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Abstract

The advent of Industry 4.0 has shown the tremendous transformative potential of combining artificial intelligence, cyber-physical

systems and Internet of Things concepts in industrial settings. Despite this, data availability is still a major roadblock for the

successful adoption of data-driven solutions, particularly concerning deep learning approaches in manufacturing. Specifically

in the quality control domain, annotated defect data can often be costly, time-consuming and inefficient to obtain, potentially

compromising the viability of deep learning approaches due to data scarcity. In this context, we propose a novel method for

generating annotated synthetic training data for automated quality inspections of structural adhesive applications, validated

in an industrial cell for automotive parts. Our approach greatly reduces the cost of training deep learning models for this task,

while simultaneously improving their performance in a scarce manufacturing data context with imbalanced training sets by

3.1% (mAP@0.50). Additional results can be seen at https://git.io/Jtc4b.
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Abstract—The advent of Industry 4.0 has shown the tremen-
dous transformative potential of combining artificial intelligence,
cyber-physical systems and Internet of Things concepts in in-
dustrial settings. Despite this, data availability is still a major
roadblock for the successful adoption of data-driven solutions,
particularly concerning deep learning approaches in manufac-
turing. Specifically in the quality control domain, annotated
defect data can often be costly, time-consuming and inefficient to
obtain, potentially compromising the viability of deep learning
approaches due to data scarcity. In this context, we propose a
novel method for generating annotated synthetic training data for
automated quality inspections of structural adhesive applications,
validated in an industrial cell for automotive parts. Our approach
greatly reduces the cost of training deep learning models for
this task, while simultaneously improving their performance in
a scarce manufacturing data context with imbalanced training
sets by 3.1% (mAP@0.50). Additional results can be seen at
https://git.io/Jtc4b.

Index Terms—Quality Inspection, Deep Learning, Synthetic
Data, Simulation, Structural Adhesive.

I. INTRODUCTION

In several sectors of the manufacturing industry, including
automotive, naval and aerospace, guaranteeing the safety of
the product’s end-user is a top priority. This makes it critical
to ensure that each manufactured part adheres to strict quality
criteria. Typically, a crucial step of quality assurance in these
sectors consists in the tests performed after final assembly.
However, detecting problems and manufacturing defects only
at such a late stage in the process is not desirable for manu-
facturers, as fixing them becomes either too time consuming
and costly, or even impossible resulting in total loss.

To mitigate this, manufacturers integrate quality inspection
of parts and components along the production line. These tests
are often destructive, being performed by sampling as part of
statistical quality control. A particular example of such tests
are those carried out for parts bonded with structural adhesive
in the automotive industry.

With the increasing demand for lighter and more resistant
materials, manufacturers are frequently opting for lighter metal
alloys or carbon fibre parts which often can not be welded.
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Even in cases where welding is possible, the application of
structural adhesive before bonding plays an important role
as it contributes to the reduction of noise, vibrations and
infiltrations.

In general, destructive quality tests consist in separating
bonded parts to analyse the spread, consistency and continuity
of the adhesive. This procedure is not only time consuming,
but also costly in terms of human resources, materials and
waste. Furthermore, common defects such as discontinuities
and blobs are impossible to correct if they are not detected
before bonding, due to the parts having already undergone
mechanical and structural changes at that stage. Discontinuities
for instance are critical since they are generally undetectable
after bonding. An example of a process for which the rigorous
application of structural adhesive is crucial is hem flange
bonding [1], illustrated in Figure 1.

Fig. 1. The hem flange bonding process

This process of metal bonding broadly consists in bending
an outer closure panel over an inner panel after applying
adhesive between them, being frequently employed in the
assembly of doors, liftgates and hoods. If there is a shortage
of material, the result will be poorly isolated which can lead
to an early corrosion of the part. Contrastingly, if too much
adhesive is dispensed it can leak outside the flange and must
be cleaned.

Based on these points, enabling the continuous and system-
atic quality inspection of all parts, beyond traditional statistical
quality control, becomes highly desirable for manufacturers
striving for zero-defect manufacturing. In this light, recent
advances in Artificial Intelligence (AI), particularly concerning
deep learning and computer vision are extremely promising in
regard to the automation of such inspections [2].

However, deep learning approaches generally require very

https://git.io/Jtc4b
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high volumes of data. In the particular case of manufacturing
quality control, such approaches need considerable amounts
of defect data which tends to be costly to generate and thus
scarce.

To address this challenge, we design, implement and val-
idate an approach to improve the performance of quality
inspection with deep learning using synthetically generated
data. Our contributions can be summarized as follows:

1) A novel approach to augment image datasets of struc-
tural adhesive application processes;

2) An open-source simulation to generate synthetic images
of structural adhesive beads;

3) A publicly available dataset of structural adhesive appli-
cations, SEE-Q, consisting in 124 manually annotated
images of real adhesive beads. This dataset can be
augmented with the provided simulation to reproduce
the results described herein;

4) Weights and configurations for models trained and val-
idated in a real production cell to support the repro-
ducibility of the results;

The remainder of this article is structured as follows. Section
II overviews related work from current literature. Section III
addresses the approach for the generation of synthetic data
and for training the object detection models, as well as the
specification of the scenarios for validation. Then, Section IV
describes the validation environment and the corresponding
datasets, followed by a discussion of the results. Finally,
Section V discusses the limitations of the approach, followed
by the conclusions and future work in Section VI.

II. RELATED WORK

Concerning the domain of quality control, most mature
organizations have adopted quality-oriented strategies and
paradigms, such as lean production and six sigma, in an
attempt to minimize defects and scrap. Due to this, in some
processes the occurrence of defects can be seen as a rela-
tively rare event [3] (albeit costly), making data availability
a major challenge for modern Machine Learning (ML) based
approaches.

Moreover, a recent survey1 found 96% of the respondents
across twenty different industries reported training data quality
and labelling challenges in ML projects. In the case of manu-
facturing, examples of factors that contribute to this include the
difficulty of collecting exhausting real-world samples, leading
to selection bias (e.g., poor performance detecting defects in
products in different poses when trained on data containing
samples in a single pose), or edge cases which can originate
from rare events or simply be too costly to recreate.

As a result, one of the main limitations of modern deep
learning-based approaches to quality control are the vast
amounts of training data required to develop such solutions,
which require considerable human effort, are costly, time
consuming and error-prone. In this light, the usage of synthetic
data is emerging as an attractive solution to decrease the
burden of data collection and annotation [4].

1https://www.businesswire.com/news/home/20190523005183/en/Survey-
96-Enterprises-Encounter-Training-Data-Quality

A recent systematic review [5] of Industrial AI applications
showcased that roughly 20% of the publications included in
the study employed synthetic data to augment their datasets.
The generation of synthetic data which closely resembles data
from real operational environments is a key driver behind
the generalization capability of Industrial AI solutions to real
scenarios.

With the advent of Generative Adversarial Networks (GAN)
[6], new opportunities for the generation of reliable synthetic
data in manufacturing have arisen. The GANs can be used
to learn the distributions of the original data and the generate
fake, yet realistic samples to expand the training dataset. Some
promising examples of this can be found in the literature,
addressing applications in which the data of faulty operational
conditions is scarce and difficult to obtain [7]–[9]. Recent
efforts have also shown promising empirical results on semi-
supervised learning [10]–[12] for cases in which labelling the
entire dataset is unfeasible or too costly.

However, a large amount of real training data is still
necessary in order to train GAN models to generate training
data with sufficient quality. While considerable progress has
been made towards solving this challenge, a state-of-the-art ap-
proach for small datasets developed by researchers at NVIDIA
[13] still requires over 1000 images to train. An alternative
approach is thus centred on the creation of simulation models
capable of closely replicating the manufacturing process.

Recent research from OpenAI has shown that techniques
such as domain randomization [14], [15] can be employed
to generate synthetic data using simulation in increasingly
difficult environments, which in turn can be used to train robust
ML models capable of generalizing well to real-world tasks.

The main drawbacks of simulation or 3D rendering-based
approaches in current literature are that most are still depen-
dent on real data, or require considerable modelling effort to
create photorealistic 3D assets and scene compositions [16],
[17]. This can make such approaches unsuitable for the domain
of manufacturing quality control, as it is often unfeasible to
exhaustively collect sufficient and representative defect data.

In Section III we propose and describe a simulation-based
approach through which samples of defective parts can be
generated with considerable variation for the quality inspection
of structural adhesive applications, whilst requiring minimal
modelling effort. Additionally, we showcase that synthetic
data generated by this simulation can be used to improve the
detection of defects in a real industrial cell, when compared to
an off-the-shelf deep learning model trained only on a small
real dataset.

III. MATERIALS AND METHODS

This section details the approach to generate synthetic and
automatically annotated images to train deep learning object
detectors for inline quality inspection. The implementation
of the simulation, as well as model configurations, weights
and data are available at https://github.com/RicardoSPeres/
simulation-synth-adhesive.

https://github.com/RicardoSPeres/simulation-synth-adhesive
https://github.com/RicardoSPeres/simulation-synth-adhesive
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A. Synthetic Dataset Generation

The simulation environment was implemented in Cop-
peliaSim [18], consisting in a bare bones scene aimed at visu-
ally replicating the end result of the manufacturing process, in
this instance the application of industrial structural adhesive
to an automotive part. Both the simulated environment and an
example of the process outcome can be seen in Figure 2.

(a) (b)

Fig. 2. Simulation environment in CoppeliaSim (a) and an example of a
synthetic image generated with a discontinuity defect in the structural adhesive
bead (b)

Defects can be generated all along the pre-defined path
for the adhesive bead, being constrained to a maximum of
three defects per part. These defects can be of two types,
one being a discontinuity as shown in Figure 2, the other
being characterized by an excess of material (e.g., adhesive
blob). However, the simulation can be easily parameterized to
generate additional defects or types, such as the narrowing of
the bead.

Upon starting the process, an algorithm decides how many
defects will be generated and of which type. Then, their
position along the bead and length is computed, followed
by the actual application of the adhesive. The algorithm is
described in Listing 1.

Afterwards, the annotations of the bounding boxes for each
defect instance are generated following the YOLO format:
< object class > < x > < y > < width > < height >

(1)
where the object class refers to the defect type (i.e., 0 for

discontinuity, 1 for excess), x and y are the coordinates for
the center of the bounding box and width and height define
its dimensions. The algorithm to generate the annotation file
for each image is provided in Listing 2.

The equation that approximates the x coordinate as a
function of the defect starting point relative to the path solves
as the following 6th order polynomial:
x = −6.2428× 10−9x6 + 1.8952× 10−9x5−
0.0002x4 + 0.0097x3 − 0.1929x2 + 3.1184x+ 7.5402

(2)

Similarly, the same can process can be applied to the y
coordinate of the defect’s starting point:
y = 3.8936× 10−9x7 − 1.3498× 10−7x6+

1.8193× 10−5x5 − 0.0012x4 + 0.0384x3 − 0.5653x2+

3.1013x+ 64.2042

(3)

Algorithm 1: Defect generation
Result: Number and type of defects with their position

relative to the length of the bead
defectTypeList = {};
dLengthList = {};
numberOfDefects = math.random(1, 3);
i = 0;
while i < numberOfDefects do

defectTypeList[i] = math.random(0,1);
end
for i=0; i < numberOfDefects; i++ do

if defectTypeList[i]==0 then
dLengthList[i] = Random medium length;

else
dLengthList[i] = Random shorter length;

end
Compute the defect’s start position in the bead as a
function of numberOfDefects, its length and
the start position of the previous defect (if it
exists);

end

Algorithm 2: Annotation generation
Result: File containing the annotations for the defects

in a single synthetic image
foreach defect do

defectEnd = defectStart + defectLength;
x start = convertPathWidthToX(defectStart);
x end = convertPathWidthToX(defectEnd);
y start = convertPathWidthToY(defectStart);
y end = convertPathWidthToY(defectEnd);
x center = (x start + x end) / 2;
y center = (y start + y end) / 2;
width = math.abs(x end - x start);
height = math.abs(y end - y start);
Write the resulting annotation to file following the
YOLOv4 format

end

Based on this, an annotated synthetic dataset of 4000 defect
images was generated. A few examples of real defects and
their similar synthetic counterparts is showcased in Figure 3.

B. Training Object Detection Models

For the implementation of object detection to automate
quality inspection, different model architectures were trained
using Darknet [19], an open source neural network frame-
work written in C and CUDA supporting CPU and GPU
computation. The base implementation is available at https:
//github.com/AlexeyAB/darknet.

We employed YOLOv4 and Yolov4-Tiny architectures [20],
as well as Scaled-YOLOv4 [21] which achieved state-of-
the-art results for the MS COCO dataset [22]. The training
of these models was carried out for two different scenarios
as detailed in Subsections III-B1 and III-B2, using a single

https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
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Fig. 3. Examples from the generated synthetic dataset and its real counter-
parts. First column presents discontinuity defects, the remaining two showcase
varied excess defects

NVIDIA GeForce GTX 1660 Ti GPU (Turing architecture,
6 GB GDDR6). For both scenarios, the performance of the
models was assessed based on the Mean Average Precision
(mAP) at different Intersection Over Union (IoU) thresholds,
a common metric in most modern object detection tasks [22],
[23]. The overview of the approach is illustrated in Figure 4.

Fig. 4. Overview of the proposed approach. The general object detector is
adapted from [20]

1) Scenario A - Generalizing from Synthetic to Real: This
first scenario was designed to test the capacity of the synthetic
models to generalize to the real test set. In this case different
state-of-the-art object detection models were trained only on
the synthetic dataset (4000 images) and then tested on 124
real images. Transfer learning was used for the initial weights
pre-trained on the MS COCO dataset.

2) Scenario B - Assessing Data Augmentation in Scarce
Settings: The goal of the second scenario was to assess the
impact of augmenting the scarce dataset of real defects with
the synthetic images generated in simulation. For this purpose
an ablation study was carried out for all model variants by
removing different parts of the training set (either training
on synthetic, real or augmented data) and comparing their
performance on a smaller test set of 36 real images (given the
limited availability of real images) to assess the impact of the
different training sets. Model parameters and configurations
such as batch size and learning rate were kept uniform across
all tests.

To further assess the impact of the augmentation, different
volumes of augmented data were considered. In one experi-
ment, all 4000 synthetic images were added to the real training

set, while on another only 50 synthetic images containing
mostly instances of the under-represented class (excess defect)
were included.

IV. EXPERIMENTAL RESULTS

In this section the real validation environment is described,
along with a thorough discussion of the results obtained in the
experiments.

A. Validation Environment

The validation was carried out in a high throughput pilot
cell involved in the application of structural adhesive beads
for the automotive industry [24]. The demonstrator is located
at Introsys S.A. facilities in Castelo Branco, Portugal, a
company specializing in industrial automation (particularly in
the automotive sector) that operates in the international market
since 2004.

Within the context of this study, two complimentary stations
are considered, one for the application and correction of the
structural adhesive bead with in-process quality inspection,
the other for post-process quality inspection. The first encom-
passes an ABB IRB 2400 6-DoF industrial robot, a Nordson
VersaPail bulk melter, a Nordson AG-930s dispensing gun,
an in-process inspection ring with 3 IDS OEM cameras and
built-in IR led lighting. The post-process inspection setup
is composed by two Teledine cameras and IR lighting. The
stations are linked by a conveyor system and controlled by a
Siemens Simatic S7-400 PLC.

The conveyor system is able to transport up to five pallets.
After a part has been loaded into the system, it is transported
to the adhesive application station. Upon arrival, the pallet is
elevated, the robot applies the structural adhesive bead, then
the lift descends and the part is transported to the post-process
inspection station, where is inspected using the deep learning
model. If the part passes the quality check, or the detected
defects are unrecoverable, it is transported to the unloading
station and unloaded by a worker. If a recoverable defect is
detected (i.e., discontinuity), the part loops back to the first
station where the bead can be corrected.

B. The SEE-Q Dataset

The SEE-Q dataset comprises the 124 manually annotated
images of real industrial structural adhesive defects used
as the basis for this approach. It consists of 160 instances
of discontinuity and 70 of excess defects. For reproduction
purposes it is made publicly available at https://github.com/
RicardoSPeres/simulation-synth-adhesive.

For testing the proposed approach, the SEE-Q dataset was
augmented with 4000 synthetic images annotated automat-
ically in the simulation environment. An example of the
resulting annotated images can be seen in Figure 6.

C. Discussion of Results

Starting with Scenario A, a summary of the results in terms
of mAP for various IoU thresholds, as well as of the average
detection time per image is provided in Table I.

https://github.com/RicardoSPeres/simulation-synth-adhesive
https://github.com/RicardoSPeres/simulation-synth-adhesive
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TABLE I
EVALUATION METRICS FOR THE DIFFERENT MODELS TRAINED WITH 4000 SYNTHETIC IMAGES OVER 6000 ITERATIONS, TESTED ON 124 REAL IMAGES.

THE MAP IS COMPUTED FOR DIFFERENT IOU THRESHOLDS, NAMELY 0.15, 0.30 AND 0.50. BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Model Size mAP@0.15 mAP@0.30 mAP@0.50 Avg. Detection Time (ms)

YOLOv4x-Mish 640 0.4574 0.4014 0.154 72.58
YOLOv4 512 0.725 0.6392 0.4449 40.32
YOLOv4-Tiny 416 0.5188 0.4684 0.2762 16.13

Fig. 5. Overview of the structural adhesive application cell used for validation.

Fig. 6. Example of the synthetic images included in the A-SEE-Q dataset,
with automatically generated annotations.

While the mAP is relatively low, particularly when later
compared with the results achieved in Scenario B, it serves to
show that the models are still capable of generalizing from the
simulation to the real environment, being able to detect both
types of defects in most cases where the bead did not differ
greatly from those observed in the synthetic set. In edge cases,
the models can generally still detect the presence of defects,
but struggle with the detection of all instances in the input
image. An example of these two cases is provided in Figure
7. Unfortunately, the YOLOv4x-Mish model did not achieve
comparable performance within the same number of iterations
with the experiment’s setup.

It is also worth noting that there’s a small difference
between the background of these images. This is stems from
the fact that for some samples included in the dataset, a sheet
of paper was glued to the product part, with the structural
adhesive being applied on top of it. This was done due to

(a) (b)

Fig. 7. Example of detections using the YOLOv4 model trained only on
synthetic data, with (a) resembling the examples from simulation and (b)
representing an edge case.

the inherent difficulty of removing the adhesive from the part,
even with the use of solvents, so that parts could be reused
for testing. Regardless, the influence of this difference was not
noticeable in the results, as the models were robust even in
the face of more pronounced changes in the image.

Moreover, this further illustrates the problems concerning
the generation of real defect datasets in this context. Firstly,
the occurrence of defects is not desirable in normal production,
making such cases naturally scarce. Adding to this, even in
pilot lines or laboratory environments, the process is extremely
time consuming, costly and complex, since constant changes
to the equipment’s control parameters are required to inject
different defects.

Concerning Scenario B, the YOLOv4 and YOLOv4-tiny
models were trained on four different training sets, being
evaluated on the same test set of real images as described in
Table II. As it can be observed, training the YOLOv4 model
with the augmented dataset yielded improved performance for
mAP at all of the different thresholds measured, consisting
in the best results across all training sets. Comparing with
the best performing YOLOv4-Tiny model, it can be seen
that while YOLOv4 is superior in mAP (around a 9.16%
difference in mAP@0.50), the tiny model is nearly twice as
fast concerning inference time.

It is also interesting to note that the best tiny model resulted
from training on an augmented dataset, albeit with fewer
instances mostly of the under-represented class, as opposed
to the full 4000 images of the balanced synthetic set.

A comparison of the outputs from the YOLOv4 models
trained on synthetic, real and augmented sets is provided in
Figure 8. Additional examples of the results can be found at
https://git.io/Jtc4b.

The rows of images in Figure 8 depict increasingly difficult
examples (more and more different from typical defects in the
training set). Taking an off-the-shelf model such as YOLOv4
and training it on a small real-world dataset can be considered

https://git.io/Jtc4b
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TABLE II
RESULTS OBTAINED FOR SCENARIO B, GROUPED BY THE VARIED TRAINING SETS. ALL GROUPS WERE TESTED ON A HOLDOUT SET OF 36 REAL IMAGES

CONTAINING 69 INSTANCES OF DIFFERENT DEFECTS.

Model Size mAP@0.15 mAP@0.30 mAP@0.50 Avg. Detection Time (ms)

Synthetic Training Set (4000 images)

YOLOv4 (S) 512 0.6427 0.6108 0.3995 55.56
YOLOv4-Tiny (S) 416 0.4666 0.4497 0.2158 27.78

Real Training Set (88 images)

YOLOv4 (R) 512 0.9131 0.9016 0.8865 55.56
YOLOv4-Tiny (R) 416 0.8666 0.8526 0.8048 27.78

Augmented Training Set (88 Real / 4000 Balanced Synthetic Images)

YOLOv4 (A) 512 0.9359 0.9334 0.9173 55.56
YOLOv4-Tiny (A) 416 0.9051 0.8405 0.5652 27.78

Augmented Training Set (88 Real / 50 Synthetic images mostly of the under-represented class

YOLOv4 (A*) 512 0.9238 0.9227 0.9006 55.56
YOLOv4-Tiny (A*) 416 0.887 0.8743 0.8257 27.78

common practice, and in fact in this case the model performs
well for images with common defects (first and second row).
However, performance worsens considerably when faced with
edge cases (third row). In general, it was observed that the
model trained on the augmented dataset presented tighter
bounding boxes during inference with better localization, in
some cases even detecting instances missed (false-negatives)
by the model trained only on real data.

Finally, an additional experiment was carried out to further
test the generalization of the models trained on the augmented
data. For this purpose, different paths for the application
of the structural adhesive were modelled in the simulation,
generating beads with considerably different shapes when
compared to those present in the training data. The best
YOLOv4 model from Scenario B was then tested on these
inputs, with the results shown in Figure 9.

Once more, as it can be verified the model is able to
successfully identify both types of defects even in beads with
shapes considerably different that the one seen in the training
phase. This suggests potential concerning the applicability
of the model to applications with varying shapes without
requiring additional re-engineering effort.

V. LIMITATIONS

While the proposed approach is robust to variations regard-
ing for instance position or lighting conditions in the quality
inspection images, the performance of the models is limited
for extreme cases that differ too much from the training set.
An example of this can be found in the last row of Figure 8.

Despite this, it can be observed that the model is still
capable of detecting the presence of defects, even if in few
cases it might be unable to localize all instances in the product.
In this regard, one venue that can be explored is to improve
the simulation to include a wider variety of such cases.

Additionally, one clear point for improvement is the gen-
eration of the annotations, as the localization of the resulting
bounding boxes (specifically the approximation of the x and y
coordinates) still presents inaccuracies that should be resolved

in future iterations. This is hypothesized to be the reason
behind the difference in performance for the tiny model
between the two augmented sets presented in Table II, and
suggests that improvements over training exclusively with the
real set could in reality be larger once this aspect is resolved.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we show that state-of-the-art object detection
models are capable of generalizing the learning from purely
synthetic data to real scenarios. This holds true even in cases
such as the one presented, where the simulation outcome is
not a perfect realistic representation of the real environment.

Furthermore, we show that the synthetic data can be used
to augment the original small real dataset, resulting in an
improved performance for the object detection task. As such,
this approach is suitable for instance in scenarios for which
there is not enough data to train GAN-based models (which
could otherwise be an alternative approach), while requiring
minimal modelling effort for the simulation.

Additionally, the proposed approach greatly reduces the
costs of generating additional training data with sufficient
samples of each defect. Typically, even in controlled envi-
ronments, the process of generating real images would result
in energy, material and personnel costs. For real production
environments, it is generally unfeasible to dedicate a line
solely for the purpose of generating specific data. For both
cases, the proposed approach represents a valid alternative at
a very small fraction of the cost.

As future work (beyond addressing the limitations discussed
in Section V), if the problems of training GANs with very
small datasets are solved (e.g., stabilizing the discriminator
with less 500 samples), there is considerable potential in
exploring that venue. Generative approaches remove the need
to model the simulation for each different use case, while
likely providing more life-like results which could further
improve the performance obtained from synthetically aug-
menting the dataset. At that point, the choice for an adequate
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Fig. 8. Examples for the comparison between the outputs of YOLOv4 models trained on synthetic (first column), real (second column) and augmented
datasets (third column) from scenario B. All variants were pre-trained on the MS COCO dataset using transfer learning.

(a) (b)

(c)

Fig. 9. Experiment to verify generalization beyond the bead shape included
in the training set. Results show promise in requiring no additional effort for
adaptations in the process.

approach would depend on the trade-off between modelling
and annotation effort.
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