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Abstract

Merging of multiple satellite datasets is a simple yet effective way to reduce prediction error. However, most merging methods

for satellite data today are based on weighted averaging first proposed in 1969 for economic forecasting, which does not provide

optimal outcomes when applied to satellite data. If our aim is to produce a merged data product that minimizes the prediction

errors against a prediction target, there is no reason to insist that the merged product be an average of the parent datasets. A

more disciplined approach based on mathematical optimization would be to minimize prediction errors. However, formulating

merging as an optimization problem is insufficient by itself as the statistics needed for optimization, e.g. signal-to-noise ratio

(SNR) of parent products, are often unavailable in practice and must be estimated jointly. In this paper, we address both of

these problems for data merging. We first formulate optimal merging of satellite data as a SNR optimization (SNR-opt), and

propose an estimation method to jointly estimate the required SNRs. This SNR-based approach has a natural interpretation as

a multi-input single-output Wiener filter. Through extensive experimental validation on three global- scale satellite-derived soil

moisture and land surface temperature products, we demonstrate that our SNR optimization significantly improves merging

results over weighted averaging schemes.
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Abstract—Merging of multiple satellite datasets is a simple yet 
effective way to reduce prediction error. However, most merging 
methods for satellite data today are based on weighted averaging 
first proposed in 1969 for economic forecasting, which does not 
provide optimal outcomes when applied to satellite data. If our aim 
is to produce a merged data product that minimizes the prediction 
errors against a prediction target, there is no reason to insist that 
the merged product be an average of the parent datasets. A more 
disciplined approach based on mathematical optimization would 
be to minimize prediction errors. However, formulating merging 
as an optimization problem is insufficient by itself as the statistics 
needed for optimization, e.g. signal-to-noise ratio (SNR) of parent 
products, are often unavailable in practice and must be estimated 
jointly. In this paper, we address both of these problems for data 
merging. We first formulate optimal merging of satellite data as a 
SNR optimization (SNR-opt), and propose an estimation method 
to jointly estimate the required SNRs. This SNR-based approach 
has a natural interpretation as a multi-input single-output Wiener 
filter. Through extensive experimental validation on three global-
scale satellite-derived soil moisture and land surface temperature 
products, we demonstrate that our SNR optimization significantly 
improves merging results over weighted averaging schemes. 
 

Index Terms—data merging, weighted averaging, SNR, signal-
to-noise-ratio, optimization, satellite remote sensing. 

I. INTRODUCTION 
ATELLITE-DERIVED data are often merged (or “fused”) 
to improve predictions of geophysical variables of interest 

by averaging out errors. In many situations, different datasets 
can exhibit different types of errors under varying physical and 
climatological retrieval conditions [1, 2]. A weighted average 
of multiple datasets can be a simple and expedient way to form 

improved predictions. The key idea behind weighted averaging 
is to take independent information from data sources in hope of 
deriving an improved prediction via cancellation of random 
errors, the effectiveness of which depends on the independence 
of the separate data sources considered [3]. Following the work 
of Bates and Granger [3] who proposed optimal combination of 
forecasts using a mean square error (MSE) criterion, weighted 
averaging has been used in various fields of research including 
economics [4–6], ecology [7, 8], hydrometeorology [9–11] and 
others [12, 13]. While data merging using deep learning-based 
techniques have become more popular of late [14, 15], weighted 
averaging continues to be extremely useful for its simplicity and 
applicability when data is limited, and interpretability of results 
important in decision and policy making [6, 16]. 

Counterintuitively, however, weighted averaging sometimes 
increases prediction error [17, 18]. The averaging scheme of [3] 
is meant specifically for economic forecasts where statistics of 
the future prediction target are assumed inaccessible—merging 
of economic forecasts must rely solely on the errors of already 
past predictions. For satellite data merging, however, statistics 
of prediction targets are usually available [2, 19]—we have not 
only the variance of prediction errors but also that of the target 
itself to bound prediction errors. Weighted averaging imposes 
instead a unit-sum constraint on the merging weights, but this 
constraint is neither necessary nor beneficial in the general case 
(in fact, merge weights should sum to a value slightly less than 
one for optimal outcomes—as is shown later). Several authors 
further constrain the individual merging weights to lie between 

S 

Fig. 1. Histograms of improvement in relRMSE due to our proposed method 
(SNR-opt) for global-scale soil moisture (left) and land surface temperature 
(right) predictions. Both use ERA5-Land as their prediction target. SNR-opt 
produces consistently lower errors than the weighted average merging scheme 
of Bates and Granger [3]. 

Improvement in 
relRMSE (SM) 

Improvement in 
relRMSE (LST) 
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zero and one [3, 20] but this too comes from a misunderstanding 
of merging weights as some quantitative metric—satellite data 
exhibit considerable inter-dataset error covariances, which lead 
frequently to valid negative merging weights [20, 21]. 

If one’s objective is to produce a merged data product which 
minimizes the prediction error against a prediction target, there 
is no reason to insist that the merged product be an average of 
parent datasets. A more disciplined approach to merging parent 
datasets is to directly minimize the mean square error (MSE) of 
prediction for example (weighted averages, by contrast, do not 
minimize the MSE of prediction). However, having formulated 
merging as an optimization problem is not sufficient on its own 
since the statistics needed to solve the problem are unavailable 
and must be found jointly. In this work, we address both of the 
above problems by first formulating optimal data merging as a 
signal-to-noise (SNR) optimization problem, then proposing a 
technique to jointly find the required SNR statistics without the 
ground truth. Fig. 1 shows typical prediction improvements we 
obtain over the weighted average scheme of [3] when merging 
soil moisture and land surface temperature datasets. Intuitively 
speaking, these significant improvements come from imposing 
the condition that prediction error power should not be greater 
than the power of the quantity being predicted. 

Our contributions are as follows. First, we propose a method 
(SNR-opt) to ascertain minimum MSE merging weights using 
SNR of the parent products and derive a relationship between 
these optimum weights and those based on averaging (Section 
III). Second, we propose a method to jointly estimate the SNR 
for the above-mentioned optimization for an arbitrary number 
of parent products. Our approach contrasts with schemes such 
as Triple Collocation (TC), which is usually applicable only to 
three or four parent datasets (Section III). Finally, we validate 
our method on satellite-derived soil moisture and land surface 
data (Section IV). We believe that our work will be beneficial 
especially to researchers who rely on optimally merged data for 
downstream tasks. Code for SNR-opt and figures in this paper 
are available at http://www.github.com/steelpl/snr-opt. 

II. RELATED WORK 
We briefly review classical data merging schemes as well as 

their application to satellite datasets. 

A. Merging Techniques 
Taking simple averages of multiple datasets or forecasts has 

been the preferred way of merging data due to its simplicity and 
improvements seen in practice [4, 22, 23]. Bates and Granger 
[3] propose to linearly combine forecasts to minimize the MSE 
of the combined forecast, where unbiased and stationary parent 
forecasts are combined using weights constrained between zero 
and one with unit sum. However, this constrained approach was 
later found to be suboptimal compared to related methods such 
as regression [20]. Granger and Ramanathan [17] also show the 
sub-optimality of constraining the weights and propose a more 
flexible merging technique by relaxing weight constraints and 
adding a constant term, essentially turning combination into an 
ordinary least squares regression. Interestingly, all these works 
are predated by the seminal work of Wiener [24], who derived 
optimal prediction 20 years before [3]. In Section III, we show 

our SNR optimization allows an interpretation of merging as a 
multi-input single-output Wiener filter, itself closely related to 
general ordinary least squares regression.  

To address the non-stationarity of parent forecasts, Diebold 
and Pauly [25] incorporate time-varying weights using moving 
subsets of parent datasets and report significant improvements 
in the merged products. Coulson and Robins [26] first identify 
sources of dynamics and take them into account in the forecast 
combination. Min and Zellner [27] propose a Bayesian method 
for combination by adopting posterior odds defined as the ratio 
of the posterior probabilities of a fixed parameter model and a 
time-varying parametric model. Then with the posterior odds in 
one year, one of the models can be chosen and optimal weights 
calculated. Deutsch et al. [28] test dynamic combinations with 
immediate and gradual changes in the weights and demonstrate 
better performance compared to the static model. Diebold and 
Pauly [29] propose to overcome uncertainties in the estimation 
of weights using Bayesian shrinkage techniques, incorporating 
a prior on errors into weight estimation. Palm and Zellner [23] 
propose a Bayesian approach which utilizes informative priors 
on the errors when little information on the performance of the 
individual forecasts is available. Whereas Bayesian estimation 
techniques can be beneficial, our work considers optimization 
of weights in the prior-free scenario of [3]. 

Terui and van Dijk [30] evaluate combination of linear and 
nonlinear timeseries model-derived forecasts for both constant 
and time-varying methods and show that the time-varying one 
performs better. Several authors show that linear averaging can 
be better than more complex methods when the optimal weights 
are difficult to estimate precisely [6, 22, 31–33]. Similar to the 
averaging schemes, linearity of our proposed method allows us 
simpler interpretation and computation of optimal weights. We 
refer the reader to [4] for a review in forecast merging, and also 
to [5, 6, 8] for a more recent chronology.  

B. Finding Missing Statistics 

Another critical factor for weighted averaging to be useful is 
correct characterization of the errors used in weight estimation 
[32]. Weighted average schemes require second-order statistics 
of the ground truth and prediction error. Triple collocation (TC) 
[19, 34, 35] finds error covariances and data-truth correlations 
from the covariances of three datasets without the ground truth 
provided that we have: data-ground truth linearity, stationarity 
of the ground truth and error, error-truth orthogonality and zero 
error crosscorrelation (ECC) [35]. Yilmaz and Crow [21] show 
that TC tends to underestimate error variances whenever the 
zero ECC assumption is violated. Gruber et al. [36] propose a 
quadruple collocation (QC) method based on a data quadruple 
to estimate some of the ECCs by relaxing the assumption of full 
error independence.  

Several works [37–39] tackle the difficulties associated with 
obtaining three or more datasets with uncorrelated errors. Su et 
al. [37] propose the single instrumental variable (IVs) method 
that only requires two independent datasets where a temporally 
lagged time series of one dataset is used as a third one. Dong et 
al. [38] propose the double instrumental variables (IVd) method 
that uses two lagged time series of two datasets for the results 
to be more reliable. Dong et al. [39] subsequently develop the 
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extended double instrumental variable (EIVd) method that can 
estimate an unignorable ECC in a data triplet using their lagged 
representations. Despite such advances, efficient estimation of 
ECCs for an arbitrary number of datasets still remains an open 
problem. In Section III-C, we propose a technique to efficiently 
estimate error covariances for any number of products. 

C. Application to Satellite Datasets 

Satellite datasets which have previously been considered for 
merging include soil moisture [40–45], sea surface temperature 
[18, 46], precipitation [9, 11, 47], and others [12, 13]. In most 
of these merging applications, the weighted average scheme [3] 
is used for its simplicity and compatibility with TC-based error 
estimation. Notably, Gruber et al. [41] propose a framework for 
merging satellite soil moisture data based on TC-derived error 
statistics. Kim et al. [45] use TC with EIVd to minimize errors 
in the merged soil moisture data. Xu et al. [47] merge multiple   
monthly precipitation datasets using error variances estimated 
from the collocation-based approach “three-cornered hat”, also 
compatible with the weighted average framework of [3].  

Another reason for the popularity of weighted averages may 
be due to the supposed quantitative meaning of weights as the 
relative contribution factors of parent datasets. Khan et al. [18] 
present time-varying optimal weights between zero and one of 
five sea surface temperature datasets as their relative measures 
of importance. Kim et al. [48] present the spatial distributions 
of optimal weights on two satellite soil moisture datasets and 
also interpret them as their relative importance. However, it is 
difficult to interpret these weights quantitatively since they are 
simply regression coefficients [17]. Furthermore, these weights 
produce suboptimal merging results in many cases. Section III 
illustrates the suboptimality of the weighted averaging scheme 
using soil moisture datasets. 

III. MATHEMATICAL FRAMEWORK 

A. Weighted Averaging 
To motivate optimization-based satellite data merging, let us 

first analyze the weighted average scheme [3, 49] together with 
its underlying assumptions. Our goal is to predict an unknown 
quantity (e.g. soil moisture across time at some location) 𝑦 ∈ ℝ 
as a weighted average of 𝑁  given parent datasets or products 
(𝑥1, . . . , 𝑥𝑁 ) = 𝐱 ∈ ℝ𝑁 , related to the unknown quantity 𝑦 as 

𝐱 = 𝑦𝟏 + 𝐞 with additive noise 𝐞. We assume that 𝐞 is jointly 
Gaussian with zero mean while 𝑦 is a weakly stationary process 
also with zero mean. Once a prediction of 𝑦 is formed, we can 
add the correct offset (mean) obtained from climatological data 
[50, 51] back to our prediction. 

The averaging weights for the prediction 𝐱 = 𝑦𝟏 + 𝐞 can be 
expressed as the solution to the problem 

 minimize   𝑔(𝐮) = 𝔼(𝐞𝑇 𝐮)2 = 𝔼(𝐱𝑇 𝐮 − 𝑦𝟏𝑇 𝐮)2 
(1) 

 subject to ℎ(𝐮) = 𝟏𝑇 𝐮 = 1 

[49]. The solution of the above optimization problem becomes 

𝐮† = (𝟏𝑇 𝔼(𝐞𝐞𝑇 )−1𝟏)−1𝔼(𝐞𝐞𝑇 )−1𝟏, (2) 

noting that 𝟏𝑇 𝔼(𝐞𝐞𝑇 )−1𝟏 is simply the sum of elements of the 
matrix 𝔼(𝐞𝐞𝑇 )−1. Therefore, the first term of (2) guarantees the 
elements of 𝐮† have unit sum by construction. Looking now at 
the last expression of 𝑔(𝐮), the constraint 𝟏𝑇 𝐮 = 1 may seem 
to correctly produce an unbiased prediction of 𝑦 and thereby a 
minimum mean square error, but this is true only in the trivial 
case where 𝐞 = 𝟎. To see this, consider an extreme case where 
𝔼(𝑦2) = 0, that is, 𝑦 = 0. When 𝐞 ≠ 𝟎, the only weights which 
minimize the last expression of 𝑔(𝐮) is 𝐮 = 𝟎, but this would 
not be allowed under the unit-sum constraint. This is a hint that 
both signal and noise powers, 𝔼(𝑦2) and 𝔼(𝐞𝐞𝑇 ), play a role in 
the determination of minimum-mean-square-error weights. 

Several works [3, 20] additionally trim negative weights and 
normalize the remaining non-negative ones but such a practice 
cannot be justified even from the point of view of (2). Several 
authors also ad hoc assume errors to be independent from each 
other [31, 52] in which case the merge weights simply become 
inverses of error variances. 

B. SNR Optimization 
Here, we propose an SNR-based optimization method which 

minimizes the mean square error of the prediction. Notice first 
that the vector 𝐮 ∈ ℝ𝑁  which minimizes the mean square error 
of prediction 𝑦̂ = 𝐱𝑇 𝐮 is obtained by solving the problem 

 minimize  𝑓(𝐮) = 𝔼(𝐱𝑇 𝐮 − 𝑦)2 (3) 

[17]. The solution of the above problem is 

𝐮⋆ = 𝔼(𝐱𝐱𝑇 )−1𝔼(𝑦𝐱), (4) 

in which we assume 𝔼(𝐱𝐱𝑇 ) is always positive definite. Noting 

Fig. 2. Mean square error of weighted average and SNR-opt predictions. We vary the elements of the SNR matrix 𝐍 = 𝔼(𝐞𝐞𝑇 ) 𝔼(𝑦2)⁄ ∈ 𝕊+
2×2 by (a) scaling the 

signal power 𝔼(𝑦2) with fixed 𝔼(𝐞𝐞𝑇 ) = 𝐈, (b) scaling 𝔼(𝐞𝐞𝑇 ) = 𝐈 element-wise with 𝟏𝑇 𝔼(𝐞𝐞𝑇 )𝟏 = 2, and (c) rotating 𝔼(𝐞𝐞𝑇 ) = diag(0.5, 1.5) by angle 𝜃. In 
(d), we use 𝔼𝑦2̂  as our estimate of 𝔼(𝑦2). We fix 𝔼(𝑦2) = 1 in (b)–(d). Markers indicate locations with identical elements of 𝐍. 

(a) 

𝔼𝑦2 𝔼𝑒1
2 

(b) 

𝔼𝑦2̂ 

Averaging 

SNR-opt 

Averaging 

SNR-opt 

(c) (d) 

Averaging 

SNR-opt 

Averaging 

𝜃 

SNR-opt 
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that 𝔼(𝐱𝐱𝑇 ) = 𝔼(𝐞𝐞𝑇 ) + 𝔼(𝑦2)𝟏𝟏𝑇  and 𝔼(𝑦𝐱) = 𝔼(𝑦2)𝟏, we 
can rewrite the above solution as 

𝐮⋆ = (𝔼(𝐞𝐞𝑇 ) 𝔼(𝑦2)⁄ + 𝟏𝟏𝑇 )−1𝟏, (5) 

showing that the optimum weights 𝐮⋆ depend on the matrix of 
noise-to-signal ratios 𝐍 = 𝔼(𝐞𝐞𝑇 ) 𝔼(𝑦2)⁄ . We can interpret (5) 
as the coefficients of a multi-input single-output Wiener filter 
that assumes flat signal and noise power spectra. 

 From (5), one can see that the elements of 𝐮⋆ need not sum 
to 1 in the general case (consider the case 𝐍 = 𝐈 for example) 
and that the sum only approaches 1 in the limit as the matrix of 
noise-to-signal ratios 𝐍 goes to 𝟎. Similarly, examples can be 
constructed to show that not all elements of 𝐮⋆ are positive in 
general. Since the weighted averaging weights 𝐮† are different 
from 𝐮⋆ in general, they must additionally be sub-optimal with 
respect to the MSE objective of (3). Fig. 2 plots the optimality 
gap between the two MSEs as 𝐍 = 𝔼(𝐞𝐞𝑇 ) 𝔼(𝑦2)⁄ ∈ 𝕊+

2×2 is 
subjected to scaling of 𝔼(𝑦2) (a), or transformations in 𝔼(𝐞𝐞𝑇 ) 
by element-wise scaling (b) or rotations (c). SNR optimization 
still produces a lower MSE than the weighted average scheme 
even when 𝐍 is grossly under- or over-estimated (d). 
 In the general case, datasets (𝑥1, . . . , 𝑥𝑁) = 𝐱 ∈ ℝ𝑁  relate 
to a random quantity 𝑦 as 𝐱 = 𝑦𝐚 + 𝐛 + 𝐞 with multiplicative 
and additive factors 𝐚, 𝐛 ∈ ℝ𝑁  and a zero-mean additive noise 
𝐞 ∈ ℝ𝑁  that we continue to assume to be jointly Gaussian. We 
may safely assume 𝐛 = 𝟎 since 𝐱 can be de-biased in advance 
using 𝐛 = 𝔼[𝐱]. In this case, the optimal weights are given by 

𝐮⋆ = (𝐍 + 𝐚𝐚𝑇 )−1𝐚, (6) 

in which 𝐍 = 𝔼[𝐞𝐞𝑇 ] 𝔼(𝑦2)⁄  as before. Therefore, normalizing 
the parent products 𝐱 to 𝐱′ = 𝑦𝟏 + 𝐞′ in advance reduces the 
general solution (6) to the special solution (5) where the scale 
factors are 𝟏. Formulating merging as problem (1) can be more 
useful if the statistic 𝔼(𝑦2) is not available, but the availability 
of climatology data suggests this is not a concern in such tasks 
as soil moisture or land surface temperature estimation.  

Despite their cosmetic differences, there is a simple scaling 
relationship between the two weights 𝐮† and 𝐮⋆. Applying the 
Sherman–Morrison formula to 𝐮⋆ = (𝐍 + 𝟏𝟏𝑇 )−1𝟏 yields  

𝐮⋆ = 𝐍−1𝟏 − 𝐍−1𝟏 𝟏𝑇 𝐍−1𝟏
1 + 𝟏𝑇 𝐍−1𝟏

= 𝐍−1𝟏
1 + 𝟏𝑇 𝐍−1𝟏

 (7) 

and substituting 𝐍 = 𝔼(𝐞𝐞𝑇 ) 𝔼(𝑦2)⁄  into the right-hand side of 
(7) reveals that the optimal weights 

𝐮⋆ = (𝔼(𝑦2)−1 + 𝟏𝑇 𝔼(𝐞𝐞𝑇 )−1𝟏)−1𝔼(𝐞𝐞𝑇 )−1𝟏, (8) 

casting expression (5) into a form more similar to (2). We thus 
have a simple linear relationship 𝐮⋆ = 𝑠𝐮† where 

0 < 𝑠 = 𝟏𝑇 𝔼(𝐞𝐞𝑇 )−1𝟏
𝔼(𝑦2)−1 + 𝟏𝑇 𝔼(𝐞𝐞𝑇 )−1𝟏

< 1 (9) 

is a shrinkage factor that depends on the error covariances and 
the signal power. One corollary of the relationship 𝐮⋆ = 𝑠𝐮† is 
that problem (3) can be written in the form (1) where the linear 
constraint becomes ℎ(𝐮) = 𝟏𝑇 𝐮 = 𝑠; see Fig. 3 for geometric 
interpretations of the weights produced by weighted averaging 
and SNR optimization approaches. 

Since 𝐮† is a scaled version of the optimal 𝐮⋆, both weights 
maximize the correlation between the merge prediction and the 
prediction target. However, if one’s object is to find any merge 
prediction which is only maximally correlated with the target, a 
more appropriate characterization of their associated weights is 
through simpler, Rayleigh quotient maximization, which does 
not involve 𝔼(𝐞𝐞𝑇 ). In the case where 𝐱 = 𝑦𝟏 + 𝐞, the vector 
of weights 𝐮‡ is maximally correlating if it solves the problem 

 maximize 𝑟(𝐮)  = 𝔼(𝑦(𝐱𝑇 𝐮))
√𝔼(𝑦2)√𝔼((𝐱𝑇 𝐮)2)

, (10) 

or, equivalently, the problem 

maximize 𝑟2(𝐮) ∝ 𝐮𝑇 𝔼(𝑦𝐱)𝔼(𝑦𝐱)𝑇 𝐮
𝐮𝑇 𝔼(𝐱𝐱𝑇 )𝐮

= 𝐮𝑇 𝟏𝟏𝑇 𝐮
𝐮𝑇 𝔼(𝐱𝐱𝑇 )𝐮

, (11) 

in which the last expression in the objective of (11) is known as 
a generalized Rayleigh quotient [53].  

Writing the two matrices as 𝐀 = 𝟏𝟏𝑇  and 𝐁 = 𝔼(𝐱𝐱𝑇 ) for 
brevity, the maximally correlating weight vector 𝐮‡ is obtained 
as any leading eigenvector of the pair of matrices (𝐀, 𝐁), that 
is, by solving the eigenvalue problem 𝐀𝐮 = 𝜆𝐁𝐮 (only one of 
the eigenvectors has a non-zero eigenvalue since the rank of 𝐀 
is one). From the one-dimensional space of solutions 𝐮‡, only 
the vector 𝐮⋆ jointly maximizes correlation and minimizes the 
error variance such that the choice of merge weights 𝐮† (2) in 
preference to 𝐮⋆ (5) is difficult to justify. 

We can further relate merging to a multi-input single-output 
(MISO) Wiener filter [54]. Here, cross power spectral densities 
of errors and the power spectral density of the signal— 𝐒𝑒𝑒(𝜔) 
and 𝑆𝑦𝑦(𝜔)—are used in place of 𝔼(𝐞𝐞𝑇 ) and 𝔼(𝑦2) such that 
merging weights are adapted to the frequency contents of error 
and signal. Writing 𝐍(𝜔) = 𝐒𝑒𝑒(𝜔)/𝑆𝑦𝑦(𝜔), we have 

 𝐮⋆(𝜔) = (𝐍(𝜔) + 𝟏𝟏𝑇 )−1𝟏, 𝜔 ∈ [−𝜋, +𝜋), (12) 

in which 𝐮⋆(𝜔) denotes weights at frequency 𝜔. In the discrete 
domain, one way to obtain the MISO Wiener-filtered output is 
by first taking an 𝑀-point Discrete Fourier Transform (DFT) 
of the parent products, merging them in the Fourier domain by 
linearly combining their 𝑚th Fourier coefficients with weights 
𝐮⋆[𝑚] = 𝐮⋆(2𝜋𝑚/𝑀) for 0 ≤ 𝑚 < 𝑀 , then finally taking the 
inverse DFT of the 𝑀-vector of combined coefficients. We can 

𝟏 𝑇
𝐮 =

1 

 

𝐮† 

Fig. 3. Geometric interpretation of weights in ℝ2 for weighted averaging (left) 
and SNR optimization (right). Weighted averaging weights 𝐮† are given by the 
point where the contour of 𝔼(𝐞𝑇 𝐮)2 = 𝑐  tangentially touches the constraint 
line 𝟏𝑇 𝐮 = 1 . SNR optimal weights 𝐮⋆  are given by the point where the 
contour of 𝔼(𝐞𝑇 𝐮)2 = 𝑐 tangentially touches 𝟏𝑇 𝐮 = 𝑠 with 𝑠 given by (9). 

𝔼(𝐞 𝑇𝐮) 2 
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𝟏 𝑇
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𝑠  

𝐮⋆ 
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see that the merging weight vector (5) is a special case of (12) 
in which 𝐍(𝜔) is constant in 𝜔 (flat error cross-power spectra 
and flat signal power spectra). While we assume flat noise and 
signal power spectra in this work, using fully estimated power 
spectra 𝐒𝑒𝑒(𝜔) and 𝑆𝑦𝑦(𝜔) could further improve merging. 

C. SNR Estimation 
 To compute the general solution (6), we need to estimate the 
elements of symmetric matrix 𝐍 along with scale factors 𝐚. In 
general, we can form an empirical covariance matrix of 𝐱 from 
measurements of the parent products (with their additive biases 
removed). Since we assume 𝔼(𝑦2) is known from climatology 
data, we equate the empirical covariances to the unknowns as 

𝐂 = 𝔼(𝐱𝐱𝑇 )̂ 𝔼(𝑦2)⁄ ≈ 𝐍 + 𝐚𝐚𝑇 , (13) 

our objective being to simultaneously estimate the elements of 
matrix 𝐍 together with those of 𝐚. In the case where prediction 
errors 𝐞 are uncorrelated as sometimes assumed [3], we could 
form and solve a non-linear system of (𝑁+1)𝑁

2   equations in 2𝑁  
unknowns 𝑎1, . . . , 𝑎𝑁 , 𝔼(𝑒1

2), . . . , 𝔼(𝑒𝑁
2 ). Unfortunately, such 

a method is unable to handle cases where there are significant 
error covariances not captured by the unknowns. On the other 
hand, some schemes assume the scales 𝐚 = 𝟏 and find the full 
error covariance matrix [47]. However, unit scale factors are not 
observed in practice, also rendering such methods less useful. 

Here, we do not assume particular scale factors or structure 
for the matrix 𝐍. However, when 𝑁  is large and parent datasets 
are gathered independently, it is reasonable to assume that the 
off-diagonal elements of 𝐍 are small. We propose to estimate 
the SNR matrix 𝐍 and the scale factors 𝐚 using the following  
ℓ1-norm minimization problem (which we coin SNR-est): 

 minimize  𝑓(𝐚) = 𝟏𝑇 ((𝟏𝟏𝑇 − 𝐈) ∘ abs(𝐂 − 𝐚𝐚𝑇 ))𝟏  
(14) 

 subject to ℎ(𝐚) = diag(𝐚𝐚𝑇 ) − diag(𝐂) ≤ 𝟎 

in hopes that the off-diagonals of 𝐍⋆ = 𝐂 − 𝐚⋆𝐚⋆𝑇  produced 
by the solution 𝐚⋆ are small. Whereas (8) is not convex, related 
non-convex least-squares problems for phase retrieval [55, 56] 
are commonly solved using gradient descent with success, and 
this suggests that we too may be able to solve problem (14) with 
gradient descent methods provided that a good initialization for 
𝐚 is used to avoid getting trapped in local minima. 

 If the errors are uncorrelated and identically distributed, we 
have 𝐍 ≈ 𝛽𝐈 for some value of 𝛽 and 𝐂 − 𝛽𝐈 ≈ 𝐚𝐚𝑇 . A good 
initializer for 𝐚 is thus a leading eigenvector of 𝐂 − 𝛽𝐈, scaled 
by the square root of the corresponding eigenvalue (we treat 𝛽 
as a tuneable parameter). To update the estimate of 𝐚, one can 
use projected subgradient descent steps 

 𝐚 ← 𝐚 − 𝜂𝟏𝑇 ((𝟏𝟏𝑇 − 𝐈) ∘ sgn(𝐚𝐚𝑇 − 𝐂)) 𝐚  (15d) 

 𝐚 ← 𝐚 − sgn(𝐚) ∘ √max(diag(𝐚𝐚𝑇 − 𝐂) , 𝟎) (15p) 

to first descend in the direction of the negative gradient using a 
stepsize 𝜂 (15d) and also project the result so that the diagonals 
of 𝐚𝐚𝑇  do not exceed those of 𝐂 (15p). In Fig. 5, we graph the 
convergence properties of our gradient descent scheme. We see 
that descent converges with spectral initialization (𝛽 = 0.1 and 
𝑁 = 6 used, curves averaged across 1000 runs of varying error 
covariance matrices 𝐍 with a total power of one).  

We also evaluate the performance of SNR-est in recovering 
𝐍 and 𝐚 from random 𝐂. We choose 𝔼(𝑦2) = 1 and 𝑁 = 3 to 
directly compare SNR-est against Triple Collocation. We first 
generate 𝑛𝑖𝑖 ∈ [0, 1], 1 ≤ 𝑖 ≤ 3 with uniform distribution then 
assign 𝑛𝑖𝑗 = 𝜌√𝑛𝑖𝑖𝑛𝑗𝑗 for chosen value of 𝜌. We generate the 
true 𝑎𝑖 ∈ [0, 1], 1 ≤ 𝑖 ≤ 3 similarly. We carry out 1000 runs of 
the experiment for each value of 𝜌 to obtain average RMSE and 
a confidence interval. We use parameters 𝜂 = 0.1, 𝛽 = 0.1 and 
1000 iterations of descent. Fig. 5 (left) shows that SNR-est and 
TC produce comparable errors in 𝐍. RMSE of 𝐚 (not plotted) 
have a similar trend across 𝜌 since 𝐍 and 𝐚 are linearly related 
through (13). In Fig. 5 (right), we show the failure rates of both 
methods across 𝜌, where an estimation is deemed to have failed 
if the estimates of 𝑛𝑖𝑖 come out negative or those of the factors 
𝑎𝑖 complex. Observe that SNR-est never produces an infeasible 
estimate due to our explicitly imposing a feasibility constraint 
in (14). On the other hand, TC begins to fail with an increase in 
the correlation value 𝜌 due to its zero-ECC assumption. 

IV. EXPERIMENTAL EVALUATION 
This work analyzes the accuracy of predictions derived from 

datasets combined using the weighted average and the proposed 
SNR optimization (SNR-opt) schemes. For evaluation, we run 
experiments where three satellite soil moisture (SM) products 

Fig. 4. Convergence of the optimization objective (left) and the relative mean 
absolute error of scale factors 𝐚 (right) across iterations. (The optimization fails 
to converge when 𝐚 is initialized randomly.) Bold lines and shaded areas show 
the mean and the standard deviation of the optimization objective (left), and the 
relative MAE (right) of the scale factors. 

∥𝐚(𝑖) − 𝐚true∥ 𝑓(𝐚(𝑖)) 

𝔼(𝑦2) = 1 

𝔼(𝑦2) = 2 

𝔼(𝑦2) = 1 

𝔼(𝑦2) = 2 

Fig. 5. Failure rate (left) and the RMSE of estimates of SNR matrix 𝐍 (right) 
from TC and our SNR estimation (SNR-est) schemes. We generate covariance 
matrices 𝐂 = 𝐍 + 𝐚𝐚𝑇  randomly from 𝐍 ∈ 𝕊+

3×3 , 𝐚 ∈ ℝ3, and a global error 
correlation coefficient 𝜌 ∈ [0, 1]. RMSE averaged across 1000 estimations for 
each value of 𝜌. We use 𝛽 = 0.1 and 1000 iterations of gradient descent. 

SN
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(ASCAT, SMAP, and LPRM) are merged across the five-year 
period from April 1, 2015 to March 31, 2020, with and without 
access to some reference (that is, assumed truth) reanalysis SM 
product (ERA5-Land). The details of the parent datasets and the 
references, including their unabbreviated names, are provided 
in Table I. Since the two merge predictions have the same bias 
and Pearson correlation against their prediction target, only the 
root mean squared error (RMSE) of predictions is compared in 
this work. We now describe the details of the data preprocessing 
and merging processes used in this work.  

A. Data Preprocessing 
The following preprocessing is applied to SM products. For 

ASCAT, pixels are used if they have less than 10% probability 
of snow, frozen ground and 50% of estimated retrieval error as 
per the recommendation in [57]. For SMAP, pixels are used if 
their open water fraction and frozen fraction are less than 10% 
and vegetation water content is less than 5kg/m2, as suggested 
in [58]. For LPRM data, pixels are used only if their vegetation 
optical depth in the C-band is less than 0.8 [59]. All ascending 
and descending data are averaged on a daily basis to maximize 
their spatial coverage. Since the ERA5-Land reference product 
is sampled hourly, we select for each pixel, SM values closest 
to daily average scan times of the three SM datasets. Products 
that have variable spatial resolutions are first resampled onto 
the global cylindrical 36 km Equal-Area Scalable Earth, version 
2 (EASEv2) grid [60] using nearest neighbor resampling.  

The combination results are additionally evaluated against 
ground-based SM obtained via the International Soil Moisture 
Network (ISMN) [68, 69]. To minimize systematic differences 
between the satellite- and the ground-based data, strict filtering 
guided by ancillary data is applied to the ground-based data as 
per [83]. This process involves applying quality flags; limiting 
depths (< 10cm); picking values temporally closest to the daily 
average scan time. For selecting the most representative station 

in a grid cell, we use the average of the correlation of the in situ 
data against the three SM datasets and the reference. Following 
[83], we discard stations having significant (𝑝 = 0.05) negative 
correlations with three or more of the four datasets since these 
stations are so not representative of their associated cells. After 
the filtering process, only stations that have at least fifty paired 
observations with each SM product are finally selected, giving 
us a total of 425 stations across 18 networks—refer to the last 
row of Table I.  

Whereas our parent data represent soil moisture within a few 
centimeters of the top-soil layer, the in situ sensors of ISMN are 
installed at deeper depths, usually in the range of 5–10cm. The 
exponential filter of Wagner et al. [84] has been used in earlier 
studies [42, 85] to first convert the profiles of satellite-derived 
surface soil moisture to the depths of in situ sensors, mitigating 
the influence of depth discrepancies on evaluation results. We 
also adopt this filter-based approach in our work. In recursive 
form, the exponential filter of [84] can be expressed as 

 𝑊 (𝑡𝑛) = 𝑊 (𝑡𝑛−1) + 𝐾𝑛(𝑀(𝑡𝑛) − 𝑊 (𝑡𝑛−1)) (16) 

in which 𝑊 (𝑡𝑛) and 𝑀(𝑡𝑛) denote the soil water index and the 
soil moisture at time 𝑡𝑛, respectively, and 𝑊 (𝑡1) = 𝑀(𝑡1) for 
the initial conditions [86]. The gain 𝐾𝑛 at 𝑡𝑛 is given by 

 𝐾𝑛 = 𝐾𝑛−1
𝐾𝑛−1 + exp(− (𝑡𝑛 − 𝑡𝑛−1) 𝑇⁄ ) ∈ [0, 1], (17) 

in which 𝐾1 = 1, and parameter 𝑇 ∈ [1, 100], the time scale of 
soil moisture variations. In this work, we find the optimal 𝑇  by 
maximizing the Nash–Sutcliffe efficiency [42, 84, 86] between 
the soil water index from the reference soil moisture data and 
in situ data minus its mean at each station. Once the optimal 𝑇  
is computed, we apply gains (17) to both merged products and 
compare them with the corresponding in situ data. 

For reference, we also compare the merged products with the 
soil moisture product ESA CCI SM [41, 66, 67]—see Table I 

TABLE I  
SUMMARY OF PARENT, REFERENCE, ANCILLARY AND VALIDATION DATASETS USED IN THIS WORK 

 Product name    Resolutions (temporal/spatial) Details 

Pa
re

nt
 d

at
as

et
s 

ASCAT (Advanced SCATterometers) Level 2  
SM index product H103 [61] 

Daily/overpass (ascend/descend)  
at 9:30 PM/AM (local time) 25km×25km Active C-band (5.3 GHz) radar backscatter 

SMAP (Soil Moisture Active Passive) Level 3 
Radiometer Global Daily SM/LST V3 [62] 

Daily/overpass (ascend/descend)  
at 6 PM/AM (local time) 

36km×36km  
EASEv2-Grid Passive L-band (1.41 GHz) 

LPRM (Land Parameter Retrieval Model)  Level 3 
Daily SM/LST V1 from AMSR2 on GCOM-W [63] 

Daily/overpass (ascend/descend)  
at 1:30 PM/AM (local time) 0.25°×0.25° Passive X-band (10.65 GHz) 

R
ef

 ERA5-Land (European Centre for Medium-Range  
Weather Forecasts Re-Analysis 5 Land) [51] Hourly 0.1°×0.1° Volumetric soil water content in layer 1  

(0–0.07m), Skin temperature 

A
nc

ill
ar

y 
da

ta
  

CZ Updated Köppen–Geiger climate  
classification [64] – 0.25°×0.25° 5 primary classes: tropical, arid, temperate, cold, 

and polar regions 

MCD12C1 (Moderate Resolution Spectroradiometer 
Land Cover) V1 [65] Yearly (2015) 0.05°×0.05° 6 primary classes: forest, shrublands, woodlands, 

grasslands, croplands, and unvegetated regions 

V
al

id
at

io
n 

da
ta

 ESA CCI SM (European Space Agency Climate 
Change Initiative Soil Moisture) V05.2 [41, 66, 67] Daily 0.25°×0.25° Active–passive combined surface SM product 

ISMN (International Soil Moisture Network)  
[68, 69] and [70–82] Hourly 

425 stations 
across 18 
networks: 

SNOTEL128, SCAN111, PBO-HmO79, USCRN51, RSMN18, 
OZNET8, SMOSMANIA7, RISMA5, SOILSCAPE2, 
GROW3, REMEDHUS3, AMMA-CATCH2, HOBE2, IPE2, 
BIEBRZA-S-n1, COSMOS1, DAHRA1, and TERENO1  
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for details. (ESA) CCI SM contains daily surface soil moisture 
data at 0.25° spatial resolution spanning a 41-year period from 
November 1978 to December 2019. CCI SM is algorithmically 
fused through harmonization (data scaling) and combination of 
multiple soil moisture retrievals derived from four active and 
eight passive microwave sensors. The datasets are fused using 
resampling to 0.25° at 0:00 Coordinated Universal Time (UTC) 
daily; cumulative distribution function matching (scaling) to a 
long-term and consistent reference (satellite or reanalysis data) 
and weighted averaging based data merging using TC-derived 
error variances. The active and the passive sensor-derived data 
are merged independently and the two merges are then merged 
again to active–passive combined data with a TC-based merge 
scheme. This weighted averaging is implemented only when the 
correlations among active, passive, and modeled soil moisture 
time series data are statistically significant, suggesting both the 
active and the passive data are reliable at a given pixel [41]. If 
not, the merge algorithm returns either the passive or the active 
data, their unweighted average, or even discard the data at that 
location altogether. We similarly combine active (ASCAT) and 
passive (SMAP and LPRM) data, but from 2015–2020. 

To analyze the performance of satellite SM products under 
different retrieval conditions, we also condition the evaluation 
results on climate zone (CZ) and land cover (LC). For this, we 

used the five primary CZ classes from updated Köppen–Geiger 
climate classification [64]: tropical, arid, temperate, cold, and 
polar regions. For LC, the six classes from MODIS MCD12C1 
[65] are: forest, shrublands, woodlands, grasslands, croplands 
and unvegetated regions.  

B. Merging Pipeline 
We now merge the preprocessed datasets using the following 

pipeline. First, systematic biases in datasets are corrected prior 
to merging. We normalize all parent products to zero mean and 
unit standard deviation. For comparisons, the reference is also 
normalized in the same way (therefore, the signal variance of 
𝔼(𝑦2) = 1 is always assumed). Second, we estimate for every 
pixel the SNR matrix 𝐍 = 𝔼(𝐞𝐞𝑇 )/𝔼(𝑦2) and the scale factors 
𝐚. We experiment with both the true and the estimated versions 
of 𝐚 and 𝐍, with the estimated ones obtained using the method 
described in Section III-C. We find the initial solution of (14) 
good enough as 𝐚. For initialization, we use 𝛽 = 0.6 based on 
a grid search for the optimum RMSE of both merge predictions 
using global spatially aggregated five-year period soil moisture 
data. This approximate value of 𝛽 is intended to show that the 
proposed SNR-opt outperforms the weighted average even with 
rough estimates of 𝐚. More careful estimates of 𝐚 can produce 
better outcomes—at worst, SNR-opt degenerates to a weighted 

Fig. 6. Relative RMSE of soil moisture prediction against the reference (ERA5-Land) over the five-year study period April 2015–March 2020, based on true (left) 
and estimated (right) scale factors and SNRs. The top and the middle plots show the RMSE of the averaging and our SNR-opt predictions, respectively, and the 
bottom plots show the improvement in RMSE due to SNR-opt (higher is better). SNR-opt produces consistently lower RMSE than weighted averaging. 

Averaging RMSE 

SNR-opt RMSE 

Improvement 

Averaging RMSE 

SNR-opt RMSE 

Improvement 
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averaging. Observe that weighted averaging (2) assumes 𝐚 = 𝟏 
but SNR-opt (5) allows arbitrary 𝐚 for weight computation. To 
facilitate fairer comparisons between the two methods, we first 
estimate 𝐚 via (14) then rescale parent products 𝐱 = 𝑦𝐚 + 𝐞 to 
𝐱′ = 𝑦𝟏 + 𝐞′ with 𝐍′ = 𝐂′ − 𝟏𝟏𝑇 , 𝐂′ = 𝔼(𝐱′𝐱𝑇′)/𝔼(𝑦2) so 
that 𝐍′ = 𝔼(𝐞′𝐞𝑇′)/𝔼(𝑦2) can be used for the computation of 
both weighted averaging and SNR-opt weights. Such rescaling 
to 𝐱′ is not necessary if solely implementing SNR-opt—once 𝐚 
has been estimated, 𝐮⋆ can be obtained for 𝐱 directly from (6) 
using 𝐍 = 𝐂 − 𝐚𝐚𝑇 , 𝐂 = 𝔼(𝐱𝐱𝑇 )/𝔼(𝑦2). If needed, we also 
flip the signs of the final merged products to guarantee that they 
are positively correlated with the reference. 

C. Additional Validation 
As further validation of the proposed method, we apply our 

merging scheme additionally to land surface temperature (LST) 
datasets. These LST datasets are ancillary data accompanied by 
SM ones. Since LST is not available from ASCAT, we merge 
LST datasets of SMAP and LPRM, using the skin temperature 
data of ERA5-Land as the reference.  

The two satellite LST datasets SMAP and LPRM are derived 
from the microwave brightness temperature observed through 
their descending overpasses, respectively at 6 am, and 1:30 am 

local time. For the ERA5-Land skin temperature data, we use 
the value temporally closest to the daily average scan times of 
SMAP and LPRM. Unlike the SM case, however, we apply no 
filters on the LST data and evaluate the results directly against 
ERA5-Land, conditioned on the CZ, and the LC classes. Other 
aspects of the merging process remain the same as for the SM 
case, including the use of the initialization parameter 𝛽 = 0.6. 

 Tropic Arid Temp. Cold Polar Forest Shrub Wood Grass Crop Unveg. 

        Tropic (2)  Arid (191)  Temp.(73)   Cold (159)   Forest (2)   Shrub (22)  Wood (60)  Grass (249)  Crop (74)   Unveg. (18) 
 

 RMSE (m3/m3) CZ     LC     

 relRMSE   CZ        LC     

 R CZ     LC 

        Tropic (2)  Arid (191)  Temp.(73)   Cold (159)   Forest (2)   Shrub (22)  Wood (60)  Grass (249)  Crop (74)   Unveg. (18) 
 

Fig. 7. RMSE of soil moisture predictions produced by SNR-opt (blue) and weighted averaging (red), stratified by CZ, and LC classes. Estimated scale factors 
and SNR are used. We include results for CCI SM (gray), and two parents ASCAT and SMAP (white) for reference. The first row shows the relative RMSE of 
SNR-opt and weighted averaging predictions on ERA5-Land. The second and the third rows show the RMSE and R of the predictions against the ISMN ground 
measurements, respectively (lower RMSE and higher R are better). Numbers in the parentheses indicate the number of ground stations. Outliers omitted for clarity. 

True scale factors 
Fig. 8. RMSE of soil moisture predictions using weighted averaging (red) and 
SNR-opt (blue) on scaled (solid) and unscaled (striped) parents. ERA5-Land is 
the prediction target. We show predictions based on true (left) and estimated 
(middle) scale factors and SNR, and using individual baselines (right). We 
include ASCAT, SMAP and LPRM (white, in that order), ESA CCI (gray) and 
mean prediction (collapsed box).  

relRMSE 

Estimated Baselines 
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V. RESULTS AND DISCUSSION 

A. Soil Moisture Prediction 
Fig. 6 shows global spatial distributions of relative RMSE of 

predictions produced by weighted averaging and SNR-opt. We 
use ERA5- Land as the prediction target. We evaluate using the 
true (left) and the estimated (right) scale factors and SNR. Both 
predictions generally show similar spatial error patterns except 
for high-latitude regions in the northern hemisphere, the Sahel 
regions of Africa, and the western edges of South America and 
South Africa, where difficulties have frequently been reported 
in retrieving SM data from satellite observations [87, 88]. Over 
these problematic regions, SNR-opt generally produces better 
results than weighted averaging. This is seen in the two bottom 
subplots of Fig. 6, where spatial distributions of the difference 
in RMSE (RMSE of weighted average prediction minus RMSE 
of SNR-opt prediction) are notably positive (bluish). While the 
case with true scale factors and SNR matrix (left) shows larger 
RMSE differences, superiority of SNR-opt may still be seen in 
the case where their estimated quantities are used (right).  

For further analyses, differences in the relative RMSE of the 
two predictions (based on estimated scale factors and SNR) and 
two (ASCAT and SMAP) of the parents are given as box plots 
in Fig. 7 (first row). We stratify all RMSEs on the CZ, and the 

LC classes mentioned previously. LPRM is excluded from the 
plots for clarity but has larger errors than the other two. In each 
class, the difference between the SNR-opt (blue) and weighted 
averaging (red) predictions can be visually distinguished. Such 
differences are pronounced in regions with retrieval difficulties 
(arid, cold and polar climate zones; shrub and unvegetated land 
covers) and even more pronounced if true scale factors and SNR 
are used to form the merged products (not shown). While the 
SNR-opt predictions show consistently lower RMSE compared 
to parents (white) over all classes, this is not true for weighted 
averaging. This propensity is more pronounced for SMAP in 
the above-mentioned areas where SM retrieval is problematic. 

As seen in the box plots of the second (RMSE), and the third 
(Pearson’s R) rows of Fig. 7, we further compare the errors of 
merged products, the active–passive combined product of CCI 
SM and (ASCAT and SMAP) against the ground measurements 
from the 432 ISMN stations as the truth. Again, CCI SM results 
have been included only a reference point since their approach 
and materials are different from ours. Here, our intention is to 
show that our proposed approach produces results comparable 
to other well-established products. For RMSE (second row of 
Fig. 7), SNR-opt produces results that are consistently better 
than the others. Note the weighted averaging results are as good 
as or worse than CCI SM (itself based on a weighted averaging 

Fig. 9. Relative RMSE of land surface temperature prediction against the reference (ERA5-Land) over the five-year study period April 2015–March 2020, based 
on true (left) and estimated (right) scale factors and SNRs. The top and the middle plots show the RMSE of the weighted averaging and our SNR-opt predictions, 
respectively, and the bottom plots the improvement in RMSE due to SNR-opt (higher is better). SNR-opt always has lower RMSE than weighted averaging. 

Averaging RMSE 

SNR-opt RMSE 

Improvement 

Averaging RMSE 

SNR-opt RMSE 

Improvement 
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scheme and TC) and underperforms SMAP especially under the 
problematic retrieval conditions. The third row of Fig. 7 verifies 
that SNR-opt and weighted averaging yield the same R value—
see Section III-B for explanation. We observe that our R values 
are slightly higher than that of CCI SM. SMAP already has high 
R values overall, but SNR-opt compensates for the degradation 
of SMAP under the problematic conditions such as cold climate 
and woodland. 

Fig. 8 provides a comprehensive set of plots for the RMSE 
of soil moisture predictions and baselines with ERA5-Land as 
the prediction target. We show predictions using the true (left) 
and the estimated (middle) scale factors and SNR. Within each 
group, we plot RMSE results for SNR-opt- (blue) and weighted 
average- (red) merging of scaled (solid) and original unscaled 
(striped) parents, together with the results for applying only the 
scaling to the individual parents ASCAT, SMAP, and LPRM 
(white, in that order). In addition, we also present baselines for 
comparison (right) including CCI SM, the original parents, and 
mean prediction. The predictions from both groups generally 
outperform the baselines, except for the weighted average of the 
scaled parents (red) in both groups, even compared to the single 
parent predictions (white) and some of the original parents in 
the baseline group. The predictions from the group using the 
true scale factors and SNR surpass those from the other group 
using the estimated values, except for the weighted average of 
the scaled parents (red) showing the worst performance. When 
true scale factors and SNR are used, SNR-opt prediction RMSE 
never exceed unity (variances of prediction targets). Weighted 
averaging prediction RMSE sometimes exceeds unity and can 
actually be worse than simple mean prediction. 

Note that weighted averaging benefits from using estimated 
scale factors and SNR. Predictions formed by merging unscaled 
parents using SNR-opt (striped-blue) and weighted averaging 
(striped-red) are similar in this case and comparable with those 

of SNR-opt over both groups. However, this kind of gain is not 
theoretically justified and somewhat coincidental. Given scale 
factors 𝐚, the weighted average merging of unscaled parents 𝐱 
using weights 𝐮† is identical to merging scaled parents 𝐱′ using 
𝐮†′ = 𝐚 ⋅ 𝐮† . If by chance 𝐚 ≈ 𝑠𝟏 (9), 𝐮†′  becomes closer to 
𝐮∗ so using 𝐮†′ improves the RMSE performance of weighted 
averaging. Similarly, 𝐮∗  reduces to 𝐮∗′ = 𝐚 ⋅ 𝐮∗  but here the 
performance loss in SNR-opt due to using 𝐮∗′ is not as dramatic 
as the improvement for weighted averaging. Since one does not 
generally have 𝐚 ≈ 𝑠𝟏, this type of ad hoc RMSE performance 
gain for weighted averaging is not always guaranteed. 

B. Land Surface Temperature Prediction 
In Fig. 9, we show global distributions of RMSE of the two 

merged LST datasets through weighted averaging and SNR-opt 
using ERA5-Land as a reference. Similar to the SM case, the 
two sets of results using the true (left) and the estimated (right) 
scale factors and SNR are shown. We observe swath tracks due 
to the LST difference at the different overpass times of SMAP 
(6 am) and LPRM (1:30 am). These are not observed for SM. 

While SNR-opt does generally perform better than weighted 
averaging, RMSE differences are even more drastic when true 
scale factors and SNRs are used. Fig. 9 (left) shows that largest 
differences can be observed in densely vegetated areas such as 
the Amazon, Central East Africa, Southeast Asia, and Northern 
Australia. In these areas, microwave signals from land surface 
tend to be attenuated severely by dense vegetation [89, 90]. In 
Fig. 10, we further investigate differences in RMSE (top) and 
R (bottom) of the two predictions (using estimated scale factors 
and SNR) conditioned on the CZ and LC classes. Again, RMSE 
differences between the two predictions are most notable in the 
tropical areas. While SNR-opt outperforms the others, weighted 
averaging is even worse than parent results. In terms of R, both 
merged products are always slightly better than the two parents 

 Tropic Arid Temp. Cold Polar Forest Shrub Wood Grass Crop Unveg. 

 relRMSE  CZ       LC 

 Tropic Arid Temp. Cold Polar Forest Shrub Wood Grass Crop Unveg. 
Fig. 10. Relative RMSE of merge predictions formed using SNR-opt (blue) and weighted averaging (red) with land surface temperature (ERA5-Land) as the 
prediction target (estimated scale factors and SNR used). We condition the RMSE on the CZ (left plots) and the LC (right plots) classes. We include the errors of 
SMAP and LPRM (first and second white of each class) for reference. For simpler presentation, we omit outliers from all box plots. 

 R  CZ       LC 
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if true scale factors and SNR are used (not shown). These small 
improvements diminish, however, if estimated scale factors and 
SNR are used. These are the results shown in Fig. 10. 

C. Limitations and Future Work 
Given the promising results presented here, we have already 

conceived several ways to extend this work. First, we intend to 
evaluate SNR-opt further by merging a wider variety of signals 
such as satellite-derived flood signal [91, 92], radar reflectivity 
[93] and vegetation optical depth [94–96]. Application of SNR-
opt to such types of signals may further elucidate the strengths 
and weaknesses of our approach. Second, recent advances with 
triple collocation and related approaches [36, 39] may provide 
alternative more accurate ways to compute the parameters for 
estimating weights. Third, it may be beneficial to see if SNR-
opt can be used for developing long-term and consistent global 
datasets to replace the individual products. Finally, SNR-opt is 
a simplified case of MISO Wiener filtering. Full MISO Wiener 
filtering (see Section III) may improve merging results further. 

VI. CONCLUSION 
Weighted averaging has traditionally been used for merging 

satellite data. However, sub-optimality of weighted averaging 
has not fully been discussed by earlier studies. In this work, we 
first demonstrated the sub-optimality of weighted averages and 
proposed an optimization-based merging method which derives 
its merging weights from the signal-to-noise ratio of the parent 
products. For this reason, we referred to our merging method as 
SNR-opt. We validated SNR-opt using soil moisture and land 
surface temperature, and additionally compared SNR-opt with 
traditional weighted averaging. We compared the performance 
of predictions produced by SNR-opt and weighted averaging 
against reference products and ground measurements. SNR-opt 
consistently outperformed weighted averaging especially over 
regions where difficulties are faced in retrieving soil moisture 
and land surface temperature from satellite observations. In the 
case of soil moisture datasets, the merged product produced by 
SNR-opt showed performance comparable to well-established 
soil moisture product ESA CCI SM. Our findings suggest that 
SNR-opt may be widely applicable also to the merging of other 
satellite datasets not specifically discussed in this paper. 
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