-art symbolic execution tools and fuzzers for smart

contracts. Our evaluation on a curated dataset of 128 contracts and a dataset of 21K real-world contracts shows that our hybrid

approach detects more bugs than state-of-the-art tools (up to 23%) and that it outperforms existing tools in terms of code

coverage (up to 69%). We also demonstrate that data dependency analysis can boost bug detection up to 18%.
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Abstract—Smart contracts are Turing-complete programs that
are executed across a blockchain. Unlike traditional programs,
once deployed, they cannot be modified. As smart contracts carry
more value, they become more of an exciting target for attackers.
Over the last years, they suffered from exploits costing millions
of dollars due to simple programming mistakes. As a result, a
variety of tools for detecting bugs have been proposed. Most
of these tools rely on symbolic execution, which may yield false
positives due to over-approximation. Recently, many fuzzers have
been proposed to detect bugs in smart contracts. However, these
tend to be more effective in finding shallow bugs and less effective
in finding bugs that lie deep in the execution, therefore achieving
low code coverage and many false negatives. An alternative that
has proven to achieve good results in traditional programs is
hybrid fuzzing, a combination of symbolic execution and fuzzing.

In this work, we study hybrid fuzzing on smart contracts
and present CONFUZZIUS, the first hybrid fuzzer for smart
contracts. CONFUZZIUS uses evolutionary fuzzing to exercise
shallow parts of a smart contract and constraint solving to
generate inputs that satisfy complex conditions that prevent
evolutionary fuzzing from exploring deeper parts. Moreover,
CONFUZZIUS leverages dynamic data dependency analysis to
efficiently generate sequences of transactions that are more likely
to result in contract states in which bugs may be hidden. We
evaluate the effectiveness of CONFUZZIUS by comparing it with
state-of-the-art symbolic execution tools and fuzzers for smart
contracts. Our evaluation on a curated dataset of 128 contracts
and a dataset of 21K real-world contracts shows that our hybrid
approach detects more bugs than state-of-the-art tools (up to
23%) and that it outperforms existing tools in terms of code
coverage (up to 69%). We also demonstrate that data dependency
analysis can boost bug detection up to 18%.

Index Terms—Ethereum, smart contracts, hybrid fuzzing, data
dependency analysis, genetic algorithm, symbolic execution

I. INTRODUCTION

The inception of immutable, blockchain-based smart con-
tracts has shown how to enable multiple mistrusting parties to
trade and interact without relying on a centralized, trusted third
party. The immutability of a contract is crucial: if at least one
of the engaging parties were allowed to modify a digital con-
tract, the contract’s trust would vanish. Unlike traditional legal
contracts, smart contracts do not allow a dispute resolution
with a neutral third party. Most importantly, smart contracts
cannot be nullified — parties cannot revoke any deployed
smart contract, even if its code figures undeniable software
bugs. Therefore, this very immutability comes at a price: smart
contracts must be tested extensively before exposing them
and their users to significant monetary value. In the past,
simple vulnerabilities (e.g. missing access control [36]) and

subtle vulnerabilities (e.g. reentrancy [40]) have led to losses
exceeding many tens of millions of USD.

We can verify the behavior of a smart contract with four
different approaches. (i) Unit testing requires manual effort to
cover the different sections of the code, but it unveils only
a limited number of bugs within the test cases. (ii) Symbolic
execution analyzes contract behavior abstractly but performs
slowly on complex contracts (path explosion problem). (iii)
Static analysis does not execute code and over-approximates
the contract behavior — it can capture the entire contract
execution surface, but it exhibits false positives that must
be manually inspected. Finally, (iv) fuzzing tests a contract
reasonably fast by automatically generating test cases, with a
generally lower false positive rate than static analysis. Fuzzing,
however, can suffer from low code coverage, especially when
input is fuzzed at random and hence does not overcome simple
input sanity verification.

When fuzzing smart contracts, we face the following three
challenges: 1) input generation, 2) stateful exploration, and
3) environmental dependencies. When it comes to input gen-
eration, the input space can be significantly broad. However,
the solution might be limited to a specific point. For example,
if a condition requires an input value of type uint256 to
equate to 42, then the probability of randomly generating 42
as input is tremendously small. Moreover, smart contracts are
stateful applications, i.e. the execution may depend on a state
that is only achievable following a specific sequence of inputs.
Finally, the runtime environment of smart contracts exposes
additional inputs related to the underlying blockchain proto-
col, such as the current block timestamp or other contracts
deployed on the blockchain. As a result, the execution flow
of smart contracts may depend on environmental information
besides transactional information.

We solve these three challenges as follows. In tandem with
the fuzzing procedure, we employ symbolic taint analysis to
generate path constraints on tainted inputs. Once we detect that
the fuzzer is not progressing, we activate a constraint solver
to solve the constraint in question. We collect this solution
within a mutation pool, from which the fuzzer can draw to
move past the challenging contract condition. Existing hybrid
fuzzing approaches, e.g. Driller [43], cease the fuzzer when
they are stuck and switch to concolic execution to get past the
complex condition. Then, they restart the fuzzer once passed
the condition. Our approach keeps the fuzzer running and only
uses constraint solving to generate inputs on the fly, which will



eventually be picked by the fuzzer via the mutation pools. In
addition to constraint solving, we perform a path termination
analysis to purge irrelevant inputs from the mutation pools. To
deal with the statefulness of smart contracts, we chose to take
advantage of the selection and crossover operators of genetic
algorithms. Genetic algorithms follow three main steps: se-
lection, crossover, and mutation. The selection operator’s task
is to choose two individuals from the population, which are
afterwards combined by the crossover operator to create two
new individuals. The challenge here is to generate meaningful
combinations of inputs. Therefore, data dependencies between
individuals guide our selection and crossover operators that
accept two individuals only if they follow a read-after-write
(RAW) data dependency. Finally, to solve the third and last
challenge, we instrument the execution environment (i.e. the
Ethereum Virtual Machine) to fuzz environmental information
and model the input to a contract as a tuple consisting of
transactional and environmental data.

Contributions. Our main contributions are as follows:
• To the best of our knowledge, we propose the first design

of a hybrid fuzzer for smart contracts.
• We present a novel method to efficiently create meaning-

ful sequences of inputs at runtime by leveraging dynamic
data dependencies between state variables.

• We introduce CONFUZZIUS, the first implementation of
a hybrid fuzzer for smart contracts.

• We evaluate CONFUZZIUS on a set of 128 curated smart
contracts as well as 21K real-world smart contracts, and
demonstrate that our approach not only detects more
vulnerabilities (up to 23%) but also achieves more code
coverage (up to 69%) than existing symbolic execution
tools and fuzzers.

II. BACKGROUND

This section provides the required background on Ethereum
smart contracts and fuzzing in order to better understand the
approach proposed in this work.

A. Ethereum Smart Contracts

Smart Contracts. Ethereum [49] enables the execution of
so-called smart contracts. These are fully-fledged programs
stored and executed across the Ethereum blockchain, a net-
work of mutually distrusting nodes. Ethereum supports two
types of accounts, externally owned accounts (i.e. user ac-
counts) and contract accounts (i.e. smart contracts). Smart
contracts are different from traditional programs in many
ways. They own a balance and are identifiable via a 160-
bit address. They are developed using a dedicated high-level
programming language, such as Solidity [48], that compiles
into low-level bytecode. This bytecode gets interpreted by the
Ethereum Virtual Machine. By default, smart contracts cannot
be removed or updated once deployed. It is the task of the
developer to implement these capabilities before deployment.
The deployment of smart contracts and the execution of smart
contract functions occurs via transactions. The data field of

a transaction includes both, the name of the function to
be executed and its arguments. Transactions are created by
user accounts and afterwards broadcast to the network. They
contain a sender and a recipient. The latter can be the address
of a user account or a contract account. Besides carrying data,
transactions may also carry a monetary value in the form of
ether (Ethereum’s own cryptocurrency).

Ethereum Virtual Machine. The Ethereum Virtual Machine
(EVM) is a purely stack-based, register-less virtual machine
that supports a Turing-complete set of instructions. Although
the instruction set allows for Turing-complete programs, the
instructions’ capabilities are limited to the sole manipulation of
the blockchain’s state. The instruction set provides a variety of
operations, ranging from generic operations, such as arithmetic
operations or control-flow statements, to more specific ones,
such as the modification of a contract’s storage or the querying
of properties related to the transaction (e.g. sender) or the cur-
rent blockchain state (e.g. block number). Ethereum uses a gas
mechanism to assure the termination of contracts and prevent
denial-of-service attacks. The gas mechanism associates costs
to the execution of every single instruction. When issuing a
transaction, the sender specifies how much gas they are willing
to spend to execute the smart contract. This amount is known
as the gas limit.

B. Fuzzing

Evolutionary Fuzzing. Fuzzing, or fuzz testing, is an au-
tomated software testing technique that finds vulnerabilities
in programs by feeding malformed or unexpected data as
input to programs, executing them, and monitoring the effects.
Evolutionary fuzzing aims at converging towards the discov-
ery of vulnerabilities by using a genetic algorithm (GA). A
generation of test cases is defined as a population, whereas a
single test case is an individual. In short, every individual of a
generation is evaluated based on a fitness function. At the end
of each generation, solely the fittest individuals are allowed
to breed, following Darwin’s idea of natural selection, or
”survival of the fittest”. Eventually, the individuals will trigger
vulnerabilities while converging towards an optimal solution.
We briefly describe the main steps of a GA (see Algorithm 1).
We start by creating an initial population of individuals, either
generated at random or seeded via heuristics, and compute
their fitness values (line 1). Based on the fitness value, we
select two individuals from the current population, which act
as parents for breading (line 5). Then, we apply crossover and
mutation operators on the parents to generate two new indi-
viduals, also denoted as offsprings (lines 6-7). The generation
of new individuals continues until the new population reaches
the same size as the current one (line 4). Finally, the new
population’s fitness values are computed, and we replace the
current population with the new population (lines 9-10). This
entire process is repeated until a termination condition is met
(line 3), e.g. the maximum number of generations is reached
or a maximum amount of time has passed.



Algorithm 1 Pseudo-Code of a Genetic Algorithm
1: Create initial population and compute its fitness
2: Set initial population as current population
3: while termination condition is not met do
4: while new population < current population do
5: Select two parents from current population
6: Recombine parents to create two new offsprings
7: Mutate offsprings and add them to new population
8: end while
9: Compute fitness of new population

10: Replace current population with new population
11: Create a new empty population
12: end while

Hybrid Fuzzing. Although fuzzing is one of the most effective
approaches to find vulnerabilities, it often has difficulties
in getting past complex path conditions, resulting in low
code coverage. A popular alternative to fuzzing is symbolic
execution. It works by abstractly executing a program and sup-
plying abstract symbols rather than actual (concrete) values.
The execution will then generate symbolic formulas over the
input symbols, which can be solved by a constraint solver
to prove satisfiability and produce concrete values. In theory,
symbolic execution is capable of discovering and exploring all
potential paths in a program. However, in practice, symbolic
execution is often not scalable since the number of explorable
paths becomes exponential in more extensive programs (path
explosion problem). Another limitation of symbolic execution
is the limited capability to interact with the execution envi-
ronment. Programs often interact with their environment by
performing calls to libraries, for example. Correctly modeling
these calls and other environmental information is extremely
challenging. The goal of hybrid fuzzing, or hybrid fuzz testing,
is to take advantage of both worlds. Hybrid fuzzing starts
by performing traditional fuzzing until it saturates, i.e., the
fuzzer is not capable of covering any new code after running
some predetermined number of steps. Hybrid fuzzing then
automatically switches to symbolic execution to perform an
exhaustive search for uncovered branching conditions. As
soon as the symbolic execution finds an uncovered branching
condition, it solves it, and the hybrid fuzzer reverts to fuzzing.
The interleaving of fuzzing and symbolic execution counts on
shallow program paths’ quick execution via fuzzing and the
execution of complex program paths via symbolic execution.

III. OVERVIEW

This section discusses the three main challenges of fuzzing
smart contracts via a motivating example and presents our
solution towards solving these challenges.

A. Motivating Example

Suppose a user participated in an initial coin offering (ICO)
on the blockchain and now owns a number of tokens. Now
assume the user wants to sell a certain amount of their tokens
at a variable price that increases 1 ether per day. Fig. 1 shows a
possible implementation of an Ethereum smart contract using

1 interface Token {
2 function transferFrom(address sender, address

recipient, uint256 amount) external
returns (bool);

3 function allowance(address owner, address
spender) external view returns (uint256);

4 }
5
6 contract TokenSale {
7 uint256 start = now;
8 uint256 end = now + 30 days;
9 address wallet = 0xcafebabe...;

10 Token token = Token(0x12345678...);
11
12 address owner;
13 bool sold;
14
15 function Tokensale() public {

16 owner = msg.sender;
17 }
18
19 function buy() public payable {

20 require(now < end);

21 require(msg.value == 42 ether + (now - start)

/ 60 / 60 / 24 * 1 ether);

22 require(token.transferFrom(this, msg.sender,

token.allowance(wallet, this)));

23 sold = true;
24 }
25
26 function withdraw() public {

27 require(msg.sender == owner);

28 require(now >= end);

29 require(sold);
30 owner.transfer(address(this).balance);
31 }
32 }
33

Fig. 1. Example of a vulnerable token sale smart contract. Lines highlighted in
red represent complex conditions, whereas lines highlighted in gray illustrate
read-after-write data dependencies and finally, lines highlighted in blue depict
environmental dependencies.

Solidity. The smart contract allows a user to sell its tokens
to an arbitrary user on the Ethereum blockchain. The contract
sells the tokens to the first buyer willing to pay 42 ether, plus
1 ether for each day since the start of the sale. Moreover,
the token sale should last no longer than 30 days. In this
example, the smart contract acts as a simple mediator that
automatically settles the trade between the user owning the
tokens and the user willing to buy the tokens without both
users requiring to know or trust each other. Smart contract
based ICOs often follow a standard that is known as ERC-
20 [15]. This standard provides an interface that standardizes
function names, parameters, and return values. For example,
the standard includes a function called transferFrom,
which allows a user to transfer a limited amount of tokens to an
arbitrary user on behalf of the owning user. Another example is
the function allowance, which returns the number of tokens
that a user can spend on behalf of the owning user. The smart
contract in Fig. 1 works as follows. An arbitrary user can call



the function buy to purchase the tokens for 42 ether and a
fee of 1 ether for the number of days passed since the launch
of the token sale. The contract will automatically transfer the
tokens by calling the function transferFrom on the ICO’s
contract. After the purchase, the smart contract owner can call
the function withdraw to retrieve the 42 ether and the fee
of the purchase.

The contract contains two vulnerabilities, one known as
block dependency and another known as leaking ether. The
latter is enabled via a bug in the function Tokensale (see
line 15 in Fig. 1). Before Solidity version 0.4.22, the only way
of defining a constructor was to create a function with the same
name as the contract. The function Tokensale is supposed
to be the constructor of the contract TokenSale. Due to
a typo, the names do not match, and the compiler does not
consider the function as the contract’s constructor. As a result,
the function Tokensale is considered a public function that
any user on the blockchain can call. This type of programming
mistake has led to multiple attacks in the past [1]. The
first vulnerability, namely block dependency, occurs when the
transfer of ether depends on block information, such as the
timestamp (see line 28 in Fig. 1). Malicious miners can alter
the timestamp of blocks that they mine, especially if they can
gain advantages. Although miners cannot set the timestamp
smaller than the previous one, nor can they set the timestamp
too far ahead in the future, developers should still refrain from
writing contracts where the transfer of ether depends on block
information. The second vulnerability, namely leaking ether,
occurs whenever a contract allows an arbitrary user to transfer
ether, despite having never transferred ether to the contract
before. The following sequence of transactions triggers both
vulnerabilities:

• t0: A non-malicious user calls the function buy with a
value equals to 42 ether + fee;

• t1: An attacker calls the function Tokensale;
• t2: The same attacker calls the function withdraw after

30 days.
When running the above example using ILF [18] (a state-

of-the-art smart contract fuzzer), it is not capable of finding
the two vulnerabilities even after 1 hour. Inspecting the code
coverage reveals that ILF achieves only 39%. For comparison,
CONFUZZIUS achieves roughly 95% code coverage and cor-
rectly identifies the two vulnerabilities in less than 10 seconds.

B. Input Generation

Generating meaningful inputs is crucial for automated soft-
ware testing. Fuzzers generate inputs in order to execute not-
yet-executed code. This generation can be completely random
(black-box fuzzers) or driven by runtime information (grey-
box fuzzers). In both cases, the primary approach is to mutate
previous inputs to generate new inputs to test. Thus, finding
the right heuristics is of fundamental importance to efficiently
explore the target input space and, eventually, find latent bugs
in the code. However, real-world programs tend to contain
conditions that are hard to trigger. These complex conditions
need to be addressed by fuzzers in order to execute as much

require(now < end);

require(msg.value == 42 ether + 
(now-start)/60/60/24*1 ether);

REVERT

require(token.transferFrom(
this,    
msg.sender,        
token.allowance(wallet, this)

));
sold = true;

REVERT

REVERTSTOP

now < end now >= end

msg.value == 42 ether + 
(now-start)/60/60/24*1 ether

msg.value != 42 ether + 
(now-start)/60/60/24*1 ether

token.transferFrom(…) == True token.transferFrom(…) == False

Fig. 2. Control-flow graph of the function buy(), where the complex
condition is highlighted in red.

code as possible. Line 21 in Fig. 1 provides an example of
a complex condition. Function buy requires the transaction
value to be equal to 42 ether along with a variable fee that
depends on the number of days that have past since the
launch of the token sale. Fig. 2 illustrates the control-flow
graph (CFG) of the function buy along with its branching
conditions. The complex condition is highlighted in red in the
CFG. A fuzzer following a traditional random strategy will
fail to get past this condition since it will generate the desired
value only once every 2256 trials.

Existing smart contract fuzzers such as HARVEY [50] instru-
ment the code and compute cost metrics for every branch to
mutate the inputs. Our approach applies constraint solving to
generate values for complex conditions on-demand. However,
our fuzzer does not directly propagate these values, but instead,
it stores them in so-called mutation pools. Mutation pools
manage a set of values that the fuzzer can use to get past
complex conditions. Every function has its own set of mutation
pools, namely a mutation pool per function argument, trans-
action argument (e.g. transaction value), and environmental
argument (e.g. block timestamp). Initially, all the pools are
empty, and the fuzzer uses randomly generated values to
feed the target functions. Once the fuzzer cannot discover
new paths, it activates the constraint solver to generate new
values. We use symbolic taint analysis to create the expressions
required by the constraint solver to generate new values. We
introduce taint in the form of a symbolic value whenever we
come across an input during execution. This symbolic value
is then propagated throughout the program execution, thereby
forming step-by-step a symbolic expression that reflects the
constraints on the particular input. Solving these expressions
will result in new values that will be added to the mutation
pools. The fuzzer will then pick these values from the mutation
pools and generate new inputs that execute new paths. In
Fig. 1, once CONFUZZIUS realizes that the code coverage is
not increasing, it activates the constraint solver, which outputs
the value 42 along with the current fee depending on the
current block timestamp. It adds it to the mutation pool that
manages the transaction value for the function buy. The value
will be then picked up from the mutation pool by the fuzzer



in the next round, and the execution of the transaction will
evaluate the condition at line 21 to True, which results in
getting past the missing branch and executing new lines of
code.

C. Stateful Exploration

Due to the transactional nature of blockchains, smart con-
tract fuzzers must consider that each transaction may have
a different output depending on the contract’s current state,
i.e. all the previously executed transactions. Appropriately
combining multiple transactions is necessary to generate states
that trigger the execution of new branches. Ethereum smart
contracts have, besides a volatile memory model, also a
persistent memory model called storage, which allows them
to keep state across transactions. For example, the global
variables end, wallet, token, owner, and sold in
Fig. 1 are storage variables and their values might change
across transactions. Let us consider the two vulnerabilities
mentioned earlier. An attacker will only be able to extract
the funds via the function withdraw, if the two variables
owner and sold contain the address of the attacker and
True, respectively. However, this is only possible if the
functions buy and Tokensale are called before the function
withdraw. Thus only a particular combination of the three
functions will trigger the two vulnerabilities. Although this
example may seem straightforward, automatically finding the
right combination of function calls within contracts with many
functions can become challenging as the number of possible
combinations grows exponentially. We base our solution on
a simple observation: a transaction influences the output of
a subsequent set of transactions if and only if it modifies a
storage variable that one of the subsequent transactions will
use. This property is a known data dependency called read-
after-write (RAW) [19]. In the first step, CONFUZZIUS traces
all the storage reads and writes performed by a transaction
along with the storage locations. Afterwards, CONFUZZIUS
combines transactions so that transaction a is executed after
transaction b, only if a reads from the same storage location
where b writes to. The fuzzer always executes the combination
of transactions on a clean state of the contract. Thus, a
transaction sequence contains only transactions that change
the state used by one of the subsequent transactions within
the same sequence by construction. In the example of Fig. 1,
CONFUZZIUS will progressively learn that:

• buy reads variable end and writes to variable sold;
• Tokensale writes to variable owner;
• withdraw reads variable owner and variable sold.
Using the information learned above and combining trans-

actions based on RAW dependencies, CONFUZZIUS will even-
tually create the following transaction sequence:

buy() → Tokensale() → withdraw()

The directed graph in Fig. 3 presents the RAW dependencies
to generate all the possible combinations. The graph shows
that the functions buy and Tokensale must be executed

Tokensale()

1) Write: owner1) Read: end
2) Write: sold
…

1) Read: owner
2) Read: sold
…

buy() withdraw()

Fig. 3. A dependency graph illustrating the read-after-write (RAW) data
dependencies contained in Fig. 1. A node represents a smart contract function
and an edge indicates a RAW dependency between the two functions.

before the function withdraw, but that the order between
the two can be arbitrary.

D. Environmental Dependencies

The execution of a smart contract does not only depend
on the transaction arguments or the contract’s current state.
A smart contract’s control-flow can also depend on input
originating from the execution environment (e.g. a block’s
timestamp). Let us consider the contract in Fig. 1. Even though
the function withdraw has no input argument, the transfer of
the balance is bound to some requirements. The requirement
at line 28 is only satisfied if the transaction that triggered
the function call is part of a block created 30 days after the
contract’s deployment. Thus, the condition is bound to the
mining mechanism of the Ethereum blockchain. While users
submit transactions to the blockchain, miners aggregate them
into blocks and distribute them to other nodes upon validation.
When executing the transactions included in the block, the
EVM accesses the block information contained therein. Block
information includes the block hash, the miner’s address, the
block timestamp, the block number, the block difficulty, and
the block gas limit. We solve this challenge by modeling this
information as a fuzz-able input. These inputs follow the same
fuzzing procedure as transaction inputs. We modified the EVM
in order to be able to inject the fuzzed block information
during the execution of the smart contract. However, modeling
block information as fuzz-able inputs is not enough. The
EVM also permits to call other contracts deployed on the
blockchain. Thus the control-flow of a smart contract may
depend on the result of calling other contracts. Consider line
29 in Fig. 1, where the state variable sold is required to be
set to True in order for the attacker to be able to retrieve
the funds. The variable sold can only be set to True if
the two contract calls at line 22 (e.g. token.allowance
and token.transferFrom) are successful. We solve this
challenge in a similar way by instrumenting calls to contracts
and modeling return values as fuzz-able inputs. Our modified
EVM then injects the fuzzed return values at runtime.

IV. DESIGN AND IMPLEMENTATION

In this section, we provide details on the overall design and
implementation of CONFUZZIUS.



Fig. 4. Overview of CONFUZZIUS's hybrid fuzzing architecture. The shadowed boxes represent the three main components and form together a feedback
loop.

A. Overview

CONFUZZIUS's architecture consists of three main modules:
the evolutionary fuzzing engine, the instrumented EVM, and
the execution trace analyzer. Fig. 4 provides a high-level
overview of CONFUZZIUS's architecture and depicts its in-
dividual components. CONFUZZIUS has been implemented in
Python with roughly 6,000 lines of code1. CONFUZZIUS takes
as input the source code of a smart contract and a blockchain
state. The latter is in the form of a list of transactions and
is optional. The blockchain state is convenient for fuzzing
already deployed smart contracts or contracts that need to
be initialized with a speci�c state. CONFUZZIUS begins by
compiling the smart contract to obtain the Application Binary
Interface (ABI) and the EVM runtime bytecode. The evolu-
tionary fuzzing engine then starts by generating individuals
for the initial population, based on the smart contract's ABI.
After that, the engine follows a standard genetic algorithm
(i.e., selection, crossover, and mutation) and propagates the
newly generated individuals to the instrumented EVM. The in-
strumented EVM then executes these individuals and forwards
the resulting execution traces to the execution trace analyzer.
Next, the execution trace analyzer performs several analyses,
e.g. symbolic taint analysis, data dependency analysis, etc. The
execution trace analyzer is also responsible for triggering the
constraint solver, running the vulnerability detectors, updating
the mutation pools, and feeding information related to code
coverage and data dependencies to the evolutionary fuzzing
engine. This process is repeated until at least one of the two
termination conditions is met: a given number of generations
has been generated, or a given amount of time has passed.
Finally, CONFUZZIUS outputs a report containing information
about the code coverage and the vulnerabilities that it detected.

B. Evolutionary Fuzzing Engine

In the following, we provide details on the encoding,
initialization, �tness evaluation, selection, combination, and
mutation of individuals.

1Source code is available at https://github.com/christoftorres/ConFuzzius.

Encoding Individuals. One of the most important decisions to
make while implementing an evolutionary fuzzer is deciding
on the representation of individuals. Improper encoding of
individuals can lead to poor performance [27]. Fig. 5 illus-
trates our encoding of individuals. Vulnerabilities are usually
triggered either by sending a single transaction or a sequence
of transactions to a smart contract. However, transactions alone
are not enough to trigger vulnerabilities (see Section III-D).
Speci�c vulnerabilities depend on the execution environment
to be in a speci�c state. Thus, our encoding represents an
individual as a sequence of inputs. Every input consists of
an environment and a transaction. Both are encoded as key-
value mappings. The environment includes block information
such as the current timestamp and block number, but it also
includes call return values, data sizes, and external code sizes.
The latter three are encoded as an array of mappings, where
a contract address maps to a mutable value (e.g. a call result
or a size). The transaction includes the address of the sending
account (from), the transaction amount (value), the maximum
amount of gas for the contract to execute (gas limit), and the
input data for the contract to execute (data). The input data
is represented as an array of values where the �rst element
is always the function selector, and the remaining elements
represent the function arguments. The function selector is
computed using the ABI and extracting the �rst four bytes
of the Keccak (SHA-3) hash of the function signature. As
an example, the functiontest(string a, uint b) , has
the stringtest(string,uint) as its function signature,
which after hashing and extracting the �rst four bytes, results
in 0x7d6cdd25 being its function selector.

Initial Population. The population is initialized withN
individuals, each of which initially contains only a single
input (i.e. a single transaction). The function selector to be
included in the transaction is selected in a round-robin fashion.
Function arguments are generated based on their type, which
we obtain through the ABI. Depending on the type and size
(i.e. �xed or non-�xed) of the argument, we apply different



generate test inputs automatically [20], [37]. On the other
hand, KLEE [6] and SAGE [17] are white-box fuzzers, that
execute code in a controlled environment. Driller [43] is a
hybrid fuzzer that leverages selective concolic execution in
a complementary manner. Symbolic execution based fuzzers
produce meaningful inputs but tend to be slow [7]–[9], [35].
Fuzzers such as LibFuzzer [39], FuzzGen [21] and FUDGE [2]
focus on fuzzing libraries, which cannot run as standalone
programs, but instead are invoked by other programs.

Smart Contract Fuzzing. CONTRACTFUZZER [22] generates
inputs based on a list of input seeds. While CONTRACT-
FUZZER deploys an entire custom testnet to fuzz transactions,
CONFUZZIUS is more efficient and solely emulates the EVM.
Moreover, CONFUZZIUS does not rely on user-provided input
seeds but instead analyzes the execution traces and feeds
constraints related to the execution to a constraint solver in
order to generate new values specific to the contract under
test. ECHIDNA [10] is a property-based testing tool for smart
contracts that leverages grammar-based fuzzing. ECHIDNA
requires user-defined predicates in the form of Solidity as-
sertions and does not automatically check for vulnerabili-
ties. HARVEY [50] predicts new inputs based on instruction-
granularity cost metrics. In contrast, CONFUZZIUS exploits
lightweight symbolic execution when the population fitness
does not increase (see Section IV-D). Further, HARVEY fuzzes
transaction sequences in a targeted and demand-driven way,
assisted by an aggressive mode that directly fuzzes the per-
sistent state of a smart contract. Instead, CONFUZZIUS relies
on the read-after-write dependencies to guide the selection and
crossover operators to create meaningful transaction sequences
efficiently (see Section IV-B). ILF [18] is based on imitation
learning, which requires a learning phase prior to fuzzing. ILF
consists of a neural network that is trained on transactions
obtained by running a symbolic execution expert over a broad
set of contracts. CONFUZZIUS does not have the overhead
of the learning phase and uses on-demand constraint solving
while actively fuzzing the target. Moreover, ILF is limited
to the knowledge that it learned during the learning phase,
meaning that ILF has issues in getting past program conditions
that require inputs that were not part of the learning dataset.
CONFUZZIUS does not have this issue as it learns tailored
inputs per target while fuzzing. SFUZZ [32] is an AFL based
smart contract fuzzer, whereas ETHPLOIT [51] is a fuzzing
based smart contract exploit generator. Both SFUZZ and ETH-
PLOIT have been developed concurrently and independently
of CONFUZZIUS. While SFUZZ follows a random strategy
to create transaction sequences, ETHPLOIT uses static taint
analysis on state variables to create meaningful transaction
sequences. However, static taint analysis has the disadvantage
of being imprecise and analyzing parts that are not executable.
Despite SFUZZ using a genetic algorithm as CONFUZZIUS,
it employs a different encoding of individuals. SFUZZ only
models block number and timestamp as environmental infor-
mation. ETHPLOIT, on the other hand, instruments the EVM
in a similar way to CONFUZZIUS. However, ETHPLOIT does

not fuzz the size of external code or contract call return values.

Smart Contract Symbolic Execution. Apart from fuzzing,
several other tools based on symbolic execution were proposed
to assess the security of smart contracts [28] [33] [31] [45] [46]
[46] [26] [16]. MPRO [52] combines symbolic execution and
data dependency analysis to deal with the scalability issues
that symbolic execution tools face when trying to handle the
statefulness of smart contracts. MPRO has been developed
concurrently and independently from CONFUZZIUS. There
are two significant differences in our approach. First, MPRO
retrieves data dependencies using static analysis and therefore
requires source code, whereas CONFUZZIUS tries to infer data
dependencies from bytecode. Second, MPRO works in two
separate steps, first, it infers data dependencies via static anal-
ysis, and then it applies symbolic execution. CONFUZZIUS,
on the other hand, applies a dynamic approach and infers data
dependencies while fuzzing. ETHRACER [25] uses a hybrid
approach with a converse strategy by primarily using symbolic
execution to test a smart contract and using fuzzing only for
producing combinations of transactions to detect vulnerabil-
ities such as transaction order dependency. CONFUZZIUS’s
fuzzing strategy, compared to ETHRACER, is not entirely
random but based on read-after-write dependencies, yielding
faster and more efficient combinations.

Smart Contract Static Analysis. Besides symbolic execu-
tion and fuzzing, other works based on static analysis were
proposed to detect smart contract vulnerabilities. ZEUS [23]
is a framework for automated verification of smart contracts
using abstract interpretation and model checking. SECURIFY
[47] uses static analysis based on a contract’s dependency
graph to extract semantic information about the program
bytecode and then checks for violations of safety patterns.
Similarly, VANDAL [5] is a framework designed to convert
EVM bytecode into semantic logic relations in Datalog, which
can then be queried for vulnerabilities.

VII. CONCLUSION

We presented CONFUZZIUS, the first hybrid fuzzer for
smart contracts. It tackles the three main challenges of smart
contract testing: input generation, stateful exploration, and
environmental dependencies. We solved the first challenge
by combining evolutionary fuzzing with constraint solving to
generate meaningful inputs. The second challenge is solved by
leveraging data dependency analysis across state variables to
generate purposeful transaction sequences. Finally, we solved
the third challenge by modeling block related information
(e.g. block number) and contract related information (e.g.
call return values) as fuzzable inputs. We run CONFUZZIUS
and other state-of-the-art fuzzers and symbolic execution tools
for smart contracts against a curated dataset of 128 contracts
and a dataset of 21K real-world smart contracts. Our results
show that our hybrid approach not only detects more bugs
than existing state-of-the-art tools (up to 23%), but also
that CONFUZZIUS outperforms these tools in terms of code



coverage (up to 69%) and that data dependency analysis can
boost the detection of bugs (up to 18%).
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APPENDIX A
VULNERABILITY DETECTORS

We elaborate on the implementation details of our 10 vulner-
ability detectors below.

Assertion Failure. We detect an assertion failure by checking
if the execution trace contains an ASSERTFAIL or INVALID
instruction.

Integer Overflow. Detecting integer overflows is not trivial,
since not every overflow is considered harmful. Integer over-
flows may also be introduced by the compiler for optimization
purposes. Therefore, we only consider an overflow as harmful,
if it modifies the state of the smart contract, i.e. if the result
of the computation is written to storage or is used to send
funds. We follow the approach by Torres et al. [45] and start
by analyzing if the execution trace contains an ADD, MUL
or SUB instruction. We then extract the operands from the
stack and use these to compute the result of the arithmetic
operation. Afterwards, we check if our result is equivalent to
the result that has been pushed onto the stack. If they are
not the same, we know that an integer overflow has occurred
and we keep track of the overflow by tainting the result of the
computation. We report an integer overflow if the tainted result
flows into an SSTORE instruction or a CALL instruction, as
these instructions will result in updating the blockchain state.

Reentrancy. A reentrancy occurs whenever a contract calls
another contract, and that contract calls back the original
contract. We detect reentrancy by first checking if the exe-
cution trace contains a CALL instruction whose gas value is

larger than 2,300 units and where the amount of funds to be
transferred is a symbolic value or a concrete value that is
larger than zero. Finally, we report a reentrancy if we find an
SLOAD instruction that occurs before the CALL instruction and
an SSTORE instruction that occurs after the CALL instruction,
and which shares the same storage location as the SLOAD
instruction.

Transaction Order Dependency. We detect transaction order
dependency by checking if there are two execution traces with
different senders, where the first execution trace writes to the
same storage location from which the second execution trace
reads.

Block Dependency. We detect a block dependency by check-
ing if the execution trace contains either a CREATE, CALL,
DELEGATECALL, or SELFDESTRUCT instruction, that is
either control-flow or data dependent on a BLOCKHASH,
COINBASE, TIMESTAMP, NUMBER, DIFFICULTY, or
GASLIMIT instruction.

Unhandled Exception. We detect unhandled exceptions by
first checking if the execution trace contains a CALL instruc-
tion that pushes to the stack the value 1 as a result of the
call. A value of 1 means that an error occurred during the call
(i.e. an exception). Afterwards, we check if the result of the
call flows into a JUMPI instruction. If the result does not flow
into a JUMPI instruction until the end of the execution trace,
then this means that the exception of the call was not handled
and we report an unhandled exception.

Unsafe Delegatecall. We detect an unsafe delegate call
by checking if there is an execution trace that contains a
DELEGATECALL instruction and terminates with a STOP
instruction, but whose sender is an attacker address. Attacker
and benign user addresses are generated at the start by the
fuzzer.

Leaking Ether. We detect the leaking of ether by checking
if the execution trace contains a CALL instruction, whose
recipient is an attacker address that has never sent ether to the
contract in a previous transaction and has never been passed as
a parameter in a function by an address that is not an attacker.

Locking Ether. We detect the locking of ether by checking
if a contract can receive ether but cannot send out ether. To
check if a contract cannot send ether, we check if the runtime
bytecode of the contract does not contain any CREATE, CALL,
DELEGATECALL, or SELFDESTRUCT instruction. To check
if a contact can receive ether, we check if the execution trace
has a transaction value larger than 0 and terminates with a
STOP instruction.

Unprotected Selfdestruct. Similar to the leaking ether or
unsafe delegatecall vulnerability detectors, this detector relies
on attacker accounts. We detect an unprotected selfdestruct by



checking if the execution trace contains a SELFDESTRUCT
instruction where the sender of the transaction is an attacker

and its address has not been previously passed as an argument
by a benign user.


