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Abstract

Analyzing fake-news detectors under adversarial threat using the Text-Attack Library for a number of model hyper-parameters
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Abstract—With the hyperconnectivity and ubiquity of the
Internet, the fake news problem now presents a greater threat
than ever before. One promising solution for countering this
threat is to leverage deep learning (DL)-based text classification
methods for fake-news detection. However, since such methods
have been shown to be vulnerable to adversarial attacks, the
integrity and security of DL-based fake news classifers is under
question. Although many works study text classification under
the adversarial threat, to the best of our knowledge, we do
not find any work in literature that specifically analyzes the
performance of DL-based fake-news detectors under adversarial
settings. We bridge this gap by evaluating the performance of
fake-news detectors under various configurations under black-
box settings. In particular, we investigate the robustness of
four different DL architectural choices—multilayer perceptron
(MLP), convolutional neural network (CNN), recurrent neural
network (RNN) and a recently proposed Hybrid CNN-RNN
trained on three different state-of-the-art datasets—under dif-
ferent adversarial attacks (Text Bugger, Text Fooler, PWWS,
and Deep Word Bug) implemented using the state-of-the-art
NLP attack library, Text-Attack. Additionally, we explore how
changing the detector complexity, the input sequence length, and
the training loss affect the robustness of the learned model.
Our experiments suggest that RNNs are robust as compared to
other architectures. Further, we show that increasing the input
sequence length generally increases the detector’s robustness. Our
evaluations provide key insights to robustify fake-news detectors
against adversarial attacks.

Index Terms—fake news detection, deep neural networks,
adversarial attacks, adversarial robustness.

I. INTRODUCTION

Recent advances in information and communication tech-
nology including the rise of social media, artificial intelligence
(AI), computational bots, and ubiquitous connectivity has
resulted in an information ecosystem that is awash with low-
quality, partisan, or even outright fake-news [1]. Advances
such as deep learning and generative adversarial networks

NLP Model

The lawyer does half legal talk, half political spin.

Fake
Real

The lawyer does half legal talk, half partisan spin.Fake News

Adversarial 
Generator

Fig. 1: Illustration of adversarial attack on an NLP model.
Illustration of adversarial attack on an NLP model. By flipping
just one word of sample fake news, an adversary can make an
ML-based NLP method fail in correctly recognizing the fake-
news.

(GANs) have made it easy for any motivated entity to create
fake-news and use it for large-scale opinion manipulation [2].
One such example is the US 2016 presidential elections where
fake-news generated for personal gains were believed and
shared by 37 million Facebook users [1], [3].

The future well-being of our society is contingent on
combating the fake-news malaise effectively. In recent times,
the use of AI and machine learning (ML) have been proposed
for developing algorithmic fake-news detectors that can flag
false information. In particular, researchers are leveraging deep
neural networks (DNNs)-based text-classification methods to
meet the fake-news detection challenge [1]–[4]. Although
DNNs provide a general solution to many intelligent tasks
of diverse nature, e.g., object recognition and localization,
scene understanding, paragraph generation, and summarizing
(to name a few), the performance of DNNs highly depends
on large training datasets [5] which makes them vulnerable
to attacks at both the training [6] and inference stages [7].
For example, recent works show that DNNs are easily fooled
when a slightly perturbed input, a so-called adversarial input
is input. Deep learning-based methods in all their popular
incarnations including convolutional neural networks (CNNs),
recurrent neural networks (RNNs), multilayer perceptrons



(MLP) have been found to be vulnerable to these adversarial
attacks [8], [9]. The adversarial ML threat is applicable to var-
ious application domains including image recognition, speech
recognition, networking devices, and even natural language
processing (NLP) models. We illustrate the working of an
adversarial attack on an NLP-based ML-model in Fig. 1.

Although we find a range of works studying the robust-
ness1 of DL-based text-classifiers against the adversarial at-
tacks [10], there is very limited work in the literature that
explores the adversarial ML threat for ML-based fake-news
detection methodologies. To bridge this gap, we evaluate a
recently proposed Hybrid CNN-RNN based fake-news detec-
tor [1], generalizable to different datasets under the adversarial
setting. For this purpose, we utilize the state-of-the-art library
Text-Attack2 [10], which implements 16 different state-of-the-
art attack strategies to benchmark the robustness of DNNs
on several Natural Language Processing (NLP) tasks. Further,
we analyze the adversarial threat surface of different detector
architectures for several hyper-parameters under the black-box
threat model, a threat model in which knowledge of the detec-
tor and its parameters are not assumed which makes this model
more practical and adaptive [11]. Our motivation for adopting
the black-box assumption is also based on the observation that
black-box attacks are considered more reliable compared to the
white-box attacks when used for benchmarking since black-
box attacks more effectively counter the gradient-obfuscation
problem exhibited by many defenses and models [12].

Although a recent work [13] evaluates fake-news detector
under the adversarial threat, our work differs in a number of
ways. Unlike the approach adopted in current models [13],
which used a manual method for generating adversarial ex-
amples, we automatically generate adversarial examples us-
ing four different approaches, i.e. Text-Bugger, Text-Fooler,
PWWS and Deep Word Bug, from a state-of-the-art library,
Text-attack [10]. The main goal of this study is to answer
the following key questions about the robustness of fake-news
detectors under several engineering choices.

• Which architecture provides the most robust solution to
the fake-news detection problem?

• How does changing the number of learnable parameters
of the detector (detector complexity) affect its robustness?

• How do different training-time design choices, i.e. input
sequence length, the training loss and the regularization
affect the robustness of the final detector?

Our findings highlight key insights for a generic defense
against adversarial attacks. Specifically, our experiments sug-
gest that RNNs are relatively robust as compared to the CNN,
MLP, and other hybrid architectures. We experiment with
different input sequence lengths and discover that large input

1We define robustness as the ratio of correctly classified adversarial inputs
to the total number of adversarial inputs.

2TextAttack is a Python framework for adversarial attacks, data augmenta-
tion, and model training in NLP, textattack.readthedocs.io/en/latest/

sequences increase the robustness of the detector by increasing
the Attack Success Rate (ASR)3 and the number of queries
required to achieve a successful attack. To the best of our
knowledge, we are the first to validate the accuracy-robustness
trade-off [14] in specific regards to the fake-news detection
task noting that the fake-news detectors should be trained with
appropriate regularization to increase the robustness. We dis-
cover that the detectors trained with the ”binary cross-entropy”
loss are slightly more robust. We also note that increasing
the detector complexity slightly increases its robustness. Our
contributions are summarized next.

• We are the first to study the adversarial robustness of
different deep learning architectures and model sizes in
specific regards to the fake-news detection. Specifically,
we conduct our study on MLP, CNN, RNN, and a recently
proposed Hybrid CNN-RNN architecture trained on three
distinct datasets (Kaggle fake-news dataset, ISOT dataset,
and LIAR dataset).

• To the best of our knowledge, we are the first to study
the fake-news detectors against several adversarial attacks
under the black-box settings on popular state-of-the-
art fake-news datasets. We are also the first to analyze
the robustness of fake-news detectors for different input
sequence lengths.

• We use the Local Interpretable Model-agnostic Expla-
nations (LIME) explainable AI method to provide a
preliminary analysis of why current fake-news detectors
are adversarially vulnerable, and discuss key insights for
possible future defenses.

• We identify a need for more comprehensive fake-news
datasets and more adaptive detection mechanisms scal-
able to different domains and geographical regions.

We note that we use the term “fake-news” to broadly refer
to all types of false information including disinformation (the
spread of false information with explicit intent to deceive) or
misinformation (the naive spread of false information without
explicit malintent). Even though there are various types of
Fake-news and the fact that the term has also been politicized,
we use the term to refer to “false information” and use further
qualification where necessary [15].

The rest of the paper is organized in the following way.
Section II provides background and a discussion on related
work. Our methodology is introduced in Section III and the
results are presented in Section IV. Finally, the paper is
concluded in Section V.

II. BACKGROUND AND RELATED WORK

In the recent past, a plethora of adversarial attacks have
been proposed that demonstrate the vulnerability of ML-
based models in different applications ranging from malware
analysis [16], object recognition [17], intrusion detection [18],
traffic classification [19], emotion recognition [20], networking
applications [21] [22], and self-driving cars [23]. Our focus
in this paper is on the adversarial robustness of ML-based

3ASR is defined as the ratio of incorrectly classified adversarial inputs to
the total number of adversarial inputs.



fake news detectors that use ML-based NLP techniques. In
this section, we will provide relevant background and discuss
salient works related to our work.

A. Threat Model

Current literature on adversarial attacks identifies two dif-
ferent threat models/settings [10].

1) White-box Threat Model—in which a powerful ad-
versary is assumed to be fully aware of the model
architecture and parameters such as updated weights.

2) Black-box Setting—in which an adversary is assumed
who is not aware of the model architecture and its
weights but is able to query a given model with some
input and gets its response. The adversary however
is assumed to have a clear understanding of different
machine learning architectures and the training method-
ologies.

We choose the attacks assuming a black-box threat model
for our experiments because such attacks are considered less
dependant on the model being attacked and more practically
applicable [12].

B. Adversarial Attacks

We specifically focus on the recently proposed four dif-
ferent attacks implemented in the Text-attack library. We
choose these attacks based on their efficiency, relevance, and
recency [10]. Let us assume that an input sequence, X is
composed of n words, represented as {x1, x2, ..., xi, ..., xn}.
Given a classifier, F , the goal of an attacker is to com-
pute a perturbed sequence, P = {p1, p2, ..., pi, ..., pn} ≈
{x1, x2, ..., xi, ..., xn}, such that F (X) 6= F (P ). To achieve
this, the attacker usually identifies a set, Sx of important words
sorted in the descending order based on how significantly they
contribute to an output decision. The attacker then replaces
these words, one-by-one in the descending order of their
influence, with the perturbed words such that the grammatical
and semantic similarity is retained.
Text-Bugger. For a given input sequence, X , such that
F (X) = y, Text-bugger [24] first identifies key words (Sx) by
computing the Jacobian matrix of the classifier for X . For each
word in Sx, the attacker generates five perturbations by (a)
randomly inserting a space in the word (e.g., “stated” becomes
stat ed), (b) randomly deleting a character, (c) swapping any
two unique characters, (d) replacing a character with a visually
similar one (e.g., “o” becomes 0, “l” becomes 1, “a” becomes
“@”) and (e) replacing the word by another semantically sim-
ilar word. The attacker then chooses the optimal perturbation
for each word in Sx based on the maximum reduction in the
output score of class, y.

Probability Weighted Word Saliency Attack (PWWS). For
a given input sequence, X , such that F (X) = y, PWWS [25]
first identifies key words (Sx) by substituting an “unknown”
word for each word in X , and measuring the change in
the output probability of the classifier. Each word in X
is then substituted with several synonyms computed using

“Word2Net” and the optimal synonym is chosen based on the
maximum reduction in the output score of class y. Each word
in Sx is then substituted with its optimal synonym (one at a
time; best first) until X gets misclassified.
Deep Word Bug. For a given input sequence, X , such that
F (X) = y, Deep-Word-Bug [26] first identifies key words
(Sx) by replacing each word in X by an unknown word. The
attack then applies four perturbations, i.e., character swapping,
substitution, deletion, and insertion, to each word in Sx (one
at a time; best first) until X gets misclassified.

Text-Fooler. For a given input sequence, X , such that
F (X) = y, Text-Fooler [27] first identifies key words (Sx) by
computing the difference between the classifier’s prediction
score before and after deleting a word from the input. For
each word in Sx, the attacker generates “N” perturbations
by replacing the word with “N” different words closest to
the actual word in a pre-defined Embedding space. The best
perturbation is then selected based on the maximum reduction
in the output score of class y.

Jin et al. [27] comprehensively study the efficacy of the
attack against various deep learning classifiers with varying
architectures for different datasets. We note that our work is
significantly different in the following ways.

• We attack fake-news detectors using various attack
methodologies (including “Text-Fooler”) and compare
how different attack methodologies affect the adversarial
vulnerabilities of the detectors.

• We study how certain architectural and engineering
choices, e.g. the input sequence length, the complexity
of a detector, the regularization and the loss function
used for training can affect the adversarial robustness of
the detectors. In doing so, we develop guiding insights
for the future researchers to train more robust fake-
news detectors which can withstand small adversarial
perturbations without affecting their final decision.

• We study the transferability of adversarial news and
establish that similar detector architectures show similar
adversarial vulnerabilities.

• We do not evaluate the robustness of our fake-news
detectors based only on the Attack Success Rate (ASR)
of an attacker. Instead, for each attack method that we
use, we also compare the robustness of a detector based
on the number of queries required and the number of
words perturbed by an attacker to fool the network.

• We exploit LIME to explain why the adversarial examples
are misclassified by our detectors and show that the
strength of adversarial attacks-—minimally perturbing the
words to achieve misclassification-—can prove a potential
weakness that may be exploited by future researchers
for devising effective defense mechanisms. Specifically,
we observe that since the aim of an attacker is to fool
a detector by perturbing as minimum number of words
as possible, for an adversarial input, the decision of a
detector is largely contributed to by a small number of
words in contrast to a clean input.
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Fig. 2: Adversarial examples generated using different attacks along with the original input for comparison. Perturbed words
are highlighted in red.

For illustration, Fig. 2 shows typical adversarial ex-
amples generated using the above-mentioned attacks from
the Text-attack library. Text highlighted in red shows the
changes/perturbations made to the original text by the attack
algorithm. Words changed by the PWWS attack are consid-
erably different than those perturbed by other attacks. This
is because of different methodologies used to measure the
importance of a word.

C. Fake-news Detection

Shu et al. [28] define “fake news” as a verifiably false piece
of information shared intentionally to mislead the readers.
Currently, there are two popular approaches to fake-news
detection, i.e., information propagation-based detection and
content-based detection, which are discussed next.

Propagation based techniques exploit the fact that generally
public reacts differently to the fake-news than to legit one.
Zhao et al. [29] explore these propagation trends in specific
regards to how they exhibit themselves at different times since
the time of the generation of fake news. They show that the
fake news can be identified at about five-hours from the first
re-posting in a content- and user-agnostic manner. Monti et
al. [3] leverage geometric deep learning to capture the fake-
news propagation trends. Although propagation-based schemes
provide a general content-agnostic approach to the fake-
news detection task, such approaches require large annotated
data and several pre-processing techniques to duly model the
propagation trends [30].

Content-based detection schemes target either the lexical
or the semantic features of the news to identify it as fake or
credible. Lexical fake-news indicators include the absence of
source URLs, lengthy articles, exaggerated words, emotional
patterns, and first/second pronouns [31]–[33].

Utilizing semantic features for fake-news detection is gener-
ally considered a better approach due to its universality. Recent
works show that fake news can be distinguished based on their
semantic features such as topic style, writing style, sentiment
analysis, and topic modeling [34]. More recently, Ghanem et
al. [4] attempt to model the flow of the article and its relevance
to the topic using a CNN and a bidirectional GRU. The

CNN performs the topic modeling while the bidirectional GRU
extracts the semantic and contextual information from a given
input. The outputs of CNN and bidirectional GRU are then
concatenated and fed into a classifier for prediction. Another
very recent work [1] propose a Hybrid CNN-RNN approach,
leveraging both CNN to encode contextual representations and
RNN to encode temporal representations for the fake-news
detection. The authors show that such a simple CNN-RNN
combination provides state-of-the-art classification accuracy
on the fake-news detection task. Further, unlike many previous
works, the model is generalizable to several datasets [1].
Therefore, we use the same model for analyzing the effect
of different hyper-parameters on the robustness of a classifier.
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Fig. 3: Experimental setup used in our experiments. For each
case, the detector is first trained on some data and then pro-
vided to the Text-Attack library in a model-wrapper function
along with the original dataset for robustness evaluation. Blue
arrows represent the standard flow, while red arrows represent
the adversarial flow.

III. METHODOLOGY

Our experimental setup is illustrated in Fig. 3. To sum-
marize, during training, each input from the dataset is first



TABLE I: Details different detector architectures used in our experiments. For each detector architecture, we train three variants
of different sizes to analyze the effect of detector complexity on the adversarial robustness.

Layer simple- mini- micro-
Hybrid [1] Hybrid Hybrid

Embedding 300 300 300
Conv 128×5 128×5 64×5
Activation ReLU ReLU ReLU
MaxPool 2 2 2
Normalize - - -
Dropout - - -
Conv - - -
Activation - - -
Normalize - - -
Dropout - - -
Conv - - -
Activation - - -
Dropout - - -
Normalize YES YES YES
LSTM 32 16 16
Dense - - -
Dense+Softmax 2 2 2

simple- mini- micro-
CNN CNN CNN
300 300 300

32×3×3 32×3×3 16×3×3
ReLU ReLU ReLU

- - -
YES YES YES
0.4 0.4 0.4

32×3×3 16×3×3 8×3×3
ReLU ReLU ReLU
YES YES YES
0.4 0.4 0.4

32×3×3 16×3×3 8×3×3
ReLU ReLU ReLU

0.4 0.4 0.4
YES YES YES

- - -
- - -
2 2 2

simple- mini- micro-
RNN [35] RNN RNN

300 300 300
- - -
- - -
- - -
- - -

0.3 0.3 0.3
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -

100 50 50
64 32 16
2 2 2

simple- mini- micro-
MLP MLP MLP
300 300 300

- - -
- - -
- - -
- - -

0.8 0.8 0.8
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -

20 10 5
2 2 2
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(b) ISOT Fake-News Dataset
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(c) LIAR Fake-News dataset

Fig. 4: Comparing the accuracy of different detector architectures before and after the attack (i.e., “No Attack” vs. four
different attack algorithms) for three state-of-the-art datasets [1]. (Settings: N=100 words, loss: binary cross-entropy.) CNN
and RNN detectors are comparatively more robust than other architectures. MLP architectures give better performance on
LIAR dataset because of the smaller input lengths.
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Fig. 5: Comparison of accuracy of fake news detectors with different architectures under different (non-adversarial)
settings. BCE, MSE and CCE denote the binary cross-entropy, mean-squared error and categorical cross-entropy respectively.

converted into a numerical form (tokenization) using the
Keras tokenizer. The output of the tokenizer is fed to the
subsequently deployed deep learning model. While attacking,
a few samples are chosen from the dataset and provided to
the text attack library which perturbs the input and queries
the model for various perturbations until either the input is

misclassified or the attack algorithm issues a failure.

A. Datasets

We use three different datasets commonly used in liter-
ature [1], i.e. Kaggle fake-news dataset, ISOT dataset, and
LIAR dataset.
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Fig. 6: Evaluating the efficacy of four different attack methods (in terms the Attack Success Rate or ASR, avg. % words
perturbed and avg. query counts) for different deep learning architectures. CNN and RNN detectors are more robust than
MLP and Hybrid detectors shown by low ASRs and high query counts. CNNs can learn contextual features because of their
structure while RNNs are temporally deeper and therefore demonstrate greater robustness.

1) Kaggle fake-news dataset: We use an openly available
dataset4, “fake news”. The dataset contains 26000 sample
articles divided into 20800 training samples and 5200 test
samples. Each sample is further comprised of different fields,
i.e., id, title, author, text and label. id denotes the index of
the article from 0 to 26000. title, author and text denote the
topic, writer and the content of the article. The field label says
whether it is a fake (1) or credible (0).

2) ISOT dataset: ISOT dataset is an openly available5

rich dataset containing a total of 44898 samples of which
21417 represent legit news obtained from reuters.com and
23481 represent fake news collected from various sources.
Each sample further comprises different fields, i.e. article, title,
text, type and date.

3) LIAR Dataset: LIAR dataset [36] contains 12836 sam-
ples collected from Politifact.com and manually labeled for
their truthfulness score. Each sample in the LIAR dataset
comprises several fields, i.e. statement, speaker, context and
label.

B. Different DNN Architectures.

We use four different deep learning architectures for robust-
ness evaluation. Specifically, we use the state-of-the-art Hybrid
CNN-RNN detector [1] along with simpler CNN, RNN, and
MLP architectures. All our detectors, though significantly
diverse in architecture, achieve an accuracy comparable to
the state-of-the-art Hybrid CNN-RNN detector. The details
of each architecture are given in Table I. Following [1], we
initialize the embedding layer with the openly available Global
Vectors for Word Representations (GloVe) embedding for all
cases. Additionally, we experiment with changing the number
of learning parameters of the detector and observe how this
affects its accuracy and adversarial robustness. Specifically,
for each DNN architecture, we introduce two variants (a
micro-detector and a mini-detector) ad described in Table I
and provide these to the Text-Attack library for adversarial
evaluation.

IV. RESULTS

For illustration, we compare the accuracy of different detec-
tor architectures—MLP, CNN, RNN and Hybrid CNN-RNN—
before and after the attacks in Fig. 4. We observe an alarmingly

4https://www.Kaggle.com/c/fake-news/data
5https://www.uvic.ca/engineering/ece/isot/datasets/

sharp drop in the accuracy of different detectors, especially
for the MLP and the Hybrid architectures. We also observe
that CNN and RNN detectors are more robust to adversarial
perturbations as compared to other architectures. We attribute
the robustness shown by an MLP detector in Fig. 4(c) to
significantly smaller length inputs in the case of the LIAR
dataset.

In what follows, we specifically discuss the attack results
for different settings in greater detail for Kaggle dataset.
We choose the Kaggle dataset for research expediency—
Kaggle dataset being smaller than ISOT dataset—and cross-
dataset generalizability—detectors trained on Kaggle dataset
give more than a random-guess performance on ISOT and
LIAR datasets (more details in Sec IV-G).

A. Performance Evaluation
The performance of the various ML-based fake news de-

tectors with different architectures under different settings is
shown in Figure 5 and is briefly discussed next.

1) Different Detector Architectures: The test accuracy of
different detectors used in our experiments on unperturbed
inputs is presented in Fig. 5(a). It can be seen that all our
detectors perform comparably to the state-of-the-art Hybrid
CNN-RNN detector despite their diverse architectures. Note
that increasing the number of variables/parameters of a detec-
tor generally increases its performance for the task.

2) Different Input Lengths: We experiment with different
input lengths. Specifically, we carry out several experiments
for a range of architectures by setting the maximum number
of words in {25, 50, 100}. Intuitively, reducing the maximum
number of words should decrease the attacker’s search space,
thus increasing the robustness of the model. However, this may
cause a significant drop in the accuracy of the model.

Fig. 5(b) shows that the accuracy of a model increases as
the input sequence length is increased. This is intuitive as a
longer input should contain more information, thus, allowing
the detector to identify fake news relatively better.

B. Adversarial Robustness Evaluation
1) Impact of DNN Architecture: Fig. 6 reports results of

adversarial attacks on different architectures. Specifically, we
sample 20 input sequences that are correctly classified by the
trained model from the test. Each input is then clipped so
that it only contains the first 100 words. We then adversarially
perturb each clipped input using the Text-Attack library against
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(a) Attack efficacy with varying MLP detector complexity. Increasing the complexity slightly increases the number of queries required.
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(b) Attack efficacy with varying CNN detector complexity. Increasing the complexity slightly increases the robustness of CNN detector.
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(c) Attack efficacy with varying RNN detector complexity. Increasing the complexity slightly increases the robustness of RNN detector.
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(d) Attack efficacy with varying Hybrid CNN-RNN detector complexity. Increasing the complexity slightly increases the robustness of
Hybrid CNN-RNN detector.

Fig. 7: Evaluating the efficacy of attack methods (in terms of ASR, average perturbation, and average query counts) for different
deep learning architectures. (Settings: N = 100 words, loss = binary cross-entropy). Generally, increasing detector complexity
increases the robustness as shown by low ASRs and higher number of queries.

our detectors, i.e., MLP, CNN, RNN, and Hybrid CNN-RNN,
and report the average number of queries, the average percent
of words perturbed in a given input, and the accumulative
Attack Success Rate (ASR).

We observe significantly low ASRs and high query counts
for both the CNN and the RNN detectors, suggesting that
they are relatively more robust to adversarial perturbation as
compared to the MLP and Hybrid CNN-RNN detectors. We
also observe that the ratio of words perturbed to perform a
successful attack is considerably greater for the RNN-detector
as compared to the CNN-detector, suggesting that an RNN-
detector is more robust.

We attribute this to the accuracy-robustness trade-off —Su
et al. [14] demonstrates how the increased accuracy of DNNs
also results in its reduced robustness. Note that MLP-based
and Hybrid CNN-RNN-based detectors provide slightly better
accuracy as compared to the CNN- and RNN-based detectors.
Additionally, the filters of the CNN detector are shared among
all the words of an input sequence. Consequently, a CNN
detector can contextually learn better features from the input
data which are more generalizable to the detection task. This

makes it hard for an attacker to change an output decision
without drastically changing the input (which may signifi-
cantly hurt the semantic information and thus is infeasible for
the attacker). RNN detectors are temporally deeper and can
model long-range temporal features, thus, are more robust to
adversarial attacks [37].

2) Impact of the Detector Complexity: Fig. 7 shows how
changing the model size may impact the robustness of a
detector. We observe that generally increasing the detector
parameters also increases the robustness of a detector. For
example, in Fig. 7, the ASR decreases as the detector com-
plexity increases while the required number of queries and
perturbation rate increases. This effect exhibits itself more
strongly for RNN- and CNN-detectors, as compared to other
architectures in Fig. 7. However, as observed in [14], the
robustness is not critically related to the detector’s complexity,
as evident by a number of exceptions from the general trend.

3) Impact of Changing the Input Length: Fig. 8 shows that
a longer input results in a more robust model, as evident
by a reduction in ASR, and an increase in the perturbation
ratio and required number of queries. This is because a
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(a) MLP detectors with different input lengths.
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(b) CNN detectors with different input lengths.
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(c) RNN detectors with different input lengths.
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(d) Hybrid CNN-RNN detectors with different input lengths.

Fig. 8: Evaluating the efficacy of attack methods (in terms of ASR, average perturbation, and average query counts) for different
deep learning architectures with different input lengths assuming binary cross-entropy loss. Increasing input length increases
the robustness, as evident by low ASRs and high perturbation, because a longer sentence contains more information.

longer input sequence is easier for a detector to identify as
either fake or credible due to a more effective information
representation. The increase in query counts can however be
partially attributed to larger search space for an attacker caused
by longer inputs. Again, we observe that RNN- and CNN-
detectors are considerably more robust as compared to other
architectures.

4) Different Loss Functions: For this experiment we train
a Hybrid RNN-CNN for three commonly used loss functions
in literature, i.e., Mean Square Error (MSE), Binary Cross-
entropy (BSE) and Categorical Cross-entropy (CCE). We find
out that binary cross-entropy based training gives the best
performance in terms of the detector’s accuracy.

We present the models to the Text-Attack library for ad-
versarial evaluation. Results are given in Fig. 9. The figure
suggests that training a detector with binary cross-entropy
results in a slightly more robust model.

C. BERT Adversarial Example (BAE) Attack

BERT Adversarial Example (BAE)-attack [38] works by
first identifying important words in a given input. The impor-
tance of each word is estimated by deleting the word from
a given input sequence and measuring the decrease in the
probability of the original class. The most important word
is then masked and given to BERT Masked-Language Model
(BERT-MLM) which fills in the mask by generating alternative
words while the semantic structure of the sentence. Universal
Sentence Encoder (USE) [39] is then used to select the most
optimal of these alternates based on their cosine similarity with
the original input.

We use BAE-attack to attack the four detectors of different
architectures as given in Table I. For this experiment, we set
the input sequence length to be 100 and train the network
using “binary cross-entropy” (BCE) loss. The results of our
experiments are shown in Fig. 11.

Although BAE-attack generates more natural adversarial
examples, we observe that the BAE-attack has a lower ASR
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Fig. 9: Evaluating the efficacy of four different attack methods (in terms of ASR, average perturbation, and average query
counts) on Hybrid CNN-RNN with different loss functions for different deep learning architectures. (Settings: Model: Hybrid
CNN-RNN, N = 100 words). Binary cross-entropy results in a more robust model being trained as compared to other losses.
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Fig. 10: Accuracy robustness trade-off of a Hybrid CNN-RNN fake-news detector for different input lengths for l2-regularization
varying from the strongest(left-most) to the weakest(right-most). (Settings: loss=binary cross-entropy). The robustness of the
fake-news detector increases as the accuracy increases.

MLP CNN RNN Hybrid
Architectures

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

No Attack BAE

0.02

0.04

0.06

Pe
rtu

rb
at

io
n

1000

1500

Qu
er

ie
s

Fig. 11: Evaluating the efficacy of BAE (in terms of ASR,
average perturbation, and average query counts) for different
deep learning architectures. (Settings: N = 100 words, loss
= binary cross-entropy). Increasing input length increases the
robustness, as evident by low ASRs and high perturbation,
because a longer sentence contains more information.

as compared to other attacks, i.e. PWWS, Text-Fooler, Text-
Bugger. We attribute the reduced ASR of BAE-attack to a
stronger constraint of preserving the natural structure of a
sentence as compared to other attacks. Therefore, we recom-
mend future researchers to evaluate future models/defenses
against Text-Fooler, Text-Bugger and PWWS attacks. As ob-
served previously, we note that CNN-based detectors are more
robust than other architectures. This is evident by their higher
accuracy against adversarial examples and larger query counts
as compared to other architectures.

D. Accuracy-Robustness Tradeoff Evaluation

Many previous works analyze the accuracy-robustness
trade-off on visual tasks. However, to the best of our knowl-
edge, we do not find any work validating the phenomenon,

specifically for fake-news detection. Following [14], [40],
we experiment with different l2-regularization strengths and
report the robustness-accuracy curve in Fig. 10 for Hybrid
CNN-RNN detectors of varying input lengths—a stronger
regularization causes the accuracy of a detector to drop slightly
while more effectively resisting the over-fitting. Evidently,
we observe that as the accuracy of a detector increases, the
robustness decreases as illustrated in Fig. 10 by a decrease in
the adversarial accuracy. Additionally, we note that although
the trade-off phenomenon generally exhibits itself irrespective
of the input length chosen, the decrease in the robustness
is comparatively more drastic for larger input lengths. For
example, for N = 25, the maximum decrease in the adversarial
accuracy of the detector against Text-Bugger is 10%, contrary
to N = 100, where the maximum decrease in the adversarial
accuracy is around 30%. We attribute this to a larger adver-
sarial space—the number of words an adversary may perturb
while attacking—available to the adversary for larger input
lengths.

E. Transfer Adversarial Attacks

It has been observed that adversarial examples generated
against one machine learning model can be transferred to
fool a different ML model. Such attacks are more commonly
known as Transfer adversarial attacks. Transfer attacks have
been effectively used to analyze the robustness of ML models,
specifically under black-box settings. Additionally, transfer
attacks can also be used to evaluate the similarity between
different ML models.

Here, we analyze the vulnerabilities of different fake-news
detectors under transfer attack settings. Specifically, for each
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Fig. 12: Evaluating various detectors against adversarial examples generated for different victim detector architectures
using different attacks from the Text-Attack library. (Settings: N=100 words). Due to similar architectures, adversarial examples
generated against CNN- and RNN- detectors transfer well to the Hybrid CNN-RNN detector.

detector architecture, we generate adversarial examples using
Text-Attack library and see if these adversarial examples are
also misclassified by other detector architectures.

Results are shown in Fig. 12. We observe that compared
to the clean samples, different detectors are, on average, less
accurate against the adversarial examples transferred from a
different architecture. However, the attack success rate may
significantly be reduced while transferring. For example, in
Fig. 12, adversarial examples generated for MLP detector
show significantly lower attack success rates for other archi-
tectures. We say that adversarial examples for MLP classifiers
do not transfer upon different architectures effectively.

We also note that the adversarial examples generated for
CNN and RNN detectors are highly effective when used
against the Hybrid RNN-CNN architecture. For example, in
Fig. 12, adversarial examples generated for CNN-detector
show high ASR against Hybrid CNN-RNN detector. We
attribute this to the similarity of architectures, i.e. because Hy-
brid CNN-RNN architecture comprises both the convolutional
and the recurrent layers, the similarity in architectures allows
the adversarial examples to transfer more effectively.

TABLE II: The frequency of occurence of various combination
of words in the dataset.

Real News Fake News
the united states 29 the white house 12
the U.S. 22 the united states 11
one of the 21 president donald trump 10
donald j trump 11 donald j trump 7
new york times 11 according to the 7
of the united 8 october 27 2016 7
the new york 8 one of the 6
in the united 8 out of the 6
of the most 8 a lot of 6
to be a 7 it is a 6
president of the 7 pic twitter.com 5

F. Discussion

1) Bias in the dataset: Adversarial examples may also be
caused by natural bias in the dataset. We illustrate this with a
simple technique by analyzing the “Fake-News” dataset based
on the frequency of occurrences of bag-of-words. Specifically,
we identify all possible sets of three words in the training
set and report the frequency of their occurrences in Table II.
The table shows that many word combinations occur much
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Fig. 13: Accuracy of different fake-news detectors on fake-
news from the test set before and after concatenating a
manually constructed sentence—“President of the United
States Donald J. Trump told the New York Times”.
(Settings: N=100 words, loss = binary crossentropy). Bias in
the dataset can lead to adversarial behavior at test time.

frequently in the real news as compared to the fake news.
For example, “the United States” occurs 29 times in real
news articles in contrast with 11 times in the fake news, for
the dataset provided. Similarly, “New York Times” occurs 11
times in the real news while less than 5 times in the fake
news. Such biases may readily be learned by the detectors,
thus, poisoning the resulting model.

To illustrate the adversarial effects of bias, we manually
generate a sentence using a combination of those words which
frequently occur in the real news for the provided dataset.
More specifically, we use the following sentence; “President
of the United States Donald J. Trump told the New York
Times”. This sentence is concatenated with all the fake news
in the test set, which are then provided to different detectors
for predictions. Results are shown in Fig. 13.

It is evident from the figure that the accuracy of a fake-news
detector is highly compromised by such a simple, yet effective,
perturbation method. The effect is more considerable for the
MLP detectors. We believe that ensuring the fairness of the
dataset and the training algorithm should result in more robust
fake-news detectors.

2) Explaining Adversarial Examples using LIME: Local In-
terpretable Model-Agnostic Explanations (LIME) is a popular
model-agnostic explainability technique [41]. To explain the
predictions of any model (classifier or regressor), it highlights
the words in input text by understanding the relationship
between input text and prediction by learning a local linear
interpretable model around the prediction. A local linear
model is approximated by using sparse linear estimation and
performing the search using input text perturbations. LIME
explains the decision of the model for a particular input by
representing the local importance of interpretable components
of an input.

In order to further explain and analyze the adversarial ex-
ample phenomena, we use LIME to generate explanations for
the decisions made by the state-of-the-art Hybrid CNN-RNN
detector. More specifically, we use the Text-Attack library to
generate the adversarial examples by perturbing a correctly
classified inputs such that the perturbed input is misclassified.
The original inputs and their corresponding adversarial inputs
are provided to LIME which explains why the detector is
making a particular decision.

Fig. 14 illustrates a typical case where an original input
(correctly classified by the model as fake) along with its
corresponding adversarial examples are explained using LIME.
Words suggesting potentially fake content are highlighted in
“orange”, while those indicating that the news is real are high-
lighted in “blue”. We observe that a major strategy of different
attacks is to identify important words and replace them with
other words, preferably those unknown to the dictionary. As
this can be achieved by simple character substitution or space
insertion, the adversary can successfully launch an attack in
an inconspicuous manner.

Additionally, we observe that for a clean input, the number
of words contributing to the final decision is significantly
larger than the number of words causing an incorrect decision.
For example, in Fig. 14(a), 9 out of 10 most contributing words
agree with the final decision, i.e. fake. For an adversarial input;
however, this number is much smaller—for Text-Bugger, only
3 out of the 10 most contributing words agree with the final
decision, i.e. real.

3) Future Defense Techniques: Depending on the attack
algorithm, the optimal perturbations may vary (as was il-
lustrated in Fig. 2). In the case of the Text-Bugger attack,
the perturbations introduced by the attacker usually cause
misspellings, which can simply be detected by a spell-checker.
Alternatively, one may intentionally perturb the training set
at random to include misspellings as a data augmentation
methodology to robustify an NLP model.

Our experiments suggest the effectiveness of developing
future adversarial defenses based on RNN architectures. Also,
longer input lengths allow the detector to learn better represen-
tations, thus, increasing both the accuracy and the robustness
of a fake-news detector. Additionally, using strong regulariza-
tion techniques—e.g., the l2-regularization used in Fig. 10—
can significantly robustify a fake-news detector, though, with
a decrease in accuracy on original inputs. However, such a
decrease in the accuracy of the detector can be addressed by
strong data augmentation techniques as studied in recent works
for the visual task [42], [43]. We leave exploring appropriate
data augmentation techniques as future work.

We also observe that for clean/uncompromised inputs, the
final decision is in agreement with a number of contributing
words, contrary to the case with adversarial inputs, where the
final decision is usually credited to a few out of many input
words. This insight can be used to counter adversarial exam-
ple threat in an efficient and effective manner. We strongly
recommend that future defenders should follow the guidelines
suggested by Carlini et al. [44] to fairly evaluate the defense
mechanism.

G. Caveats of Current Fake-News Detectors

1) Cross dataset analysis: We analyze how accurately a
fake-news detector trained on one dataset generalizes to other
datasets. Results are shown in Fig. 15. In Fig. 15(a), we
train detectors of different architectures on Kaggle dataset and
report the accuracies against ISOT and LIAR datasets. We
observe that detectors trained on LIAR dataset give a random



(a) Original input.

(b) Adversarial input.

Fig. 14: Comparing LIME explanations for a clean and the corresponding adversarial input generated using PWWS attack
against the Hybrid CNN-RNN detector. (Settings: N=100 words, detector = Hybrid CNN-RNN). For an adversarial input, the
number of words agreeing with the final decision is significantly less than that for a clean input.
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Fig. 15: Cross-dataset accuracy of different detector architectures trained for only one dataset. (Settings: loss=binary cross-
entropy, N=100 words). Detectors trained for kaggle dataset also, to some extent, generalize on ISOT dataset and vice versa.
Detectors trained on LIAR dataset do not generalize well to other datasets.

guess performance (≈ 50%) when evaluated on Kaggle and
ISOT datasets. This is because the LIAR dataset contains short
sentences (smaller input lengths) and a far lesser number of
samples as compared to other datasets. However, detectors
trained on Kaggle and ISOT dataset somehow generalize to
other datasets with performance slightly better than a random
guess performance.

2) News from different geographical regions/domains: All
the datasets used in this paper include the news related to
the USA. To see how these detectors respond to news from a

different domain or geographical region, we present the state-
of-the-art Hybrid CNN-RNN detector with authentic news
from two countries—Pakistan and Saudi Arabia. We find that
the Hybrid CNN-RNN detector labels all of these news (col-
lected from authentic sources) as fake. We observe that, unlike
information propagation-based methods, current content-based
fake-news detectors are fragile and fail to correctly classify
news from different geographical regions and backgrounds.
This potential direction is identified for future researchers to
develop robust detectors scalable to a number of domains and



regions.
3) Adaptive fake-news detectors: The definition of infor-

mation critically depends on specific scenarios and geography,
and rapidly changes with time. We believe that there is a need
to develop more generic fake-news detection methodologies
capable of adapting to such changing scenarios in an effective
way—e.g., by modeling the information provided in input and
validating it on some dictionary/encyclopedia updated on daily
basis. Studying such detectors under the adversarial threat
should provide a better understanding of the vulnerabilities
of current fake-news detectors.

V. CONCLUSIONS

In this work, we analyze the robustness of fake-news detec-
tors to black-box adversarial attacks. For this purpose, we use
four different architectures—multi-layer Perceptron (MLP),
Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN) and a recently proposed Hybrid CNN-RNN
fake news detector—and multiple datasets—Kaggle fake-news
dataset, ISOT dataset and LIAR dataset. We vary the complex-
ity of detectors and experiment with different input lengths
and loss functions. Our findings suggest that CNNs provide
the most robust solution closely followed by RNNs. Further,
training the detector for lengthy inputs using binary cross-
entropy loss can significantly robustify it against adversarial
attacks. In the future, we plan to propose a robust defense
against adversarial attacks based on our findings in this paper.
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