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Abstract—According to recent studies, unmanned aerial ve-
hicles (UAV) can play a game-changing part in terms of cost
reduction and speed increase to address the last-mile delivery
(LMD) problem and also to attend emergencies. Last-mile deliv-
ery services are getting more and more relevant, especially when
in times where social distance is required. Given this scenario,
our paper introduces a cyber-physical (CPS) system roadmap
propose applicable for last-mile delivery drones. The proposed
CPS guidelines are based on the concept of system of systems to
enable an emerging behavior towards smart cities’ governance.
In this paper, we also discuss topics from air space control
and reservation throughout communication infrastructure and
decentralized control supported on a blockchain.

Index Terms—Unmanned aerial vehicles (UAV), Drones, Last-
mile delivery (LMD), Cyber-physical systems (CPS), Communi-
cation, Tradable permit model (TPM), Blockchain.

I. INTRODUCTION

UNMANNED aerial vehicles (UAV) can play a game-
changing part in terms of cost reduction and speed

increase to address the last-mile delivery (LMD) problem and
also to attend emergencies [1].

The last-mile delivery services are getting more and more
important, especially when in times where social distance
is required [2]. Studies indicate that the last-mile is one of
the most expensive, inefficient, and polluting parts within the
supply chain. It can reach from 13 to 75% of the total supply
chain cost in given scenarios [3]. Also, last-mile delivery
services are a concern for the major e-commerce retailers
including Amazon, Walmart, and Alibaba. In this context,
UAVs, also known as drones, are of special interest [4].
However, other LMD solutions point out that complex traffic
environments can still be explored with autonomous terrestrial
vehicles [5].

According to [6], the usage of drones for delivery purposes
can have at least four main advantages: (i) autonomy, (ii)
avoidance of traditional road network, (iii) cost, and (iv) speed.
Despite these advantages, there are lots of open issues, such
as airspace utilization, payload capacity planning, auto-pilot,
and navigation in shadow areas.

Drones can be remote-controlled or even fully autonomous,
depending on regulations. These regulatory agencies’ policies
vary from place to place. Generally, drones are classified into
high altitude platforms (HAP), e.g. 17+ km, or low-altitude
platforms (LAP), e.g. tens of meters to few kilometers. HAPs
are mostly regarded as quasi-stationary and present better
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endurance to face a few days to months campaign. On the
other hand, LAPs are more agile, cost-effective, and can be
recharged in a much faster way.

Drones are also categorized depending on their aeronautical
frame: they can be fixed- or rotary-wings in this sense. The
former, such as small planes, have higher speeds and can carry
more load, but they need to keep flying forward with relatively
high speeds to stay in the air, making it harder to perform
sharp maneuvers. The latter can be represented by a quadrotor
drone that can hover at lower speeds or even in place, however,
their flight autonomy is limited to less than one-hour [7] given
nowadays electronic batteries technology. A hybrid drone is
also possible, i.e. having fixed- and rotary-wings on the same
platform.

As mentioned by Alwateer and Loke [8], drones are on
the edge of the delivery service. This can be confirmed
as initiatives in the air traffic management (ATM) system,
including SESAR and NextGen, indicate ongoing development
along with future communication infrastructure preparations.

Aerial delivery may impact merchandise, courier, food
delivery, humanitarian aid, and passenger transport [9]. The
last is considered very ambitious but it is already planned
and being scratched. These applications require agents (e.g.
UAV’s or drones) to have a plan and execute delivery routes
taking into account cost and time minimization while avoiding
collisions with other agents and the environment.

Given this overall picture, our paper introduces a cyber-
physical (CPS) system’s roadmap propose applicable for last-
mile delivery drones. The proposed CPS guidelines are based
on the system of systems’ concept to enable an emerging
behavior towards smart cities’ governance. Here, we discuss
topics from air space control and reservation throughout com-
munication infrastructure and decentralized control supported
on a blockchain.

In Section II, we introduce our proposed cyber-physical
system for last-mile delivery. In the following sections, we
detail each aspect of the system: airspace reservation and
mobility model (Section III), communications (Section IV),
navigation and path planning (Section V), safety and certifi-
cation (Section VI), and decentralized control (Section VII).
Finally, Section VIII provides final remarks and research
directions.

II. PROPOSED CYBER-PHYSICAL SYSTEM FOR LMDD
The cyber-physical system for last-mile delivery drone

(LMDD) comprises airspace, drones and navigation, commu-
nication infrastructure, geofencing service, safety points, and
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end-points. Together they form a system of systems (SoS)
and must be tightly coupled to produce an emerging behavior
to enable smart city governance. We discuss each of these
subsystems next.

a) The airspace control and reservation: A groundbreak-
ing feature is to bring the airspace’s reservation and utilization
to a civilian context, allowing the private sector to operate
without the burden of the human-in-the-loop process. As
a smart city resource, the airspace can be segmented and
objected to allocating a specific space to a tenant. We propose
an economic model to permit a sustainable with revenue and
constant upgrading, conducive to a public-private partnership.

b) Geo-fencing service: The airspace segmentation al-
lows reserving a specific location for a given aircraft, defining
four-dimensional fencing block: altitude, longitude, latitude,
and time. The block size is location dependent, but small sizes
supply flexibility and efficiency to airspace utilization, granted
after an auction process. The complete workflow consists of
a sequence of bids where players (organizations willing to
operate in the system) intent to acquire a set of fencing blocks
to form a path. In the end, a blockchain system persists
all exchanges. Then, the player submit a mission to start
operation. It results in an auction-oriented mission, where only
authorized players can operate in a path.

c) Drones and navigation: Drones need to be equipped
with sensors and communication radios to provide safety and
reduce variance in operation. A player-owned ground control
station (GCS) must manage its fleet, enabling adaptive algo-
rithms to tackle deviances dynamically. Furthermore, the smart
city administration can interrupt ongoing missions, which is
crucial to implement city-wide safety services concerning
weather conditions, such as wind, rain, fog, and snow.

d) Communication infrastructure: The communication
infrastructure must perform missions accordingly. It requires
massive machine type communications (mMTC) and ultra-
reliable low-latency communications (URLLC). It is also
important to incorporate security aspects for authentication and
authorization.

e) Safety points: A set of physical points must be avail-
able throughout the airspace, serving as a safe spot in which
drones can land in case of unappropriated operation conditions.
Due to the operational environment’s natural volatility, a safe
point is strategical to emergencies including battery drained,
erratic weather, among others.

f) End-points: They correspond to places where missions
start and also where they end. The starting terminal is po-
tentially a logistic center where operators dispatch packets
to delivery, yet they realize advanced approaches such as
Amazon’s zeppelin. At the delivery place (the mission end-
point) must exist a spot to automatically receive the packet. It
can be static (in buildings or houses), or mobile like the top
of cars (Uber use case).

III. AIRSPACE RESERVATION AND MOBILITY MODEL

The volume of urban UAV’s is expected to grow in the next
years. One of the foreseen challenges of this growth is how
to manage that traffic. In this matter, we argue that schemes

available in the literature about urban motorways traffic (UMT)
can be adapted to urban UAV traffic (UAT).

Even though many traffic models have been proposed and
employed for UMT [10], their application to UAT is not trivial.
We highlight the following reasons:

• Constraints related to the airways are inherently less
restrictive than motorways. As a result, optimal flight
planning in airways commonly becomes unfeasible for
many agents, e.g. drones. Constraints in the airspace must
be imposed carefully to achieve a reasonable scenario;
and

• Although airspace congestion is less likely than motor-
ways congestion, the consequences regarding failures are
far more serious. Thus, safety considerations must not be
undermined.

Traditional airspace traffic management schemes avoid con-
gestions, and collisions altogether, by using a central unit.
Such a unit plans strict paths for each aircraft and oversees
them. However, traditional schemes are not appropriate to deal
with the responsiveness requirements of LMD.

Tradable permit model (TPM) is a novel approach to cope
with capacity allocation that uses a market mechanism to
assign rights to users of a particular resource [10]. Permit
schemes have received growing attention in the academic
literature. Permit’s decentralized nature brings advantages over
centralized approaches [11]. In the context of LMDD, the
airspace is the resource of interest.

A number of researchers study the coordination of swarms
of cooperating drones [12] or the optimization of planned
routes globally [13]. We argue that both approaches are not
suitable for managing the mobility of LMDD if it is taken
individually. Let’s consider the players, which are companies
or individuals that own LMDDs and desire to use the airspace.
First, in real-world scenarios, it is unfeasible to force different
players to use the same given strategy to coordinate their
drones. Moreover, a central entity that calculates the optimal
route for each LMDD in the airspace would require an
impractical computational power.

In view of this, we propose a TPM that serves as a guideline
to nextgen aircraft control for LMDD. Related schemes have
been proposed [11], [12], [13], [14]. However, our approach
raises the novel challenge of cooperation and competition in
a much more realistic scenario. We describe such a mobility
model in the following subsections.

A. Free-Market Permit Concession

In real scenarios, many players have specific interests in the
usage of the airspace. Some interests, however, will certainly
conflict. For instance, two players might want to use the same
space at the same time to accomplish the delivery mission
within the expected time.

Solving the conflicts in a decentralized cooperative way,
e.g. relying on common strategies among different players,
would require impractical regulatory and expensive oversight
mechanisms. Conversely, in the competitive view, each player
must obtain beforehand a permit to use the desired airspace at
the desired time. In this context, a permit is an authorization to
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use a specific volume in the airspace for a specific timespan.
As a result, the regulatory oversight would focus on inspecting
whether LMDDs have a permit instead of scrutinizing each
flight for compliance to a given policy.

Still, a centralized permit concession procedure has some
limitations: a) optimizing routes, airspace usage, and financial
gains becomes computationally unfeasible as the number of
players increases; b) response time of the central system might
not be feasible for LMDD; c) a centralized system is not robust
to failure or attacks, making it as a single point of attack; and
d) the downtime of the system would result in catastrophic,
i.e. financial-related, outcomes.

As a possible and strong solution, the free-market dis-
tributed permit concession is in place. In this scheme, each
player would bid for a sequence of adjacent permits that
accomplishes its mission. Once a player acquires permits, it
can freely use or trade them. Each permit is always owned
by some entity. That means regions of the airspace, and
consequently, a portion of the permits would be previously
assigned to public- or private-sector organizations.

To assert the feasibility of such an approach, we designed
a multi-agent system simulation of the TPM scheme for UAV.
In [15], we simulate players in a tradable permit model under
different arrival rates, i.e. number of players competing in
the auction, by focusing on two main perspectives: a) an
assessment on the time and cost agents have to complete
their mission; and b) an estimate of the effective airspace
usage. The results from that research showed that even a
naïve decentralized competitive approach yields satisfactory
results even under high traffic conditions. Also, there were
evidences that smarter agents can behave even better. From
a practical perspective, such a study found out interesting
properties emerging from the agents’ collective behavior that
could drive how airspace policies are defined.

In our proposal, some research questions regarding the
parameters of the concession mechanism are central. For
instance, one must address the kind of auction and the ap-
propriate time/space scales of the permits for each practical
scenario.

B. Optimal Usage of the Airspace and Collision Avoidance

Although we argue that full cooperative schemes and full
centralized schemes are not practical, central cooperative in-
structions are unavoidable inside the player’s perspective.

Once a player owns the sequence of permits to use the
airspace, it uses the respective airspace as desired, of course,
by respecting the security and safety regulations. For instance,
each player surely owns several LMDDs to fulfill many
delivery missions. Then, it needs to coordinate its resources
to optimize its gains while satisfying the space and time
constraints.

Given a set of drones owned by the same player, they
can work cooperatively. We discuss the details about the
coordination of drones, including collision avoidance, at this
level in Section V. Another fundamental aspect of coordination
is the communication infrastructure and the requirements of
the real-time control system.

IV. COMMUNICATION SYSTEM INFRASTRUCTURE

To cope with the last-mile delivery drone system’s complex-
ity, we assume full connected infrastructure and battery-bound
operation requirements. In this communication system infras-
tructure context, researches also take into account common
UAV communication protocols over cellular links [16], passive
sensor nodes in a local sensor network [17], and mobile target
tracking [18].

We consider the smart city scenario typical for deployment
and key-technologies to support this system’s viable imple-
mentation. Thus, it will be feasible to exist communication
amongst the aircraft in the system and aircraft to the ground
base station, resembling vehicle to vehicle (V2V) and vehi-
cle to infrastructure (V2I) communication model. Offload of
processing must be another resource available as a service in
this infrastructure, possibly in the form of multi-access edge
computing (MEC).

Our tradable permit model for last-mile delivery [15] en-
ables large-scale operations with multiple layers in altitude,
each one segmented to form four-dimensional geo-fencing
units. Hence, many massive machine type communications
problems can arise, as drones share the same media for
communication. On the other hand, the ground control station
requires an ultra-reliable low-latency communication channel
to provide offload of challenging computational tasks involved
in achieving global consensus of operations. Each drone sends
the sensor’s information to GCS periodically, allowing the
creation of discrete-time snapshots, optimizing configuration
parameters, and sending the new setup back to the aircraft.
Communications play a critical role in this feedback control
loop, acting as a bottleneck in this infrastructure.

Aircraft to aircraft (A2A) communication is typically in
line of sight and makes it possible to implement essential
services such as collision avoidance and trajectory planning.
A2A impacts not only in the same origin fleet but also on
other tenants using the airspace. Problems here include spec-
tral sharing and security issues involving authentication and
authorization. In this context, there is some protocols including
Mavlink. It is a protocol for message passing with drones, and
so security needs severe scrutiny. Aircraft to infrastructure
(A2I) communication, as a combination of access-network
and computational resources, enables the offload of critical
functions to the edge. It includes a global vision of a tenant
fleet, and the smart city takes control of the whole system to
provide safety (emergency or catastrophic situations). 5G and
beyond have addressed the problems we list here. However, it
requires more workload characterization to expose new knobs
not yet pondered for A2I.

Those requirements can culminate in new studies to provide
realist service-level agreements (SLA) and quality of service
(QoS) to LMDD scenarios. The presence of multi-access edge
computing (MEC) is essential to cope with communications
and processing demands. Latency is another curcial metric,
and all the elements in the communication system, including
front-haul and backhaul, must carefully be engineered to meet
SLA and QoS constraints. The GCS efficiency is as good as the
capacity of the system in providing a lower latency experience.
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Public-private partnerships can be meaningful for LMDD to
deploy adequate infrastructure to operations. In this sense, our
economic model of trade permit model supports a sustainable
modality, providing CapEx and OpEx financial resources.

Battery-aware aircraft provides efficiency to operations as it
can self-adapt to condiction dynamically. During operations,
expected and unexpected events impact energy consumption,
causing deviance on mission-planned versus actual conditions.
The main problem is in the sources of uncertainty, as on
commissioning is possible to estimate the minimal capacity
planning required. For example, due to uncontrollable weather
changes, more processing power can arise during the mission,
making it differ from the original. Thus, we can divide
resource utilization into two: bare-minimal and exceeding.
The former is about the basal resources consumed and known
before the mission. The latter is the unexpected and unknown
events that emerge dynamically. Processing the exceeding
demands MEC, provided an ecosystem with enough latency,
reliable, and cloud-enabled computing providers.

Such an infrastructure allows players to operate safely and
the smart city to implement an unmanned aircraft system
(UAS) traffic management architecture. Path planning works
as a core service for both and needs in-depth analysis.

V. PATH PLANNING AND EXECUTION

In a real context, UAVs can be simply considered as one
more transportation vector to existing supply chain manage-
ment and logistic systems. In such systems, decision-making
should consider not only profitability, but also service quality,
equity, consistency, simplicity, reliability, and externalities
[19]. The interrelations of these enterprise-wide challenges
play a key role, especially when seeking optimal solutions.
For LMDD, this holistic view is even more important once it
represents a 13-75% economic opportunity of the total supply
chain [3].

Operations research (OR) is a import research field that
has been applied as an integrating decision-making tool for
various industries over the last decades, resulting in significant
savings. Among the benefits to the LMDD, it includes a well-
established research area, systems with decades of develop-
ments, easy and cheap integration with current systems, and
some level of isolation during the problem modeling.

In OR, the vehicle routing problem (VRP) is the classical
approach when planning optimal routes for a set of delivery
agents from a depot to a set of geographically scattered
customers, subject to constraints [20]. It is a rich and broad
area of research with many variations that generalizes the well-
known NP-hard traveling salesman problem (TSP), so VRP
may be better defined as a class of problems.

According to the taxonomies of [21], [22], our problem can
be better described as a class of capacitated VRPs (CVRPs)
and distance-constrained VRP (DCVRP), respectively, when
the modeling has to consider limited carrying capacity for the
vehicles and the total length of the path in a route cannot
exceed a maximum limit. The VRP may be considered with
many other variations related to the LMDD, such as: VRP with
time windows constraints (VRPTW), where allowable times

or time intervals are associated with every customer; termed
periodic VRP (PVRP), when the scheduling extends from one
to many days; and VRP with pickup and delivery (VRPPD)
or VRP with Backhauls (VRPB), where customers may return
items.

Many solution strategies have been devised for VRP [20]:
exact algorithms often employ formal optimization methods
with optimality guarantees but are limited to solving relatively
small instances of the problem; classical heuristics use heuris-
tics especially tailored to VRP; and metaheuristics employ
general black-box optimization algorithms, such as simulated
annealing and genetic algorithms. Despite the loss of opti-
mality and feasibility guarantees, in practice, metaheuristics
typically work well and are able to find close to optimal
solutions for large instances of VRP in a reasonable amount
of time [20].

One example of delivery drones as VRP is proposed by
Dorling et al. [1]. They model the problem through mixed-
integer linear programming (MILP), providing minimum time
and minimum cost variants. Their model considers the costs
related to acquiring and operating the drones, while also
taking into account delivery time and budget constraints. To
compute operation costs, they consider an energy expenditure
model based on physical principles which are also backed by
experimental data. By using the commercial solver CPLEX
[23], they are able to solve the optimization problem exactly
for up to eight agents. Also, they show that an alternative
solver based on simulated annealing obtains close to optimal
solutions to instances of up to 500 drones in less than a minute.
From a practical perspective, we expect that the choice of
solution strategy (exact or metaheuristic) will depend on the
number of drones a particular player has.

Although the integration of these challenges is crucial for
better solutions, optimizing all of them at once may become
infeasible and unrealistic, e.g. some decisions must be taken
only after the realization of an event. In order to handle
the complexity of the LMDD, our solution [15] proposes a
hierarchical strategy as more promising. The decision-making
can be described from the player perspective and its dynamics
with the system and other players with three phases:

• Cooperative: cooperation of its resources to address the
logistic optimization;

• Competitive: competition in the market with other players
for permits; and

• Navigation: response to unexpected and rare events.
The cooperation of resources is the traditional VRP and can

be solved by the before-mentioned solutions. The competition
in the market imposes unknowns to the optimization problem
that are commonly described as stochastic variables. Actually,
LMDD may impose many other stochastic behaviors, e.g.
weather conditions, battery autonomy, and others.

There are many ways to integrate the competition in the
VRP, however, the most direct approach is by modeling the
cost of the permits as part of the distances to be traversed
by a UAV. Verri et al. [15] shows that players can obtain
routes close to the optimal length and cost even in regions
with very dense competition. In other words, we expect the
players can focus only on the neighboring permits it desires,
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ignoring most of the other permits. We also expect prices close
to homogeneous in regions with low competition.

A common approach for such complex problems is to
implement a two or more stage model. These models are
especially interesting when just part of the variables must be
defined before some realization, while the other decisions may
be benefited from the information of the realizations. After the
events, a re-optimization is required to adapt the decision to
a new reality [24]. In this case, the recourse decision must be
feasible or there is no way to optimize it. Another advantage
of this approach is that the original problem is broken into
smaller problems, making the solution more practical.

For the LMDD, the natural stages would be first to define
the desired routes based on the demand of the permits and,
after the realization of the auction, re-optimize the decisions
based on the holding permits. This adaptation may also be
performed continuously in a time-window or event realization
approach, i.e. re-optimization for part of the problem can be
performed at each fixed period or after some important event.
Of course, the time-window will depend on many factors such
as: computing resources, size of the problem, kind of events,
competition of permits. However, we expect at least a daily
frequency for planning routes of UAVs in a dense region.

Depending on the nature of the event, online (or real-
time) decisions will be required for safety or security reasons.
For safety purposes, robust behaviors to stochastic variables
may be required by the authorities in order to avoid harmful
outcomes. Players may also benefit from it in order to avoid
unexpected events with high costs.

The most difficult challenge imposed by UAVs is the
command and control (CC) of the LMDD airspace. It requires
an infrastructure with real-time monitoring and responses to
perform fast maneuvers to avoid collisions. This is important
for path planning and navigation once it can increase the cost
of the routes and reduce battery autonomy during unexpected
events.

The impact of this solution is relevant once it avoids the
need for various re-optimizations considering that the collision
detection system will be activated during the navigation just
in rare cases.

Inter-agent collision avoidance is typically not dealt with
in VRP. This is theoretically possible and the interested re-
searcher could in principle benefit from the literature regarding
multi-agent trajectory planning through model predictive con-
trol (MPC) [25], [26], where inter-agent collision avoidance
is achieved by imposing additional constraints in an optimiza-
tion problem. MPC-based approaches for trajectory planning
are also based on MILP. Nevertheless, considering current
processing power and optimization solver technology, we
consider that direct inclusion of inter-agent collision avoidance
in VRP would make the optimization problem computationally
intractable, and certainly not suitable for real-time applications
such as the one proposed here.

In this case, an inner layer would coordinate the UAVs
to execute the planned routes while dealing with inter-agent
collision avoidance. Since drones are relatively small with
respect to the air space, and collision avoidance would be rare,

we do not expect frequent conflicts, so the hierarchical division
should not result in considerable loss of optimality.

There is a vast literature in robotics path planning that may
be employed [27], [28]. Due to the existence of a central base
that may communicate with the drones through a communi-
cation infrastructure, sophisticated control algorithms such as
MPC-based trajectory planners may be used [25], depending
on the number of UAVs and the available computational
resources. These algorithms could operate in a closed-loop
fashion, taking into account recent information collected by
the drones and the communication infrastructure. Independent
of the approach taken, a low-level local obstacle avoidance
based on the drone’s sensor readings and running locally on
the drone should always be present to permit quick reactions
to unexpected obstacles and continue mission execution when
communication with the base is lost.

Finally, a large delivery may exceed the carrying capacity
of a single drone. In this case, the delivery may be carried out
by multiple drones and techniques for UAV formation control
may be employed.

VI. REGULATORY DIRECTIONS

The use of drones, from recreational flying to commercial
uses, is a concern for safety and certification. Whether manned
or unmanned aircraft, the Federal Aviation Administration
(FAA) requires that all operators follow specific guidelines for
the operations they request. Currently, the Part 135 addresses a
set of rules for the certification of UAV. Basically, the Part 135
is not dedicated to UAV, but is the only path for small drones to
carry the property of another for compensation beyond visual
line of sight.

UAV consider that operation is outside aircraft, and no
human is onboard, but vehicle is controlled from the ground.
The UAV certification has some regulation for vehicles and
operators, to ensure safety. The use of drones, in connection
with a business activity, is allowed in many countries, but
under very strict conditions. In most countries one will need
different authorizations or licenses from the National Aviation
Authority before starting any operation.

However, for autonomous UAV, no regulations are available
at this point, and is very unclear if current regulation for
manned aircraft vehicles will fit this need. The operator is
an automatic on-board pilot system (AOBPS), which refers to
the level of automation of the drone when, at highest level
of automation, this is about piloting functions and on-board
decision making with little or no human intervention. In this
paper, we are considering the AUAV are drones used for
package delivery.

We should specially analyze the certification regulations in
the following areas:

• Safety assessment; and
• Software and hardware certification.

A. Safety Assessment
This process is focused on identifying functional failure

conditions leading to hazards that are closely related to de-
velopment assurance levels (DALs). Currently, there are five
DALs, as presented in Table I.
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Table I: Hazard Classification and DAL

Hazard
Classification

Development
Assurance
Level

Maximum
Probability per
Flight Hour
(MPFH)

Catastrophic A 10−9

Hazardous B 10−7

Major C 10−5

Minor D 10−3

No Effect E –

So some questions are needed to be answered. Is the MPFH
of 10−9 acceptable for the most critical hazard classification of
system failures for AUAV, specially for LMDD vehicles? We
believe that yes, this is acceptable. Basically, if a aircraft with
about 600 passengers uses this concept, why a small drone
for LMDD can’t uses the same approach? Another question is
the industry of drones perform a traditional safety-assessment
process during drone project, according to our research and
literature review: no, they do not. Then, regulations can
be used as is, but industry should adapt their development
processes to allow compliance with regulations.

B. Software and Hardware Certifications

The RTCA DO-178C and DO-254 has been used as an
acceptable mean of compliance for software and hardware to
ensure safety in the appropriate level of rigor, according to
the safety assessment. However, the AOBPS will coordinate
the operation of other systems of the AUAV. So, the study
of additional characteristics must be performed to ensure if
the software and hardware level must be increased to level
A+, as traditionally, software and hardware systems follow a
process rigor considering non-autonomous flight. Additionally,
currently software standards, as DO-178C, use a concept that
behavior must be deterministic and the software is specified
with an enormous amount of detailed requirements that de-
scribe its behavior. The use of technologies such as machine
learning, which make the solutions present an evolutionary
behavior, cause some incompatibility with the way these
regulations were conceived.

VII. A DECENTRALIZED CONTROL SUPPORTED BY
BLOCKCHAIN

As a cyber-physical system representing a critical infrastruc-
ture and composed of multiple players, the system’s fundamen-
tal responsibility concerns how data dissemination throughout
the communications systems (potentially the Internet) occurs.
Cybersecurity is the main focus of this service, guaranteeing
integrity, availability, consistency, resistance to distributed
denial of service (DDoS) and 51% attacks, and authorization
and authentication. Blockchain-based systems provide a robust
framework to this end, allowing rapid evaluation of different
alternatives and configurations to scenarios in future study
cases.

The airspace reservation procedure consists of a sequence of
bids to acquire a 4-dimensional (latitude, longitude, altitude,
and time) slot, which we call permit. Players race to achieve
a list of adjacent permits, and, during a period, the reservation
converges to a consistent state, where each player has the right
to use a path. Thus, a set of transactions can be stored to
a public resource, as players use the airspace concurrently,
whereas the entities responsible for the air traffic management
govern the system utilization. The sharing mechanism is a
critical point of failure in this context: malicious users can
intentionally manipulate data to induce error-prone operational
conditions, potentially causing malfunctioning leading to haz-
ard situations.

Adopting a blockchain-based system for data dissemination
leverages benefits to the system as a whole. When a new set
of transactions is ready, it is signed and included as a block
after being validated by more the half of peers presented in the
system. The system hashes all data and stores it in a Merkle
tree structure. Tampering the information in blocks will require
substantial computing resources, as players and other entities
store replicas. It is worth mentioning that the game-theoretic
method to insert information must be under investigation.
Consensus models, such as proof-of-work (POW), can lead to
advantages to specific scenarios. However, other schemes can
outperform it, e.g. proof-of-event, proof-of-stake, and proof-
of-authority.

The workload imposed on the system is dependent on the
permits’ size. More oversized permits decrease the number of
combinations to form a path, and vice-versa. Thus, smaller
permits occasion on more degrees of freedom, which in-
creases the number of transactions in the system. Consensus
mechanisms dominate the throughput and consequently impact
availability. A careful study investigating different mechanisms
is encouraged and can yield useful insights to tackle the trade-
off of the variables consensus speed and security level.

The replicas’ distributed nature in the blockchain allows
consistency, serving as a fault-tolerance feature and a source
of truth in the system. Another advantage of it is the robustness
in the face of DDoS attacks since there is no centralized entity
in the system. A malicious user intending to insert poisoned
data need to compromise 51% of the participants in the system.
Assuming blockchain is flexible enough to scale-out the nodes
participating in the process, 51% attacks are costly, and there
are mechanisms to mitigate them, e.g. adding more nodes.

VIII. SUMMARY

In this paper, we tackled an emerging topic for research:
last-mile drone delivery. Particularly, we proposed a cyber-
phisycal system to this topic in order to enhance the smart
city governance. Our system is a system of systems (SoS)
which is composed by six different subsystems: (1) airspace,
(2) drones and navigation, (3) communication infrastructure,
(4) geofencing service, (5) safety points and (6) end points.
These subsystems is expected to work together in order to
increase the quality of the proposed cyber system.

For the future works, we intend to work into two different
directions. The first direction is the micro level research.
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The development of each one of the six subsystems of our
cybersystem individually. And the second direction is the
macro level research. The integration of those subsystems
aiming to enhance our cybersystem as a whole.

Our paper tackled an emerging topic: last-mile delivery
drones. Here, we propose a cyber-physical system’s applicable
for last-mile delivery drones, as a series of guidelines. The

REFERENCES

[1] K. Dorling, J. Heinrichs, G. G. Messier, and S. Magierowski, “Vehicle
routing problems for drone delivery,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 47, no. 1, pp. 70–85, 2017.

[2] V. Chamola, V. Hassija, V. Gupta, and M. Guizani, “A comprehensive
review of the covid-19 pandemic and the role of iot, drones, ai,
blockchain, and 5g in managing its impact,” IEEE Access, vol. 8, pp.
90 225–90 265, 2020.

[3] J. Olsson, D. Hellström, and H. Pålsson, “Framework of last mile
logistics research: A systematic review of the literature,” Sustainability,
vol. 11, no. 24, 2019.

[4] D. Schneider, “The delivery drones are coming,” IEEE Spectrum, vol. 57,
no. 1, pp. 28–29, 2020.

[5] B. Li, S. Liu, J. Tang, J. Gaudiot, L. Zhang, and Q. Kong, “Autonomous
Last-Mile Delivery Vehicles in Complex Traffic Environments,” Com-
puter, vol. 53, no. 11, pp. 26–35, nov 2020.

[6] Q. M. Ha, Y. Deville, Q. D. Pham, and M. H. Hà, “On the
min-cost traveling salesman problem with drone,” Transportation
Research Part C: Emerging Technologies, vol. 86, pp. 597 – 621,
2018. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0968090X17303327

[7] M. Mozaffari, W. Saad, M. Bennis, Y. Nam, and M. Debbah, “A
tutorial on uavs for wireless networks: Applications, challenges, and
open problems,” IEEE Communications Surveys Tutorials, vol. 21, no. 3,
pp. 2334–2360, 2019.

[8] M. Alwateer and S. W. Loke, “On-drone decision making for service
delivery: Concept and simulation,” in 2019 IEEE International Confer-
ence on Pervasive Computing and Communications Workshops (PerCom
Workshops), 2019, pp. 937–942.

[9] E. Frachtenberg, “Practical drone delivery,” Computer, vol. 52, no. 12,
pp. 53–57, 2019.

[10] W. Fan and X. Jiang, “Tradable mobility permits in roadway capacity
allocation: Review and appraisal,” Transport Policy, vol. 30, pp.
132–142, nov 2013. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S0967070X13001352

[11] D. K. Brands, E. T. Verhoef, J. Knockaert, and P. R. Koster, “Tradable
permits to manage urban mobility: Market design and experimental
implementation,” Transportation Research Part A: Policy and Practice,
vol. 137, pp. 34 – 46, 2020.

[12] J. Wang, C. Jiang, Z. Han, Y. Ren, R. G. Maunder, and L. Hanzo,
“Taking drones to the next level: Cooperative distributed unmanned-
aerial-vehicular networks for small and mini drones,” IEEE Vehicular
Technology Magazine, vol. 12, no. 3, pp. 73–82, 2017.

[13] T. Akamatsu and K. Wada, “Tradable network permits: A new scheme
for the most efficient use of network capacity,” Transportation Research
Part C: Emerging Technologies, vol. 79, pp. 178–195, 2017.

[14] Z. R. Bogdanowicz, “Flying swarm of drones over circulant digraph,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 53, no. 6,
pp. 2662–2670, 2017.

[15] F. A. N. Verri, C. A. C. Marcondes, D. S. Loubach, E. F. Sbruzzi,
J. C. Marques, L. A. P. Júnior, and M. R. O. A. Máximo, “An analysis
on tradable permit models for last-mile delivery drones,” IEEE Access,
vol. 8, pp. 186 279–186 290, 2020.

[16] J. Morales, G. Rodriguez, G. Huang, and D. Akopian, “Toward uav
control via cellular networks: Delay profiles, delay modeling, and a case
study within the 5-mile range,” IEEE Transactions on Aerospace and
Electronic Systems, pp. 1–1, 2020.

[17] S. Siewert, M. Andalibi, S. Bruder, I. Gentilini, and J. Buchholz,
“Drone net architecture for uas traffic management multi-modal sensor
networking experiments,” in 2018 IEEE Aerospace Conference, 2018,
pp. 1–18.

[18] A. Das, S. Shirazipourazad, D. Hay, and A. Sen, “Tracking of multiple
targets using optimal number of uavs,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 55, no. 4, pp. 1769–1784, 2019.

[19] T. Vidal, G. Laporte, and P. Matl, “A concise guide to existing and
emerging vehicle routing problem variants,” European Journal of Oper-
ational Research, 2019.

[20] G. Laporte, “Fifty years of vehicle routing,” Transportation Science,
vol. 43, no. 4, p. 408–416, Nov. 2009. [Online]. Available:
https://doi.org/10.1287/trsc.1090.0301

[21] B. Eksioglu, A. V. Vural, and A. Reisman, “The vehicle routing problem:
A taxonomic review,” Computers & Industrial Engineering, vol. 57,
no. 4, pp. 1472–1483, 2009.

[22] J. Caceres-Cruz, P. Arias, D. Guimarans, D. Riera, and A. A. Juan, “Rich
vehicle routing problem: Survey,” ACM Comput. Surv., vol. 47, no. 2,
Dec. 2014.

[23] IBM, IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual,
Armonk, New York, U.S., 2011.

[24] H. N. Psaraftis, M. Wen, and C. A. Kontovas, “Dynamic vehicle routing
problems: Three decades and counting,” Networks, vol. 67, no. 1, pp.
3–31, 2016.

[25] A. Richards and J. P. How, “Robust variable horizon model predictive
control for vehicle maneuvering,” International Journal of Robust and
Nonlinear Control, vol. 16, no. 7, pp. 333–351, 2006.

[26] R. J. Afonso, M. R. Maximo, and R. K. Galvão, “Task allocation
and trajectory planning for multiple agents in the presence of
obstacle and connectivity constraints with mixed-integer linear
programming,” International Journal of Robust and Nonlinear
Control, vol. 30, no. 14, pp. 5464–5491, 2020. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.5092

[27] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to
Autonomous Mobile Robots. Cambridge, Massachusetts, USA: The
MIT Press, February 2011.

[28] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.


