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Abstract

This article presents a practical method for the assessment of the risk profiles of communities by tracking / acquiring, fusing

and analyzing data from public transportation, district population distribution, passenger interactions and cross-locality travel

data. The proposed framework fuses these data sources into a realistic simulation of a transit network for a given time span.

By shedding credible insights into the impact of public transit on pandemic spread, the research findings will help to set the

groundwork for tools that could provide pandemic response teams and municipalities with a robust framework for the evaluations

of city districts most at risk, and how to adjust municipal services accordingly.
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Transit networks, social contacts and open data meet
public transportation plans for post-COVID-19: A

Canadian case study
Oliver Benning, Jonathan Calles, Burak Kantarci and Shahzad Khan

Abstract—The emergence of COVID-19 and its variants has
dramatically shifted the way that societies respond to a pandemic
crisis. One of the response needs exposed is the ability for cities
to track potential transmission of contagions within population
movements effectively, which can exploit the means of pervasive
computing by collecting and processing ubiquitously acquired
data, as well as long term data that constitutes prior but limited
contextual knowledge. Thus, bridging the cyber and physical as-
pects in the resolution of COVID-19 crisis, as well as post-COVID-
19 is an emerging field of research and development. This article
presents a practical method for the assessment of the risk profiles
of communities by tracking / acquiring, fusing and analyzing
data from public transportation, district population distribution,
passenger interactions and cross-locality travel data. The proposed
framework fuses these data sources into a realistic simulation of
a transit network for a given time span. By shedding credible
insights into the impact of public transit on pandemic spread, the
research findings will help to set the groundwork for tools that
could provide pandemic response teams and municipalities with
a robust framework for the evaluations of city districts most at
risk, and how to adjust municipal services accordingly.

Index Terms—COVID-19, post-COVID-19 management, pan-
demic, public transportation, general transit feed specification,
social contacts, decision support

I. INTRODUCTION

COVID-19 has both symptomatic and asymptomatic re-
sponses, rendering it difficult to track in communities [1]. A
year after the initial COVID-19 outbreak, it has become clear
the impact that widespread epidemics can have impacts on both
the supply and demand of economic activity and government
services [2], [3]. There has been a greater sense of importance
given to tracing population behaviour and preferences in cities,
to better understand the pandemic, as well as pressing questions
on how to strike a balance between safeguarding public health
while resuming regular life activities [4]–[6].

Early in the pandemic the Center for Disease Control and
Prevention (CDC) issued general guidance on adjusting public
bus routes between areas experiencing different levels of
transmission [7]. It is worth to note that thorough research
and investigation is required to support these decisions. Equally,

O. Benning, J. Calles and B. Kantarci are with the School of Electrical
Engineering and Computer Science at the University of Ottawa, Ottawa, ON,
K1N 6N5, Canada.
Emails: {obenn009,jcall057,burak.kantarci@uottawa.ca}
S. Khan is with Gnowit Inc., 308 Legget Dr, Kanata, ON K2K 1Y6, Canada
Email: shahzad@gnowit.com

societies have started to tackle the question of whether pub-
lic transportation triggers high transmission rates, and more
importantly whether public transportation can still be relied
on by the public in a post-COVID-19 world [8]. It is worth
to note that established organizations such as the American
Public Transportation Association report no direct correlation
between COVID-19 transmission and urban public transit [9].
On the other hand, research on the development of policies and
procedures on how to use public transport during and after the
pandemic has reported solid guidelines [10], [11].

In this article, we aim to assist the decision makers at
the municipal level regarding public transport planning in a
post-COVID-19 world by respecting the privacy of commuters
and communities. To do so, we investigate the role of public
transportation as a transmission vector during pandemics. Public
research often lacks the necessary data to properly evaluate
transit systems in this context, due to privacy rights and
limitations on the collection of mobility data for commuters.
We document our case study in Ottawa (Ontario, Canada)
through analysis which instead fuses readily available (and
de-anonymized) data, i.e., General Transit Feed Specification
(GTFS), Census, and transit ridership levels tracked by Apple.

By fusing these data, we introduce a ready-to-use simulation
framework to create a representation of a public transporta-
tion network capable of modelling transit routes, commuter
behaviour, and passenger interactions. With a few inputs
requirements (which could be based on reasonable assumptions),
we simulate and model with granular detail on the number, time
and whereabouts (i.e., specific ward in the city) of person-to-
person contacts.

The analysis and findings in this article detail how the results
of this approach identify inter-ward activity by capturing data
on ward visitations and cumulative commuter interactions. By
analysing the results for Ottawa, we are able to explain how
this methodology could enable city administrators and public
health officials to simulate the spread of any outbreak (including
COVID-19 and potential variants) within a city, eventually
leading to broader decisions such as service adjustments amid
pandemics.

The contribution of this article is to present a data-driven
simulation platform to contribute to the addressing the engineer-
ing management challenges towards a post-COVID-19 world
through:

• Modelling person-to-person interactions on public trans-
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portation systems,
• Evaluation of community risk profiles based on connectivity

to public transportation networks and commuter participa-
tion,

• A framework for safely evaluating public transportation
service offerings in pandemic scenarios,

• Insights into the correlation between public transit ridership
and COVID-19 infection rates by presenting a case study
in Canada.

The next sections are formulated as follows: Section II
presents the related work on public transportation and contagion
transmission modelling research. Section III presents the design
principles for the proposed simulation platform. Section IV
details the simulator architecture. Section V presents a case study
and analyses on the simulator outputs. Section VI presents the
open issues, discussions, and lessons learned whereas Section
VII concludes the article.

II. RELATED WORK AND STATE OF THE ART

As of July 2020, researchers in [12] have identified a need for
further investigation on modelling the transmission of COVID-
19 through public transportation, and leveraging contact tracing
to prevent the disease from spreading in an uncontrolled manner.
Studies of public transportation networks focus on system
infrastructure with higher emphasis on optimization of route
efficiency by leaving room for future research on passenger
activity [13] and capacity planning of the public transportation
vehicles [14], as well as the use of autonomous robots to deliver
several services [15]. In addition to these, research on the
readiness / preparedness of public transportation systems against
pandemics has become critical [16].

While simulators are capable of emulating passenger be-
haviour require private or proprietary data sets in addition to
GTFS data, such as fare validation statistics [17], there exists
research that relies on only GTFS data and self-sourced crowd-
sensing data in the context of public transportation networks
[18]. Indeed, integrating this type of research with passenger
interactions would be invaluable for public health. Nevertheless,
mobile crowd-sensing provides a promising venue to study
community risk factors during pandemics [19].

It is foreseeable that crowd-sensing could be applied to public
transportation systems (e.g., [20]). With this in mind, it might be
possible to identify passenger interaction clusters. However, self-
sourced data of this type would not be available immediately.
With this in mind, we take a novel approach to simulate public
transportation using already available data as a means to model
commuter behaviour and in turn potential transmission vectors
during the pandemic and in the post-COVID-19 era.

III. DESIGN PRINCIPLES

We present the underlying simulator framework to be as
flexible as possible for users in regard to their choice of city,
and achievable with respect to data availability.

A. Leveraging open data
We combine widely available data sets for transit feeds, census

data, and municipality subdivision to structure the simulator. In
Canada (and most cities in the U.S.) the consistent format of
the data allows the simulator to be run on almost every major
Canadian city with no or slight modifications. It is worth to
note that if a census is not available, an alternate source of
population ward data and ridership can be provided.

The General Transit Feed Specification (GTFS) standard
defines a common standard for public transport geographic
information as well as scheduling information such as routes
and trips. We use this data to obtain information about the
layout of the transit system, as well as precise schedules for
the simulations. Furthermore, as city boundaries are normally
derived from population metrics, they provide a good basis for
defining subjective communities within a city during pandemic
scenarios.

Amongst the national census data collected is population,
employment status, habits and other demographic or socio-
economic statistics. Canadian data is centralized and available
on the Statistics Canada website [21]. This makes census data
a convenient input for our simulator and allows application
to almost any Canadian city with minimal modifications. The
Canadian census further collects the numbers on primary means
of commuting, car, bicycle, public transit, as well as commute
times and other temporal trends. These aggregated data enables
us to realistically model attributes of passengers on public
transportation such as peak rush hour commutes.

B. Realistic Population Behaviour
We utilise the population data from the census, as well as

mobility data from Apple to realistically spawn commuters at
different bus stops in the system. From there, we utilize the
average commuter trip in kilometers, as obtained from the transit
agency, as well as the GTFS schedule data, to simulate these
riders as they propagate through the system.

C. Community Risk Profiling
Our goal is to determine regional risk profiles over time

due to transmission spread between communities. The model
therefore tracks interactions between the virtual passengers and
scores each time interval over the course of a day with the sum
of interactions from passengers who got off during that time
interval in a particular ward. The use of predetermined ward
demarcations based on electoral districts, provides an objective
definition of a ’community’ within this tracking context, and
helps to provide a partition of the city, so it can be identified
which parts contain the highest passenger-interaction index.

Infection rates are a function of transmission, as the tracked
movement determines the risk profile of communities by
simulating exposure to the virus. Thus, public transportation
units can monitor whether their current operational decisions
impact community infection rates based on current public
transportation usage.
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IV. SIMULATOR ARCHITECTURE

The Python-based simulator uses data from the city of Ottawa
for analyses and validation; however, this architecture could
apply to any city with appropriate data.

A. GTFS data

The public transit agency of Ottawa (i.e., OC Transpo)
provides both GTFS static data, and real-time data feeds. The
static data that describes the transport topography is publicly
available and conforms to the GTFS standard. Figure 1 compares
the OC Transpo data against the requirements of GTFS.

Fig. 1: Availability of OC Transpo data against GTFS standard

Although disjoint, the GTFS data provides plenty of identify-
ing information, as well as sufficient information to reconstruct
the spatial-temporal configuration of the public transit network.
The GFTS data that needs to be used is limited to the data
that can help to form a flow graph that represents the transit
network, i.e., scheduled trips and stops for the bus routes.

B. Municipal Ward Data

As pointed out by the research on COVID-19, the availability
and usability of open data is essential for public health
organizations to effectively respond to the pandemic [22], [23].
With this in mind, the availability of ward data of cities is of
paramount importance. In the case of Ottawa, the municipality
is sub-divided into electoral districts known as wards. The City
of Ottawa’s ’Open Ottawa’ project provides open-source data
about the city including the geographical boundaries for these
wards. In this research, we use the 2010 ward boundaries, which
are publicly available [24].

C. Census and Mobility Data

Canadian Census for Ottawa [21] provides population data
for our model. The ”main mode of commuting” section in the
census data is used to identify the use of public transportation
on a daily basis during peak commute times. The section titled
”time leaving for work” in the census data motivates the use

Fig. 2: Ottawa ward boundaries (Information is publicly available
in open.ottawa.ca )

of a normal distribution to model rush hours and provides a
reference mean and standard deviation to use. Notably 8am with
a standard deviation of 2 hours, it can be assumed that the return
time would be centered around 4pm due to the commonality of
an 8-hour workday with certain exceptions.

D. Generating a Graph-Based Model

The underlying structure of the simulator is a graph-based
representation of the GTFS data as simply illustrated in Fig. 3.
Specifically, a directed weighted graph where vertices represent
bus stops, and hold geo-location information for later correlation
with ward data. Directed edges represent stops linked by a bus
trip, and the weight of the edge is defined by the time taken for
a bus to travel between the two scheduled stops. Generating the
graph-based structure follows a simple methodology: Initially,
for each bus stop in the GTFS data, a vertex object is added
to the graph. Next, by iterating through all the bus trips within
the selected time frame, for each pair of adjacently scheduled
stops, an edge is added to the graph to connect the vertices
representing the respective stops. The weight of the edges are
assigned the time difference between the scheduled stop times.

As the graph-based uses bus stops for vertices, corresponding
to physical locations, this allows for tracking transit patterns
with respect to geographical vectors. Incidents within graph
representation can serve as indicators feeding directly into
community risk factors based on location. Figure 4 illustrates
snapshots of the resulting graph object for two days of the week.

The contrast between the two, show how graph object can
represent the transit system at different points in time.

E. Design of simulator

By using the graph-based representation of the GTFS data,
the system is added the capacity to take in flexible algorithms



4

Fig. 3: Simple illustration graph generation

for the distribution of passengers who enter the system, and
whether they perform actions such as transferring or getting
off of a bus. This is followed by the implementation of these
algorithms that creates an accurate simulation in an otherwise
chaotic system. This brings the advantage of being able to
model the interactions between different aspects of the system
including riders, buses and wards during a given time-frame.
The simulator offers the ability to track passenger interactions
with total precision and with respect to location where most
bus network data or simulators do not track the interactions of
riders with the same degree of precision.

The time progression of the model is in intervals representing
1 minute to accurately emulate the progression of bus vehicles
travelling their routes. The simulator therefore contains two main
stages: 1. Pre-processing of the graph structure to populate data
and parameters, 2. Executing a tick for each minute in the given
time-frame and performing one step of the simulation.

The simulator takes parameters described in Table I, and
the day being simulated is determined in the graph generation
phase.

Fig. 4: Visualization of graph representation, Friday and Sunday

Parameter Description Default
start time to start the simulator 03:00:00
end time to stop the simulator 23:00:00
process on bus departure function built-in
process off bus arrival function built-in
granularity minutes per result bucket 30
kms mean passenger travel distance 10
kms stddev passenger travel variation 5
transfers passenger transferability True
am rush hr morning ridership peak 08:00:00
pm rush hr afternoon ridership peak 16:00:00
am rush stddev stddev for am peak 2
pm rush stddev stddev for pm peak 2

TABLE I: Simulator parameters

To emulate regular commuter patterns with peak rush hours,
passengers generated to enter the system using a bi-modal
distribution, i.e., two normal distributions: one for the morning
rush hour, and one for the afternoon rush hour using the
provided means and standard deviation in the parameters. The
concatenation of the two distributions forms a representation of
daily ridership.

To match real life as closely as possible one of these
distributions is generated for each ward, with peaks proportional
to the ward’s transit regular ridership levels adjusted by Apple’s
mobility index for transit ridership. This adjustment is an
important way to account for declined ridership during the
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COVID-19 pandemic [25].
The final output of the simulator is a matrix of size

W × B where W is the number of wards and B is the
number of timeframe buckets, obtained by the equation
(end− start)/granularity, where each bucket represents the
number of interactions recorded in each window in granularity
minutes. For example, with a time frame of 03:00:00 - 23:00:00
there are 20 hours, and if granularity is set to 30, we would
have 40 buckets, one for each interval of 30 minutes from the
start to the end.

V. CASE STUDY AND ANALYSES

Prior to presenting the analyses, it is worth to present the run-
time overhead of the presented simulations. The full run-time
is O(W + C +D + T 2 + S2) where S is the number of stops
in the GTFS data, W is the number of wards, C denotes the
number of GTFS calendar entries in the data and D represents
the number of GTFS calendar dates in the data, and T is the
size of the GTFS stop times data. For reference, processing the
graph for a day in Ottawa takes around 8 minutes.

A. Simulation Process

In order to gain insight into the data for Ottawa, we run the
simulations 10 times on on a granularity of 30 minutes for July
2nd, 2020, and plot the results for all runs over each ward, along
with the mean. This is with the intent of visualizing the risk of
each ward over the time of day, along with the variability. We
utilize a mean of 10km and a standard deviation of 6km for
calculating the approximate average passenger trip length for
the first set of simulations.

From the associated graphs we can see the overall trends for
each ward. In Fig. 5, the output for the Kanata South, a relatively
suburban ward, the peak of the contacts occur between 3pm
and 5pm, which coincide with the time to return home from
work. A corresponding spike does not exist for the morning
commute, as during these hours people would be leaving the
”transmitter” ward, and those interactions would be tracked as
metrics of the ”receptor” wards.

When analysing a central down-town ward like Rideau-Vanier
in Fig. 6, we see much larger spread in contact density, and
a second peak in the morning. This makes sense for a ward
close to downtown / city center where inbound and outbound
traffic reach their peak during rush hour commutes, as well as
considerable activity throughout the day as well.

B. Analyses with respect to COVID-19 infection rates

In order to figure out the correlation between the cumulative
contacts generated for each ward over the day and actual
infections of COVID-19, we compare our results to the open
data platform for the tracking of COVID-19 infections in Ottawa,
provided by the city of Ottawa [26]. For each of the analyses we
run a simulation using 10 repetitions, and 3 sets of values for
the mean and standard deviation in kilometers of the passenger

Fig. 5: Recorded contacts in Kanata South ward

Fig. 6: Recorded contacts in Rideau Vanier ward

travel distance. The values are 5km mean with 3km standard
deviation, 10km mean with 6km standard deviation and 10km
mean with 3km standard deviation respectively. The rational
behind the 3 scenarios is to see if the correlations observed vary
at all with respect to ridership distance.

First, ward populations and ward infection rates are inves-
tigated as a baseline estimator. This comparison points out a
statistically significant correlation index of 0.597, as shown in
Fig. 7.

When compared with the per ward cumulative infection
rate on December 5th, 2020 (excluding long-term care home
infections) using the Pearson r test, a statistically insignificant
correlation coefficient of 0.216, 0.056 and 0.04 is obtained
respectively in each test as seen in Figs. 8a, 8b and 8c. Assuming
the simulation to be realistic, these results show that the
Ottawa public transit network does not contribute a statistically
significant amount to the spread of COVID-19 between wards.
This is in-line with the latest advice of the American Public
Transportation Association report in [9], which states that a
correlation between public transit and transmittal of the virus
is unlikely.
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Fig. 7: Ward populations vs real infection rates by ward. Each
point on the plot represents the number of infected individuals
in a particular ward with its corresponding population on the
x-axis.

C. Transit contact analysis

With the conclusion that the transit contact index is not
correlated to infection rates, we investigate the major factor(s)
that may affect the transit contact index significantly. Since the
data reveals that wards closer to downtown get more contacts,
we compare values from the transit context index for each ward
with its proximity to the city center in kilometers. As seen
in Figs. 9a, 9b and 9c, a ward’s distance from the city center
correlates inversely with the number of simulated transit contacts
in a statistically significant magnitude. Therefore, this study can
conclude that the number of transit contacts a ward produces
is related to how close it is to the city center, which makes
intuitive sense as most commute is from residential areas to
downtown and back. While Ottawa’s public transit network does
not seem to pose an infection risk, such comparison metrics
could help a city adjust its network if a risk was ever found.

VI. OPPORTUNITIES AND OPEN ISSUES TO ADDRESS IN A
POST-COVID-19 WORLD

In this section we present various directions that this work
could be taken to contribute to different areas of research. Some
of the ideas listed here motivate the original development of
the approach taken in this research.

A. Advice for municipalities

While public transit alone, and the identification of com-
munities with a high contact indexes, do not prove to be a
good predictor of infection rates, availability of this simulator

enables identifying hot spots of commuter interactions. In a post-
COVID-19 world, the simulator-based approach could be used
to safely make assessments of service adjustments to public
transportation systems, to either minimize the possibility of
transmission or adjusting to a ’new normal’ of pandemics [27]
as experienced during COVID-19. The framework could also
help to design new routes to reduce personal contacts. Graphs
for certain wards show clear spikes in traffic, where the number
of busses could be increased to help smooth out the contact
rates amongst individuals. Additionally, contact is a measure
of how crowded public vehicles are, and this could be used to
address the general problem of avoiding overcrowding in public
transit.

B. Generalizing to other municipalities

While Ottawa-based case study outlined in this article shows
no correlation with infection rates of the city, Ottawa is sparse
city with moderate public transit ridership. When the simulations
are run and further improved by applying them in different cities,
such as denser ones like Toronto where public transportation
plays a bigger role, similar sets of correlation analyses could
be produced, with a possibility of different results. In general,
a correlation may not exist in Ottawa, but may exist in other
cities, and the availability of such simulation platform could
help to differentiate which cities have a public transit system
contributing to pandemic spread. Furthermore, generalizing
the study to more population-dense areas can also help to
address sustainability objectives affected by public transportation
decisions amid COVID-19 [28].

C. Augmenting with real time sensory data

With the advent of the internet of things (IoT) and sensor
data and mobile edge computing technologies [29], it is possible
to equip public transportation vehicles with anonymous sensors
to detect when passengers board or exit a bus. This could be
combined with other data when available, such as transit card
usage and mobile crowd-sensing data to improve the model
accuracy for better assessment capabilities. Furthermore, using
the simulated results as training and the real sensor data as
testing, the proposed simulation platform to track social contacts
could be transformed into a reinforcement machine learning-
based model that can predict ahead of time the contact risk
of a particular public transit system, and whether it would be
correlated to pandemic spread as there is significant room to
leverage artificial intelligence and integrate it with exit strategies
from the pandemic [30].

D. Improvements via external factors

The simulation capability produces credible results but
indicates that the topography of public transportation systems
can be insufficient for predicting community infections under
some circumstances. The simulation could be augmented to take
into account more inputs or external factors in those situations.
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(a) (µ, ρ) = (5km, 3km) (b) (µ, ρ) = (10km, 3km) (c) (µ, ρ) = (10km, 6km)

Fig. 8: Comparison per ward between number of recorded COVID-19 infections and number of transit contacts recorded by the
simulator under varying mean and standard deviation pairs (µ, ρ) for the trip length of an average passenger.

(a) (µ, ρ) = (5km, 3km)
(b) (µ, ρ) = (10km, 3km) (c) (µ, ρ) = (10km, 6km)

Fig. 9: Comparison per ward between distance of ward to city center and number of transit contacts recorded by the simulator
under varying mean and standard deviation pairs (µ, ρ) for the trip length of an average passenger.

One example is the physical proximity of passengers in public
transportation vehicles. Currently, the simulator is designed with
the assumption that being on the same public vehicle is a point
of contact, whereas in reality the contact model is more chaotic,
as it is still uncertain which surfaces are touched and how close
passengers sit / stand during their commute, although preliminary
studies on social distancing exist [31]. With an acquisition of
data about vehicle layouts and passenger behaviour, as well as
information on vehicle-route-schedule mapping information, in-
vehicle actions can also be simulated to obtain a finer granular
contact score. It is worth noting that external factors, such as
local traffic, may also affect transit network performance as it
would affect the duration of social contacts.

Inclusion of more data from/about a transit system enables
intelligent models such as machine learning algorithms or
neural network-based structures to augment the current rider
behaviour’s realism even further, to potentially produce more
accurate results.

VII. CONCLUSION

In this article, we have proposed a simulation framework
which combines publicly available and existing data, including
GTFS, Census and Apple mobility data, to simulate and predict
the number of contacts that occur in a city due to public transit.
We have ran simulations using real data from Ottawa, Ontario,
Canada as a case study. We then produced simulated results
at the ward level for a given time span, and analysed the
outputs with known real-world infection numbers in the city for
correlation.

For the city under study, the research results have been
shown to be in-line with the current recommendations of
public transportation research, showing that public transit
ridership alone does not have a strong correlation to COVID-
19 transmission. Indeed, the simulation platform could easily
be generalized to other cities, and would benefit from further
testing.

This work is also open to extension, with augmentation from
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more data sources, or possibly combination with other research
streams to provide even further insights into the role of public
transportation in pandemics.

In a post-COVID-19 world, the approach of using public trans-
portation data, combined with commuter behaviour will become
a critical tool to provide citizens with a stronger understanding
of pandemics and their relation to public transit while assisting
the public transportation departments and municipalities in their
planning of safer / healthier services to the public.
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