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Abstract

This article explores the required amount of time series points from a high-speed computer network to accurately estimate
the Hurst exponent. The methodology consists in designing an experiment using estimators that are applied to time series
addresses resulting from the capture of high-speed network traffic, followed by addressing the minimum amount of point required
to obtain in accurate estimates of the Hurst exponent. The methodology addresses the exhaustive analysis of the Hurst exponent
considering bias behaviour, standard deviation, and Mean Squared Error using fractional Gaussian noise signals with stationary
increases. Our results show that the Whittle estimator successfully estimates the Hurst exponent in series with few

points. Based on the results obtained, a minimum length for the time series is empirically proposed. Finally, to validate the

results, the methodology is applied to real traffic captures in a high-speed computer network.
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Abstract—This article explores the required amount of time 
series points from a high-speed computer network to accurately 
estimate the Hurst exponent. The methodology consists in 
designing an experiment using estimators that are applied to time 
series addresses resulting from the capture of high-speed network 
traffic, followed by addressing the minimum amount of point 
required to obtain in accurate estimates of the Hurst exponent. 
The methodology addresses the exhaustive analysis of the Hurst 
exponent considering bias behaviour, standard deviation, and 
Mean Squared Error using fractional Gaussian noise signals with 
stationary increases. Our results show that the Whittle estimator 
successfully estimates the Hurst exponent in series with few 
points. Based on the results obtained, a minimum length for the 
time series is empirically proposed. Finally, to validate the 
results, the methodology is applied to real traffic captures in a 
high-speed computer network. 
 
keywords——Fractality, High-speed computer network, Hurst 

exponent (H), Time series, Traffic flows.  
 

I. INTRODUCTION 
RACTAL processes are indicative of stochastic behavior 
that is invariant to changes in dimensional scales and 

temporary [1]–[5]. These processes are applied as models in 
various fields of science [6]–[10]. In the area of computer 
networks and telecommunications systems, they are used to 
model traffic on LAN, MAN, WAN, WWW, and different 
technologies of cellular and wireless networks [11]–[15]. 

In all these studies, traffic is measured and then analyzed to 
determine whether or not it fits a fractal behavior. The traffic 
traces used in all analyzes are made up of hundreds of 
thousands of samples and often with long capture times. For 
offline traffic studies [16] these lengths and waiting times are 
acceptable, however for real-time network administration 
applications with QoS metrics based on the precise estimation 
of H [17] these lengths and capture times are too large. 

This article first studies the behavior of the estimators 
applied to short-term time series and then addresses the 
problem of the minimum length required to obtain accurate 
estimates of H. Therefore, the aim is to obtain high precision 
with a minimum length, as opposed to [18], where the author 
raises the impossibility of determining a minimum length for 
fractal time series without losing their intrinsic properties. 
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To develop the problem posed by the estimation of H, the 
accuracy must be comparable with the problems of long 
series; where the accuracy is based on metrics such as bias (b), 
standard deviation (σ), and the Mean Squared Error (MSE). 

The article then addresses the following problem: Given the 
specification(s) of b or MSE, what should be the minimum 
length, Nmin, of the time series that satisfies them?; that is, 
suppose that the stochastic process X has a Hurst exponent H, 
the minimum length Nmin of the time series must be found so 
that each proposed Nmin presents the estimated Hurst exponents 
He that is similar to the Hurst H exponent of the original 
process X. 

II. THEORETICAL FRAMEWORK 

A. Fractal Processes 
A process is fractal if its distribution of probabilities is 

invariant to temporal dilation and compression of its 
amplitude. 

Let Y  {Yt}tI, where I  ℝ or ℝ+, is a real-value stochastic 
process. It is said that Y is a fractal process if and only if, there 
is H  ℝ, such that for all a  ℝ+, the following relationship 
{Yat}tI d {aHYt}tI is fulfilled, where d means equality in 
their probability distributions [19]. 

Generally the interest is focused on fractal processes with 
stationary type increases with H > 0. This definition is known 
as strict. 

A second definition is obtained by invariance in second-
order statistics. 

Let Yt be a continuous-time stochastic process. Yt is said to 
be a second-order self-similar process, if and only if it 
complies with E(Yt)  aHE(Yat), for all a > 0, t ≥ 0 and 0 < H 
< 1, where E(⋅) is the median of the process, Var[Yt]  
a2HVar[Yat], for all a > 0, t ≥ 0 and 0 < H < 1, where Var[⋅] is 
the variance of stochastic process Y, and its autocorrelation 
function, Rzz(⋅), behaves according to the relationship Rzz(t, s) 
 a2HRzz(at, as) for all a > 0, t ≥ 0, and 0 < H < 1 [19]. 

Computer networks require a discrete version of the 
definition of fractal processes. 

The model is defined as X  {Xt}tℤ which a discrete 
process due to the sampling of a continuous random signal. 

X is strictly self-similar, if and only if, X d m1Hm(X), with 
0 < H < 1, for all m  ℕ, where (⋅) represents the block 
aggregation process that receives a time series of length N as 
input and provides an output as a time series of length N/m 
[20]. 

The second version of this definition is that of second-order 
self-similarity in the exact sense. 
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Formally, X is an exact second-order self-similar process 
with 2 variance of the process, if its autocovariance function 
(k) has the following form for the range 0.5 < H < 1 [21] 
 

2 2 2 21( ) [( 1) 2 ( 1) ],   for all 1.
2

      H H Hk k k k k  (1) 

 
A stochastic process with an autocovariance function given 

by (1) also satisfies the following restrictions 
 

2 2Var[ ] Var[ ( )], HX m X   (2) 
 

2 2Cov[ ( ), ( )] Cov[ , ],
    H

m t m t k t t kX X m X X  (3) 
 
for its variance and covariance, respectively. 

In the field of computer networks, a relaxed version of (1) is 
used. A stochastic process X is asymptotically self-similar to 
the second order if the correlation factor m (X) when m   
is equal to the self-similar stochastic process of discrete-time, 
that is to say (1). 

In particular, let Rzz(k)  (k)/2 denote the autocorrelation 
function. For 0 < H < 1, H ≠ 0.5, it holds [21] 
 

2 2R ( ) (2 1) ,   when .  H
zz k H H k k  (4) 

 
In particular, if 0.5 < H < 1, Rzz(k) asymptotically behaves 

as ck for 0 <  <1, where c > 0 is a constant,   2  2H, and 
we have [21] 
 

R ( ) .


  zzk

k   (5) 
 

That is, the autocorrelation function decays slowly (that is, 
hyperbolically) which is the essential property that causes it to 
not be summable. 

When Rzz(k) decays hyperbolically so that condition (5) 
holds, we call the corresponding stationary process X, Long-
range dependence (LRD) processes [21]. 

B. On the Hurst Exponent Estimation 
Different methods have been proposed to estimate H; these 

can be classified into methods developed for time domain, 
frequency domain, and time-scale methods. 

Among the time domain methods is the R/S statistic, the 
aggregated variance method, absolute value method, variance 
of the residuals, the Higuchi´s method, the Modified Variance 
of Allan (MAVAR), the scale window variation, the Whittle 
estimator, etc. [22]. 

The periodogram method and the modified periodogram 
method [17], the Geweke and Porter-Hudak method [18], are 
in the frequency domain class which takes advantage of the 
characteristic power-law behavior of the self-similar processes 
in the neighborhood of their origin [22]. 

Finally, the time-scale methods include all wavelet-based 
estimators such as the Abry and Veitch´s method and their 
variants [22], [23]. 

III. WORKING METHODOLOGY 
The study of fractality by analyzing the value of H allows 

its presence and its degree of persistence to be detected. The 
methodology developed for the calculation of the different 
estimators for different lengths of time series explained below. 

To apply the estimators, the N time series must be obtained. 
Synthetic signals with known H are obtained through the 
simulation of a series of fractional Gaussian noise (fGn) [24] 
with stationary increases using the Davies and Harte method 
described in detail in [25]. 

For the experiments, 200 traffic traces with H  {0.5, 0.6, 
0.7, 0.8, 0.9} and lengths N  {2i, i  6, 7, 8, 9, 10, 11, 12, 13, 
14, 15, 16} where considered that is 11000 fractal signals (200 
* H * N). For each sets of estimates of a particular H, the 
calculation of the statistics described above was performed 
 
 Bias: 0 , b H X  where H0 is the nominal value of H and 

X is the average of the values of the X process. 
 Standard deviation . 
 Mean Square Error 1 2

01
MSE ( ) .


  N

ii
N X H  

 
Then, based on these three estimators, a minimum series 

length, Nmin, is proposed from the estimates that consider 
 
 b  0.03, and 
   0.01. 
 

Together with the above, estimates based on b and  are 
classified as follows 
 
 High precision: when b  0.03 and   0.01. 
 Acceptable: when 0.03 < b < 0.05 and   0.02. 
 Biased (but not unacceptable): when b > 0.1. 
 

Once the minimum lengths for the fGn series is obtained, 
the results obtained are then applied to real traffic traces. For 
these series, designated as Z, of length M, such that M ≫ Nmin 
the procedure is 
 
1. Let t0, …, tk be a sequence of points on the x-axis, where it 

is true that ti+1 > ti and ti+1  ti < Nmin, for each block of Z of 
length Nmin, min 1{ } , 


i

i

t N
j j tZ be the estimate of H (He), that is, 

min
, ( ),

i

N
e tH until tk + Nmin > M, for any k. 

2. It is speculated that Nmin is chosen correctly, if ti versus 
min

, ( )
i

N
e tH is plotted, the result show a signal with a little 

variation, ie the variation should be equal to the value of . 
3. min

, ( )
i

N
e tH is applied over a joint set of the series, i.e. 

1

1
{ },




 Nm m

ii
to obtain a sufficient amount of H estimators; 

amount described by the set ,1 ,1{ , , }.m jm
e eH H  The term m

i  
is justified as follows. The correct length Nmin is directly 
related to the convergence of a series, for this reason the 



study of this relationship is carried out as follows, but not 
before remembering that the convergence of an estimator is 
obtained by disaggregating the original Z series in blocks of 
size m ≪ M, with the objective of obtain a set Z defined by 

{ }, m
iZ where the set m

i  is defined by { }. m
i imZ  

IV. SIMULATION AND RESULTS 
Fig. 1 shows He for a fGn series using Whittle estimator, 

Fig. 2 shows He using the Abry and Veitch´s method, Fig. 3 
He using periodogram method, and Fig. 4 He using the R/S 
statistic, in all cases the software used is SELFIS [26], [27]. 

 
(a) 

 

 
(c)

 
(b) 

 

 
(d)

Fig. 1.  Synthetic fGn series with N  26 (a), N  28 (b), N  212 (c), and N  216 (d) points, respectively, using the Whittle estimator. 
 

 
(a) 

 

 
(c)

 
(b) 

 

 
(d)

Fig. 2.  Synthetic fGn series with N  26 (a), N  28 (b), N  212 (c), and N  216 (d) points, respectively, using the Abry and Veitch´s method.



 
(a) 

 

 
(c)

 
(b) 

 

 
(d)

Fig. 3.  Synthetic fGn series with N  26 (a), N  28 (b), N  212 (c), and N  216 (d) points, respectively, using the periodogram method. 
 

 
(a) 

 

 
(c)

 
(b) 

 

 
(d)

Fig. 4.  Synthetic fGn series with N  26 (a), N  28 (b), N  212 (c), and N  216 (d) points, respectively, using the R/S statistic.



Table I shows a summary of the obtained results. 
 

TABLE I 
SUMMARY OF THE RESULTS OBTAINED IN FIGURES 1, 2, 3, AND 4 

Used Technique H Value for the Synthetic Fractional Gaussian Noise (fGn) Series with Respective Figure N  26 N  28 N  212 N  216 
Whittle Estimator 0.850 0.789 0.806 0.805 1(a), 1(b), 1(c), and 1(d) 

Abry and Veitch´s Method 0.607 0.910 0.806 0.826 2(a), 2(b), 2(c), and 2(d) 
Periodogram Method* 0.854 0.726 0.747 0.773 3(a), 3(b), 3(c), and 3(d) 

R/S Statistic 0.816 0.723 0.714 0.501 4(a), 4(b), 4(c), and 4(d) 
* The periodogram method finds its based in the behavior of the near origin of the Spectral Power Density (PSD). 

 
Based on the results obtained from the experiments for the 

interval 26 < N < 216, the estimates of H deliver acceptable 
results, i.e. 0.03 < b < 0.05 and  ≤ 0.02 and for N ≥ 213 the 
estimates are highly precise, i.e. b  0.03 and   0.01. Note 
that from Section III, that high precision is defined by b  0.03 
and   0.01, a fact by which the previous approximations for 
b and  do not introduce error. 

The analysis of the results obtained shows that the estimates 
of exponent H using the Whittle estimator show high precision 
and low variability for the standard length series reported in 
the literature, for N  210 points. Note: most of the literature 
consulted uses N  210 instead of N  210. 

Based on the analysis of the results obtained if N < 212 and 
H ≥ 0.8, the estimates are accurate. 

On the other hand, the results obtained using the Whittle´s 
estimator are compared with the results obtained using the 
Abry and Veitch´s method. 

The results based on Whittle´s estimator are more accurate 
than their wavelet counterparts for short series in the context 
of the synthetic fGn series of the study. 

Fig. 5 shows the bias for all the methods used on the fGn 
series for different data lengths. This allows us to observe the 
variation of the differences estimates of value H delivered by 
each analysis method. Note from in Fig. 5 that the Whittle´s 
estimator and Abry and Veitch´s method have a better 
behavior for short length series, N < 210 points, than the other 
analysis techniques. Also, the Whittle estimator behaves with 
less irregularity than Abry and Veitch´s method for short 
length series (N < 210) and for series with lengths N ≥ 210, the 
bias presented by both techniques is not significant. 
 

 
Fig. 5.  Bias behavior for all analysis techniques considered. 

For the Abry and Veitch´s method, b behaves irregularly for 
the short series and stabilizes with N ≥ 214. 

For the Whittle estimator, the bias behaves irregularly for 
the short series and stabilizes with N ≥ 211. 

The other techniques (periodogram method and R/S 
statistic) exhibit a completely irregular behavior and a very 
high bias and unless N ≥ 216 (see Fig. 5), which is why its 
estimates are not considered acceptable. 

The bias of the R/S statistic does not show a behavior that 
stabilizes, while the periodogram method is stabilized for a 
high N, that is, N ≥ 216 (see Fig. 5). Note that this graphic 
method has high variability regardless of the length of the time 
series. 

With the same objective pursued by the study of the bias of 
the estimators considered in Fig. 5, Fig. 6 shows the behavior 
of the standard deviation of the estimators for the traces with 
variable N length in the interval 26 < N < 216. 

Note from Fig. 6 that the Whittle estimator is the one that 
presents the least variability and for N  28 the estimates are 
not precise enough to be considered. However, this does not 
mean that the method can be ruled out for time series of the 
few point (N  28). This should be part of a large discussion. 

Abry and Veitch´s method follow in precision, and the 
length required for the series can be considered as relatively 
identical when considering variability. 

Finally, when considering both bias (Fig. 5) and standard 
deviation (Fig. 6), the best estimator for short time series is the 
Whittle estimator, with high precision results for N ≥ 28, the 
Abry and Veitch´s method presents good precision for N  212, 
the periodogram method has acceptable estimates for N > 215 
and the R/S statistic has very biased estimates for 26 < N < 216. 
 

 
Fig. 6.  Standard deviation for all analysis techniques considered. 



V. APPLICATION TO REAL TRAFFIC TRACES 

A. Generalities and Specifications of the Test Scenario 
Based on the previous results on synthetic fGn traces, partial 

conclusions were applied to real traffic traces. 
The traces were obtained from the core switch from the 

Departamento de Ingeniería Eléctrica of the Universidad de 
Santiago de Chile with the Center of Operations Control of the 
University corporate network. 

For the capture of the traces, Wireshark [28] is used and 
they are transformed into time series using MATLAB, to 
construct ordered pairs (time of arrival at the sniffer, size of 
the captured frame). Capture considers the storage and 
processing capacity of 24 traffic hours of the Departamento de 
Ingeniería Eléctrica of the Universidad de Santiago de Chile 
considering bidirectional traffic, which translates into a total 
of N  232 points using the following procedure 
 
1. Let t0, …, tk be a sequence of points on the x-axis, where it 

is true that ti+1 > ti and ti+1  ti < Nmin is verified. Unless this 
time Nmin  28 points is defined, which implies starting with 
a time series given by ti+1 > ti and ti+1  ti  28. 

2. Each aggregate block in the time series it is estimated in 
reverse, the blocks change to a shorter length to approximate 
total real traffic flows. 

 
Considerations about the experiment considering regarding 

point 1 and 2 above 
 
 The value Nmin  28 results from a general appreciation of 

the results obtained from the combination and interpretation 
of the results obtained in Sections II and III; therefore, it is 
not a value chosen for convenience of analysis. 

 Applying a disaggregation process can suggest, as a process 
contradictory to the theory, but this research seeks a Nmin 
that for both theoretical and practical results leads to a 
useful tool in real-time. However, an aggregation procedure 
cannot be homologated to a real-time one for the estimation 
of H and the decision making for network administration 
and their implications and consequences. 

B. Obtained Results 
Table II presents the general results for the H estimation 

(He) techniques considered 
 

TABLE II 
GENERAL OVERVIEW OF ESTIMATES OF H FOR REAL TRAFFIC TRACES 

Used Technique Estimate Value of H (He) Correlation Coefficient Confidence Interval 
Whittle Estimator 0.806 Does not apply 95% [0.785 – 0.826] 

Abry and Veitch´s Method 0.860 Does not apply 95% [0.835 – 0.885] 
Periodogram Method 0.947 Does not apply Does not apply 

R/S Statistic 0.714 99.58% Does not apply 

From Table II, it is observed that both the Whittle estimator 
and that Abry and Veitch´s technique are consistent with the 
estimates of H reported in [22]. However, for the Abry and 
Veitch´s method a high non-accused variability is observed in 
said reference while the periodogram method overestimates 
the value of H and the R/S statistic exhibits irregular behavior. 

Finally, the main results obtained can be grouped as follows 
considering short, medium and long lengths of the series, i.e. 
N < 210, 210  N < 224, and 224  N  232 points of the time 
series under analysis, respectively. 

Detail of main results obtained 
 
1. The Whittle´s estimator behaves in a good way when it 

comes to short length time series that exhibit both minimal 
bias and variability. 

2. The Abry and Veitch´s method behaves acceptably when is 
applied to series of medium length. 

3. The periodogram method behaves acceptably if it is applied 
to time series of medium length. 

4. The R/S statistic shows a high bias and therefore it is not 
suitable for application to short length time series. 

5. Based on analysis performed, the minimum length for the 
Whittle estimator is N ≥ 210. 

6. Based on analysis performed, the minimum length for the 
Abry and Veitch´s method is N ≥ 213. 

7. On the basis of performed analyzes the minimum length for 
the periodogram method is N ≥ 215. 

8. It is not possible to estimate a minimum series length for 
the R/S statistic due to its high bias and its variability when 
it comes to length of N ≥ 216. This case is particularly 
interesting due to its widespread use (only as a graphic 
technique). In this regard, considering the number of 
previous required, its use in estimation can be considered 
good but has a great computational cost. 

9. It is not possible to find a length for the time series that 
respond to all the estimation techniques of H considered in 
this research. 

VI. DISCUSSION OF RESULTS 

A. Overview 
Traditional process-based traffic models with short-range 

dependency do not provide details on the behavior of flows in 
current high-speed data networks. Consequently, it is 
necessary to rethink the study of computer networks charging 
models that consider fractal entry traffics: since their 
requirements impose new challenges to network engineering, 
especially in buffering strategies of active equipment and 
estimation of yields. 

This research presents preliminaries of the behavior of the 
most used estimators in the literature in synthetic time series 
using fGn series and then extrapolates results to real traffic 
traces obtained from a high-speed LAN network based on the 
IEEE 802.3ab standard. 



Based on the behavioral study of the time series used of 
both fGn and real IEEE 802.3ab by applying bias analysis, 
standard deviation behavior, and Hurst exponent estimation, 
an attempt was made to determine a minimum length called 
Nmin to establish a broad criterion of fractal analysis for time 
series involved. 

Regarding the above, establishing a broad criterion for 
fractal analysis has an extra problem associated with it, 
namely, since it involves analysis based on successive 
approximations (iterations) by the algorithms that represent 
each of the considered estimators a mean convergence 
analysis of the behavior of the estimators is necessary. This 
fact is clearly manifested with the results shown in the final 
list of the previous section, since, although the sizes of short, 
medium and long series are established, certain results, such as 
those shown in points 6, 7 and 8, make it clear that such work 
will not be possible without convergence analysis. In this 
regard, this analysis will endow the investigation with an 
essential element: the speed with which each succession 
converges to its limit. Therefore, this concept is, from a 
practical point of view, completely necessary since we are 
working with sequences of successive approximations of an 
iterative method for each H exponent analysis methodology. 
Furthermore, this analysis can make the difference between 
needing thousand or a million iterations for each algorithm 
committed in each estimator of H exponent. 

Research as such does not result in a specified length, since 
each type of analysis responds, even with the same objective, 
to different scenarios in which it is a question of checking the 
fractal nature of traffic flows in high-speed computer networks 
of different technologies. 

It is necessary to emphasize that given the foregoing, the 
Research as such does not result in a length as specified, since 
each type of analysis responds, even with the same objective, 
to different scenarios in which it is a question of checking the 
fractal nature of traffic flows in high-speed computer networks 
of different technologies. 

B. Specific Results 
The results listed at the end of Section V are reviewed and 

interpreted again but considering the above 
 
1. The Whittle´s estimator behaves in a good way when it 

comes to short length time series that exhibit both minimal 
bias and variability. 

2. The Abry and Veitch´s method behaves acceptably when is 
applied to series of medium length. 

3. The periodogram method behaves acceptably if it is applied 
to time series of medium length. 

4. The R/S statistic shows a high bias and is therefore not 
suitable for application to short length time series. 

5. Based on analyzes performed, the minimum length for the 
Whittle estimator is N ≥ 210. 

6. On the basis of performed analyzes, the minimum length for 
the Abry and Veitch´s method is N ≥ 213. 

7. On the basis of performed analyzes the minimum length for 
the periodogram method is N ≥ 215. 

8. It is not possible to estimate a minimum series length for 
the case of the R/S statistic due to its high bias and its 
variability when it comes to length of N ≥ 216. This case is 
particularly interesting due to its widespread use (only as a 
graphic technique). In this regard, considering the number 
of previous required, its use in estimation can be considered 
good but has a great computational cost. 

9. It is not possible to find a length for the time series that 
respond to all the estimations techniques of H considered in 
this research. 

VII. CONCLUSION AND FUTURE DIRECTIONS 
In this research we presented an analysis of traffic flows in 

high-speed computer networks using a minimum quantity of 
time series points that must contain estimates of the Hurst 
exponent. An experiment using estimators applied to time 
series provides an accurate determination of the Hurst 
exponent. In the exhaustive analysis of the Hurst exponent, 
bias behavior, standard deviation, and Mean Squared Error 
using fGn noise signals with stationary increases were 
considered. 

The behavior of most estimators used in the literature, in 
synthetic time series using fGn series followed by 
extrapolation, results in real traffic traces obtained from a 
high-speed network based on the IEEE 802.3ab standard. 
Based on this behavior by applying bias analysis, average 
convergence analysis and Hurst exponent estimation, an 
attempt is made to determine a minimum length called Nmin 
and to establish a broad criterion of fractal analysis. 

The results obtained with the Whittle estimator allowed the 
Hurst exponent to be obtained in series with a few points. 
Then, a minimum length for the series is empirically proposed 
for each estimator considered. 

Finally, to validate the results, the methodology was applied 
to actual traffic captures in a high-speed network based on the 
IEEE 802.3ab standard. The Whittle's estimator behaves in a 
good way when it comes to short series and long series that 
exhibit both minimal bias and variability. 

The following two future tasks are proposed to be carried 
out as soon possible 
 
1. In methodology section (Section III) specifies how to obtain 

the Nmin length for the fGn series. The results obtained are 
applied to real traffic traces. Traffic traces are designated by 
Z and have a length M such that M ≫ Nmin. 
Then, the analysis presented establishes the need to analyze 
the convergence of the estimators to strengthen our 
postulate that an optimal length is not feasible, but it is 
possible to speak of a minimum number of points for each 
series depending on the estimator chosen to analyze the 
Hurst exponent. 

2. As shown in the simulation and results section (Section IV), 
it is absolutely necessary to look for a software tool other 
that presents with higher resolution the resolution of the 
estimators for the Hurst exponent for the time series that 
contain a quantity N > 212. 
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