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Abstract

In recent times, Machine learning and Artificial intelligence have become one of the key emerging fields of computer science.
Many researchers and businesses are benefited by machine learning models that are trained by data processing at scale. However,
machine learning, and particularly Deep Learning requires large amounts of data, that in several instances are proprietary and
confidential to many businesses. In order to respect individual organization’s privacy in collaborative machine learning, federated
learning could play a crucial role. Such implementations of privacy preserving federated learning find applicability in various
ecosystems like finance, health care, legal, research and other fields that require preservation of privacy. However, many such
implementations are driven by a centralized architecture in the network, where the aggregator node becomes the single point
of failure, and is also expected with lots of computing resources at its disposal. In this paper, we propose an approach of
implementing a decentralized, peer-topeer federated learning framework, that leverages RAFT based aggregator selection. The
proposal hinges on that fact that there is no one permanent aggregator, but instead a transient, time based elected leader, which
will aggregate the models from all the peers in the network. The leader ( aggregator) publishes the aggregated model on the
network, for everyone to consume. Along with peer-to-peer network and RAFT based aggregator selection, the framework uses
dynamic generation of cryptographic keys, to create a more secure mechanism for delivery of models within the network. The
key rotation also ensures anonymity of the sender on the network too. Experiments conducted in the paper, verifies the usage
of peer-to-peer network for creating a resilient federated learning network. Although the proposed solution uses an artificial
neural network in it’s reference implementation, the generic design of the framework can accommodate any federated learning

model within the network.
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Abstract—In recent times, Machine learning and Artificial
intelligence have become one of the key emerging fields of
computer science. Many researchers and businesses are benefited
by machine learning models that are trained by data processing
at scale. However, machine learning, and particularly Deep
Learning requires large amounts of data, that in several instances
are proprietary and confidential to many businesses. In order to
respect individual organization’s privacy in collaborative machine
learning, federated learning could play a crucial role. Such
implementations of privacy preserving federated learning find
applicability in various ecosystems like finance, health care,
legal, research and other fields that require preservation of
privacy. However, many such implementations are driven by a
centralized architecture in the network, where the aggregator
node becomes the single point of failure, and is also expected
with lots of computing resources at its disposal. In this paper, we
propose an approach of implementing a decentralized, peer-to-
peer federated learning framework, that leverages RAFT based
aggregator selection. The proposal hinges on that fact that there
is no one permanent aggregator, but instead a transient, time
based elected leader, which will aggregate the models from all
the peers in the network. The leader ( aggregator) publishes the
aggregated model on the network, for everyone to consume. Along
with peer-to-peer network and RAFT based aggregator selection,
the framework uses dynamic generation of cryptographic keys,
to create a more secure mechanism for delivery of models within
the network. The key rotation also ensures anonymity of the
sender on the network too. Experiments conducted in the paper,
verifies the usage of peer-to-peer network for creating a resilient
federated learning network. Although the proposed solution uses
an artificial neural network in it’s reference implementation, the
generic design of the framework can accommodate any federated
learning model within the network.

Index Terms—federated learning, machine learning, privacy,
distributed, decentralized, blockchain, peer-to-peer, p2p

I. INTRODUCTION

In the era of distributed computing, scale of data and com-
putational resources are amazingly handled by distribution of
workloads across multiple systems in horizontal direction. Dis-
tributed computing, specific to “distributed machine learning”,
opens up exciting opportunities. However, it also introduces
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new challenges, in the areas where data privacy and data
security are important. Further, designing a resilient, highly
available and robust ecosystem for machine learning is equally
challenging. Federated learning [2] lays the foundation of
implementing machine learning, on a distributed landscape [1],
where heterogeneous machines can participate in collaborative
manner. The main idea is to have an “aggregator node” and
set of “participant nodes” in the federated network. Participant
nodes send their local model gradients to the aggregator node,
and aggregator node collectively composes all the received
models together into a singular global model, which is again
sent back to all participant nodes. In this setup, the participants
benefit from common learning, without knowing about all the
underlying data. While federated learning does take care of
privacy, security and anonymity, aggregator nodes become the
single point of failure in the federated network. This posses the
risk of downtime in case of unwanted failures, halting critical
process on the network.

In current available implementations, all of them have cen-
tralized design of an aggregator node and various participant
nodes, and they form a star topology for communication.
Implementations like Tensorflow Federated [S] and PySyft [6]
rely upon centralized servers to do the final aggregation on
local gradient outputs. There is an interesting aspect presented
by implementation of Owkin [7], which talks about utilizing
“Hyperledger” distributed ledger technology [8] for orches-
tration of non-sensitive metadata and exchange of algorithms
to individual nodes. If the computing nodes are interested,
they may publish the results of computations on DLT, for
everyone’s benefit.

To design a resilient and highly- available aggregator service
through decentralization, we propose an approach of imple-
menting federated learning using peer-to-peer [3] communi-
cation among the nodes in federated networks. The idea is to
have all the nodes with equivalent capabilities on the network
and, all of them should be able to communicate with each
other. The network, at any given point of time, has only one



node, that would be acting as a “leader” and rest of the nodes
will act as “followers”. In case the leader crashes, the network
is intelligent enough to conduct a new leader election, and
select leader among the remaining peers. The said mechanism,
follows a raft consensus [4] to conduct elections and assign
leaders. Hence, leader would responsible for acting as transient
aggregator for the network. Further, to distribute the work load
among peers, and give a fair chance to every peer within the
network to assume the role of a “leader”, a new leader is
elected after a predefined time interval is elapsed.

In order to throw light on key differences of the proposed
solution and related works, the solution proposed here is
dependent upon the fundamental idea of raft based consen-
sus, to elect a “transient leader” within the network. The
aggregation occurs only at the leader node. To compare with
implementations involving centralized servers, we propose the
concept of floating, transient leaders, being elected through
raft consensus. If the current leader becomes unavailable
or unresponsive for any reason, the network is capable of
recovering, by electing a new leader among the peers, by
conducting fair election. This ensures each node gets a fair
chance of performing aggregation. In comparison to imple-
mentation based on DLT, we are using peer-to-peer commu-
nication approach, which is depending on RPC mechanism
[9], to provide reliable, highly available and robust messaging
layer. This essentially removes the computational overhead of
maintaining the data consistency over the network too, like
in case of DLT, but still makes the network decentralized in
nature.

II. PEER-TO-PEER FEDERATED LEARNING

In the case of peer-to-peer network, and in our case, feder-
ated learning implemented on peer-to-peer communication, we
have three roles. In the proposed implementation, any healthy
peer could potentially assume any of the roles -

o Leader (Aggregator) node - for aggregation role

o Follower (Participant) node - participants in the network

o Candidate node - potential peers, who contest in the
election

To facilitate the communication between multiple nodes and
elected aggregator independently, the implementation lever-
ages the secured peer-to-peer communication as detailed in
the ‘experimental setup’ sub-section. We have implemented
peer-to-peer communication between the nodes. The peer-to-
peer communication between different participants leverages
the existing remote procedure calls, using TCP [10] layer of
networking. Since it’s a peer-to-peer communication, all the
messages, sent by a specific node are sent as broadcast to the
network. All the messages from a given node are broadcast
to the network, just as in any other p2p network. However,
based on the message type and if encrypted, only the intended
recipient can read the message. If the messages are not
encrypted, all the nodes can read and perform necessary action.
Further, for a p2p network to be effective and efficient, all
the nodes should be able to discoverable and reachable peers

present in the network. This may require opening necessary
enterprise firewalls in a safe and secure manner.

Since the leader role is transient for every node, either
reassigned after a certain time or failure, the RSA [11]
public and private keys associated in encryption need to be
dynamic in nature. The pair of RSA keys are to be rotated
for every message, initiated by the leader/participant node.
After a successful leader election, the leader announces it’s
RSA public key to the network that can be then used by the
participants to encrypt any message that it intends to send to
the leader.

A. Architecture

As depicted in Figure 1, all the peers are connected to each
other through mesh topology, where any peer can communi-
cate with any other given peer though remote procedure calls.
The major components of federated learning in peer-to-peer
setup include:

1) Leader election and resignation

2) Handling fault and re-election

3) Model aggregation by the leader

4) Model information broadcast by the leader
5) Model fetch, initiated by follower

Transient Collaborator Node

Aggregated Model

Participant
Node 0
_ Data

Participant C\ Ty

Participant
Node Node N

BN i ode 1

Model Data Encrypted Data

Mode! Model

Participant
N Node 2
Lo | (S0

Daia
Model

Fig. 1. Architecture diagram with peer-to-peer network, where one of the
peers gets elected as transient leader, which aggregates local gradients of
remaining peers
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A leader, when elected by raft consensus algorithm, assumes
the role of the model aggregator, which is transient by design.
In normal network operation, the elected node stays as leader
for T" period, as governed by RAFT design. A leader is elected
only for a specific duration, and at the end of which another



leader is elected from the available nodes. In order to ensure
the leader is available for that duration, all the participant
nodes expect a heartbeat every predefined frequency from the
leader. A missed heartbeat is an indication of unavailability of
the leader. In such a case, some peers from the network may
promote themselves as candidate nodes for the next leader.
After a fair election, one of the candidate nodes gets elected as
leader and the rest of the nodes continue to remain followers
till the next election. The life-cycle of a raft consensus and
leader election associated with it, is explained in Figure 2
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Fig. 2. DFA state machine transitions depicted for a raft consensus algorithm.
This explains the state transition between follower, candidate and leader roles
for every node, present in the peer-to-peer network

After the network assigns leadership to the elected node,
the node behaves as an aggregator node, starting with sending
broadcast messages with it’s newly generated RSA key pair’s
public key. This key would be used by any peer that intends to
send an encrypted message to the leader. The message payload
can contain information related to model exchange, updates,
etc to the aggregator node. By design, all the messages will be
sent as broadcast on the network. The unencrypted messages
are available for all of the participants and each participant
can read and act as necessary. However, the messages that
are intended for certain participants would be encrypted and
only nodes with valid private keys can decrypt the message.
Sending local model updates by participant nodes to the leader
node is a classic example of using encrypted messages for
communication between participant and leader node. Leader
node sends the model’s information, at a given frequency to
all the participant nodes.

Suppose a node doesn’t have the latest model version, that
node would initiate an encrypted message for the leader node
on the network. To ensure only the leader can read the payload,
those messages would be encrypted with the leader’s published
public key. Along with the encrypted cipher, for every new
message, the node would generate a new pair of RSA keys,
whose public key would be sent with the encrypted message.
The generated privately key will remain with the participant
node itself. As the message reaches the leader node, it can
decipher it using it’s own private key. Rest of the other nodes
will receive the message too, but can’t decipher the payload.
After the leader has processed the message, it will generate

and publish a response that will be encrypted by a public key
sent by the participant. This ensures that only the participant
that is intended to receive the message can decrypt, while the
rest of nodes can not.

This mechanism is central to “dynamic message encryption-
decryption”. As is the nature of the network peer-to-peer all
the nodes are aware of each other, there is a need to secure
the data in-transit, from malicious actors. Added to that, in
federated learning setup, privacy of data is of utmost concern.

Hence maintaining the privacy, anonymity and security of
message is a fundamental requirement by design. One more
benefit of “dynamic message encryption-decryption” is the
implicit anonymity which is achieved in the federated network.
Since the RSA key pairs of participant nodes are rotating for
every message, there is no way a leader node can identify or
tag an incoming message to a specific node, making it truly
anonymous in nature, from a message flow perspective. In
Figure 3, a standard “dynamic message encryption-decryption”
life cycle is depicted as DFA state machines, which is actively
used in peer-to-peer federated learning described in the paper.

Description of the states are as follows -

e S1 : Participant node encrypts the message with aggre-
gator node’s public key.

o S2 : Aggregator node decrypts the message using private
key of itself

e S3: Aggregator node encrypts the message using partic-
ipant node’s public key

e S4 : Participant node decrypts the message using the
private key generated in the initial state

E)—E)—69—6)

Fig. 3. State diagram (Life-cycle) of ‘“dynamic message encryption-
decryption”, as described in the paper. Here S1 is the initial state, when a
arbitrary participant node generates a new RSA key pair for communication.
S4 is the final state, when participant node deciphers the response message
from leader node using the generated private key. S2 and S3 are intermediate
states as described above

B. Experimental Setup

In order to validate the proposed solution and it’s hypothesis
in achieving the acceptable accuracy score in the federated
network, we did set up an experimental environment. In the
given set-up, we used MNIST [12] data. We created a network
with 5 nodes. Each node has RHEL 8.0 OS installed with
Python 3.8 installed, along with all the supporting libraries like
socket, Tensorflow 2.0, requests, etc. The services are designed
to run as a self-sufficient daemon in the node, which can run
the machine learning computations on data. Each participant
node has 4GB RAM with 2 core processor. The relevant ports
and firewalls are setup among all the nodes for communication.
Since this is an experimental setup, all the nodes are situated
in a single subnet, to ease out the network complexity.

We have added artificial neural network machine learning
model in the federated framework. The neural network [14]
being used has one input layer, with 128 input neurons, one



hidden layer of 2096 neurons and one output layer with 10
neurons. Figure 4 depicts the model graphically.
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Fig. 4. Architecture diagram of neural network model for hand-written digit
recognition using MNIST data

In the execution of setup, we studied the relation between
loss and learning rate of adam’s optimizer [13], by changing
the value of learning rate, as depicted in Figure 5. We also
studied accuracy and it’s relation with learning rate, as shown
in Figure 6. Table I represents loss and accuracy of all models
in the federated network described above. Table concludes that
using federated computation, we achieved better accuracy over
time.

TABLE I
LOSS AND ACCURACY OF LOCAL AND GLOBAL MODEL OVER NETWORK

Node Loss Accuracy (in %)
Global Model - Initial 2.4663 91.03
Participant 1 1.8932 94.74
Participant 2 1.656 94.89
Participant 3 1.823 94.23
Participant 4 1.8688 94.41
Participant 5 1.6311 94.58
Global Model - Aggregated 0.72 96.04
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Fig. 5. Loss vs learning rate of the neural network implemented for MNIST
data based federated learning, which uses Adam optimizer
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Fig. 6. Accuracy (in %) vs learning rate of the neural network implemented
for MNIST data based federated learning, which uses Adam optimizer

Along with federated learning experimentation, to verify the
resiliency of the system, the leader node was knowingly shut
down, in order to simulate node failure. As expected, after 20
seconds, a new node becomes the leader in the network. Since
the leader’s heartbeat was missed, the network was intelligent
enough to initiate election, as a process of self healing from
leader failure in the network. The network was also run for
7 days, which is essentially 7 leader time-outs, considering
the pre-defined “leader resignation timeout” is 24 hours.
Hence leaders resigned and went back to become followers,
initiating elections in the network. This fundamentally shares
the responsibility and work-load among the peers, on a time
sharing basis. The key idea here is to run two set of functions,
one being in active and other being in inactive (temporarily
sleeping) mode. Whenever a node is acting as a leader, both the
set of functions, denoting roles of “participant” and “aggrega-
tor” are run in active-active mode, in two separate, independent
threads. Whereas, in case of nodes acting as participants,
the set of functions for “participant” and “aggregator” are
run in active-inactive mode, in two separate threads. There
is some added latency, which needs to be accounted for in
the election process and synchronizing heartbeats. Table II
shows the observation during the raft election, initiated during
network start, resignation and shutdown of leaders. In the
table, “F” means follower node state, “C” means candidate
node state and “L” means leader node state.

C. Results

Based on the experiments carried out earlier, the following
inferences have been drawn from the results-

1) In case of MNIST data, the average accuracy of all the
individual nodes combined together is 94.57%, whereas
after using federated computations, within the frame-
work proposed, the accuracy is increased by 1.47%,
making the federated accuracy as 96.04%.

2) The proposed federated learning framework is capable of
performing the federated computations on variety of ma-



TABLE II
STATE OF NODES IN EXPERIMENTAL SETUP DURING RAFT ELECTION

Time | Node 0 [ Node 1 | Node 2 | Node 3 | Node 4
to Election started
t1 F F F F C
t2 F F C F C
ts Voting started
ta Voting completed and leader elected
ts F [ F [ F [ F [ L
- (m-1) time units elapsed
tm Leader resigns/becomes inactive
tmt1 F [ F [ F [ F [ F
tm+2 Election started
tm+3 F F C F F
tmta F C C F F
tm+s Voting started
tm+6 Voting completed and leader elected
tm+7 F [ L [ F [ F [ F

chine learning models, using peer-to-peer networking,
which implicitly provides decentralization, resilience,
security and anonymity, with keeping the performance
of models intact.

3) Itis to be noted here that true anonymity is proportional
to stringent access to the network and nodes. Hence
special care needs to be taken in maintaining the control
in access of these said systems.

4) The peer-to-peer network, implemented for federated
learning works similarly, it works in case of federated
learning with centralized servers. Additionally it makes
the solution, a truly decentralized one, with implicit
resiliency.

5) Peer-to-peer federated learning assumes that every node,
present in the federated network is capable of being an
aggregator node. Hence it mandates all the nodes to be
suitable for carrying out high power computations. This
requires the nodes in the network to be homogenous
in nature, unlike the federated learning in centralized
ecosystem, where participating nodes can be compara-
tively less resourceful than aggregator node.

6) The federated network is capable of running any given
machine learning model, as long as the global aggre-
gation functions are implemented by every node on the
network.

7) The network has no single point of failure, because of
mesh topology and floating role of “aggregator”. With
increase in challenges of maintaining the networking
infrastructure and compute resources, within the net-
work, this makes the solution proposed more enterprise
friendly, where data privacy is of utmost importance.

III. CONCLUSION

In the paper, we discussed details of implementing a peer-
to-peer federated learning, and how that would benefit the
enterprises on a decentralized network of information ex-
change. The primary benefit of using a peer-to-peer federated
network is to make federated learning decentralized, resilient

by removing single point of failure and giving every node on
the network, a fair share of aggregation role. The experiments
conducted in-lieu of the paper validates our hypothesis of
using federated learning within a peer-to-peer network, and
conducting rotation of “leader” role among the peers. From the
results and observations, we infer that network is self-healing
in case of unwanted failures.

Peer-to-peer federated learning has great potential in ecosys-
tems, where participants want to share the learning from
models and their individual data, without compromising the
privacy of their own data. For architectures demanding de-
centralization of resources, and yet maintaining resilient and
privacy respecting federated network, peer-to-peer federated
learning brings a lot of exciting potential. Needless to say,
peer-to-peer framework can also be the foundation for creating
smart, self healing networks, specially in case of critical
business applications.

The proposed solution puts forward challenges, where there
is a theoretical opportunity to distribute the aggregation among
sub-set of participant nodes, to further optimize the network.
With peer-to-peer communication, maintenance of networking
between each and every node is a challenge from security point
of view. The proposed solution can be further improved by
leveraging enhancements in the current consensus algorithms
around authorization and security of the overall network.
These enhancements coupled with proposed solution can bring
exciting opportunities in the areas of distributed and privacy
preserving machine learning domain.
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