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Abstract

We use the landslide inventory database provided by the United States Geological Survey. USGS maintains a database of

landslide reports with approximate locations and times, but no images. This is the most extensive data of its kind. We extract

satellite images from Google Earth by using this inventory.
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Abstract—Preparation and mitigation efforts for widespread
landslide hazards can be aided by a large-scale dataset with high
location accuracy. Such a dataset currently does not exist. Recent
small-scale studies using deep learning (DL) to label potential
landslide areas in remotely-sensed images showed potential but
were based on very small, homogeneous regions with unproven
model transferability. In this paper, we address two major chal-
lenges for creating a large-scale landslide dataset from satellite
images with DL. We show that a DL model trained on one
ecoregion would perform well on that ecoregion, but struggle
in other regions because of differing landscape characteristics.
Hence, model training must be performed on heterogeneous
regions in order to be applicable for global landslide mapping.
To avoid high computational cost when new ecoregions are
added to the model, while also avoiding catastrophic forgetting
(where model accuracy degrades for older data), we propose
Task-Specific Model Updates (TSMU), an adaptation of the
Learning without Forgetting framework (previously used for
image classification) for semantic segmentation (pixel labeling).
Numerical experiments show that TSMU can efficiently update
the model using the newly acquired images without losing
performance on other ecoregions. In fact, we noted a performance
increase, demonstrating that if one has a region of interest,
obtaining data from other regions can boost performance. The
proposed scheme sets the basis for semi-autonomously compiling
an unprecedentedly-large-scale landslide database.

Index Terms—Landslides; segmentation; deep learning; ecore-
gions

I. INTRODUCTION

LANDSLIDES are one of the most widespread hazards,
with over 300M people exposed and over 66M people liv-

ing in high-risk areas [1]. Globally, landslides cause thousands
of deaths each year (≈4,164 in 2017 alone [2]), displacement
of communities, and destruction of infrastructure and habitable
lands. Moreover, climate change is projected to induce more
frequent extreme rainfalls and wildfires, which are expected to
result in more landslides and landslide-related casualties [3],
[4].

Long-term efforts to mitigate the impacts of landslides
require evaluating landslide susceptibility. Planning and pre-
diction capabilities can be greatly enhanced by large-scale

Fig. 1: A bi-temporal pair of pre-event (left) and post-event
(middle) images along with a human-generated landslide anno-
tation (right) for a landslide event in May 2014 near Collbran,
CO.

Fig. 2: A more complex example where the human annotator
missed some landslide areas (toward the bottom right of the
third image) that were detected by a deep learning model
(right-most image). The landslide occurred in September 2013
in Colorado Front Range.

databases of satellite images of landslide events, with accurate
location information. In the US, the United States Geological
Survey (USGS) maintains a database of landslide reports with
approximate locations and times, but no images. This is the
most extensive dataset of its kind, but it relies on intensive
manual effort to map landslides through field investigations
or aerial imagery and is very much incomplete. Furthermore,
its spatial location accuracy still leaves much to be desired
for planning purposes: recorded coordinates are often not
precise enough for determining the landslide setting or for
overlaying other datasets to analyze patterns. While each
entry can be verified manually from high-resolution satellite
images, this process requires significant effort and prevents
scaling up. These issues present both an opportunity and a
challenge for scalability and coverage, as recently summarized
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Fig. 3: Illustration of our proposed Task-Specific Model Updates (TSMU) algorithm, based on the Learning without Forgetting
framework [5]. The semantic segmentation (i.e., pixel labeling) network contains an encoder that extracts features from images
and also contains multiple decoders, one for each ecoregion (task). Each decoder outputs a landslide segmentation (i.e.,
“decodes” features into a landslide annotation), and the ecoregion determines which decoder’s output is used. The encoder
follows the ResNet-34 architecture [6] while the decoders use the U-Net architecture [7]. When a new ecoregion (new task)
is encountered, instead of creating a completely new model, TSMU adds a new decoder to the existing model. The goal of
TSMU is to update the network parameters in the new decoder and the shared encoder to (1) achieve acceptable accuracy on
the new ecoregion (new task) while (2) maintaining or improving performance on the old ecoregions.

by the creators of the USGS database: “our current ability to
understand landslide hazards at the national scale is limited,
in part because spatial data on landslide occurrence across the
U.S. varies greatly in quality, accessibility, and extent” [8].

Given the increasing availability of high-resolution satellite
imagery, a path is now open to collecting information about
space-visible landslide events by having machine learning al-
gorithms scan the images. Several recent efforts [9], [10] have
considered the use of deep learning for landslide segmentation
(also known as landslide mapping) – identifying the pixels in a
satellite image that correspond to landslides. However, due to
the difficulty of labeling training data, each study focused on a
single small region and had limited testing data (for instance,
one study only had 3 testing images [10]).

Using the landslide inventory of approximate location and
time provided by USGS, we manually identified 2,509 land-
slide points and collected 496 “bi-temporal” pairs of satellite
images from varied high-resolution sources. Each pair consists
of a pre-image obtained before the landslide event and a post-
image obtained after the event (Figure 1). The images mainly
came from 4 North American ecoregions [11]: Eastern Tem-
perate Forests (ETF), Marine West Coast Forests (MWCF),
North American Deserts (NAD) and Northwestern Forested

Fig. 4: Pre-event (top) and post-event (bottom) images from
four ecoregions in our dataset (left to right): Eastern Temerate
Forests (ETF), Marine West Coast Forests (MWCF), North
American Deserts (NAD) and Northwestern Forested Moun-
tains (NWFM).

Mountains (NWFM). Human annotators marked the bound-
aries of identified landslides on duplicates of the post-event
images (Figure 1). Landslides are often irregular in shape, are
not always easy to discern in an image (Figure 2), and may be
confused with human activities such as logging or construction
projects. Thus human annotators need explicit training, and
trained annotators still require several minutes to locate a
landslide in an image, and several more to process the image



3

once a landslide has been located. Even trained annotators
may not be able to fully discern between erosional features and
landslides, and confirming this distinction would require high-
resolution topographic data, stereographic imagery, or better
yet in-person field characterization. Such data is not as widely
available as the orthorectified satellite images used here. For
these reasons, building a global landslide image database by
hand is clearly infeasible. The training required for human
labelers also rules out crowd-sourcing platforms like Amazon
Mechanical Turk. However, automated and semi-automated
approaches for constructing landslide databases appear more
promising, as one could start with a manually-labeled dataset,
then train landslide segmentation models and use them to label
additional satellite images.

In such a scenario, the first question we would ask is
whether a model trained on small homogeneous ecoregions
[9], [10] can generalize to other ecoregions for which it has not
been trained. Ecoregions are characterized by geographically-
distinct features such as vegetation and soil type. Landslides
are largely identified due to the disturbance of the land surface
and vegetation, and thus these features vary among different
ecoregions. As can be seen from Figure 4, ecoregions and
their landslides are visually very distinct – they differ in
color, texture, landslide size, and visual contrast with the
background. For this paper, we performed Leave-One-Out
experiments where three ecoregions were used for training and
one for testing, rotating the selection and repeating the process
so that each ecosystem served as the test region. We then
examined how model accuracy responded to characteristically
different datasets. In a nutshell, we observed that models can
struggle on new ecoregions, and hence a more diverse training
set is needed.

The next challenge in building a semi-automated global
landslide database is how to update the landslide segmentation
model as images from new ecoregions are acquired. Since
landslides in different ecoregions share similarities as well
as differences, a model should have components/parameters
that are shared by all ecoregions, as well as ecoregion-specific
components (see Figure 3). One obvious approach – Option
1 – is to re-train the model on the entire dataset, old and
new data combined. This is a computationally expensive and
energy-intensive solution [12]. Another approach – Option
2 – is to incrementally train the model using only the new
data. However, this can result in catastrophic forgetting [13],
a phenomenon that is marked by deterioration of performance
on ecoregions covered by the old data. Another possibility –
Option 3 – avoids catastrophic forgetting by training a new
separate model for the new ecoregion. This inherently limits
performance as any new knowledge gained cannot be used to
improve on the old ecoregions.

To combat these problem, we propose Task-Specific Model
Updates (TSMU), an adaption of the Learning without For-
getting [5] method (previously used for image classification)
for semantic segmentation (pixel labeling). TSMU takes ad-
vantage of our model architecture to achieve the two goals
laid out in the Learning without Forgetting framework: (1)
for efficiency, only new data should be used for training, (2)
updates of shared parameters should not cause large changes

to predictions on old data. We compare this model with
alternatives in terms of accuracy and computational cost.
While TSMU is not as computationally efficient as simple
incremental training (Option 2), it is much more accurate than
Options 2 and 3 and does not exhibit catastrophic forgetting (in
fact, it improves accuracy on the old ecoregions). The accuracy
compares favorably with retraining on the entire data (Option
1), but TSMU requires significantly less computation.

II. RELATED WORK

Detection and classification of landslides is critical for
hazard analysis [14]. Temporal and spatial occurrences of land-
slides can be perceived better with comprehensive landslide
mapping, which will aid landslide hazard and risk manage-
ment [15], [16]. Landslides and associated erosion can be
identified by detecting the disturbance of earth surfaces. Aerial
photographs and satellite images have been widely used for
landslide detection as the perspective offered by a distant view
provides us a good understanding of the size and extent of a
landslide event [17]. Commonly-used approaches for mapping
landslides from remote sensing images are briefly summarized
below.

A. Classical Approach

Because landslides are low-likelihood events in space, visual
interpretation of landslides from remote sensing images with-
out knowing the accurate location is a labor-intensive empirical
technique that requires experience, training, and a systematic
methodology [17], [18]. While conventional computer vision
and image processing techniques have increased landslide
mapping efficiency from visual-interpretation-based methods
[17], these semi-automatic methods still require human inter-
vention for each scene and cannot produce landslide maps
in an end-to-end fashion. Moreover, the accuracy of these
methods can be easily affected by noise and outliers in
the image [19]. Two approaches are commonly used in the
literature [20]: (1) pixel-based methods, which use spectral
information to detect pixels from remote sensing images that
correspond to landslides (e.g., [21]–[24]); and (2) object-
based image analysis, which uses both spectral and spatial
information for landslide identification (e.g., [18], [25]). These
two approaches are commonly integrated with image change
detection to identify landslides from multi-temporal remote
sensing images. [26] used the change detection technique
to differentiate landslides from bare rock, soil, and other
spectrally-similar features. Machine Learning (ML) techniques
such as Logistic Regression, Support Vector Machines, and
Random Forests have also been used to improve performance
for both pixel-based and object-based image analysis [21],
[27], [28]. However, despite the various techniques used to
identify landslide pixels from remote sensing images, both
pixel-based and object-based approaches require extensive
parametric tuning and post-processing, limiting their applica-
tion at large scales or across different regions.
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B. Deep Learning Approaches and Limitations of Homoge-
neous Training Data

Deep learning, a branch of ML, has also been used for
landslide mapping [20], [29]–[34]. Deep learning techniques
are more efficient in terms of automatic feature engineering
directly from satellite imagery. [29] used landslide images
from multiple seasons from LandSat satellite and DEM data to
extract landslides using three ML models. [32] used Sentinel-
2 images, DEM data from Lidar, and a derived NDVI layer
to map landslides using a modified U-Net model [7]. Due
to the sparse availability of high spatial resolution DEMs
for automatic landslide detection, especially in the case of
some isolated mountainous regions with complex topography,
some researchers use only spectral bands of satellite images
to identify regional landslides with acceptable accuracy. [20]
proposed a deep network called ResU-Net for landslide iden-
tification. The ResU-Net model uses residual blocks [6] in
the U-Net architecture. The authors claim that the residual
learning used in the encoding path of the U-Net model can
address data sparsity problems [20]. Given the success of
the U-Net architecture in semantic segmentation, it has been
used by multiple researchers for landslide mapping. [35] used
U-Net to automatically segment landslides in the city of
Nova Friburgo. [36] compared three deep learning models –
Fully Convolutional Network, Fully-connected Deep Neural
Network, and U-Net – to detect landslide areas. [32] used
a modified U-Net model with ResNet34 blocks for feature
extraction for semantic segmentation of landslides at a regional
scale using Earth Observation data.

While the abovementioned studies employed various deep
networks to detect landslides, each of them focused on a small,
homogeneous region, despite the fact that most practical ML
applications have favored big data from diverse situations.
These small scales might have been inherently limited by
the scopes of these studies, but regardless, two uncertainties
arise: (i) it is uncertain whether the models trained in these
regions are applicable outside of the training region as no
assessment took place across regions; (ii) it is unclear if
these models achieve optimal performance when they are
only trained using data from the region of interest. As deep
networks can model highly complex concepts, when training
data are from a homogeneous distribution, the model may be
overfitted to the peculiarities in this region. Oftentimes, ML
model performance has improved when exposed to slightly
different distributions which, by virtue of contrast, better
inform the model of the nature of the problem [37]. No study
thus far has examined the impacts of including images from
different regions on vision model performance.

C. Arrival of Training Data in Temporal Batches

In traditional supervised learning, there is an assumption
that all the training data is available together for all tasks.
But, in many practical applications, training data arrive in
temporal batches. Each new batch might be coming from a
different source, making its distribution distinct. For example,
we obtain our landslide images in batches corresponding
to different ecoregions. There is significant visual diversity

across ecoregions due to the differences in physical properties
between the geographical locations to which they belong.
We use the term task to define landslide mapping in one
ecoregion. A deep learning model trained on one task often
suffers from catastrophic forgetting [13] when subsequently
trained on a new task, performing poorly on the old task. This
happens when continuously acquiring incrementally-available
information from non-stationary data distributions, and the
parameters in the model change to meet the objectives of
the new task. Overcoming this problem is the focus of the
continual learning field [38], [39].

Continual Learning approaches can be classified into three
categories [40], [41]:

1) Parameter isolation-based methods: These methods as-
sign different parameters in a network to each task. This is
achieved by dynamic extension of the network [5], [42] or
by a fixed architecture [43]. Dynamic architectures can be
increasingly memory intensive with every newly added task.

2) Replay-based methods: These methods span from naive
rehearsal [44] algorithms, which store old data to pseudo-
rehearsal methods where generative models are used to ap-
proximate previous samples [45].

3) Regularization-based methods: Data-focused [5], [46]
regularization approaches use data distillation to utilize the
knowledge of old tasks to enhance the performance of the
model. Prior-focused [13], [47], [48] methods use regulariza-
tion loss functions that penalize the shift of important parame-
ters in the network. Importance weights are usually computed
using an unsupervised approach, where the sensitivity of the
network’s output to change in its parameters is measured [48].

Learning without forgetting (LwF) [5] is a multi-task learn-
ing training strategy that is a combination of data-focused
regularization and dynamic parameter isolation. Proposed for
classification problems, it adds a set of new outputs for each
new task by increasing the size of the final layer of the network
(and thus each task is associated with a set of output nodes).
When a datum for a new task arrives, the LwF mechanism
runs it through the network and stores the resulting output
for all prior task-specific nodes. It then modifies the network
parameters so that the new-task output nodes improve accuracy
on the task, while trying to prevent the output of the prior
task nodes from changing. This is done by using knowledge
distillation loss [49] in the training objective function. Our
proposed TSMU is an extension of LwF from classification to
the more complex problem of semantic segmentation (labelling
all pixels in an image). To get the concept behind LwF to work
in this setting, we needed to change the network architecture
to be better suited to this task. Then, instead of making only
new copies of the final layer for each new task, we make
copies of the decoder part of our architecture. This usage,
in a much more complex problem and leveraging a more
powerful network for task-specific predictions, is a good test
of the robustness of the principles underlying LwF (and hence
TSMU).

D. Competing Methods
There are other methods in the literature which lever-

age previously-learned shared parameters to learn new task-
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specific parameters [5] - Feature Extraction, Fine-tuning, and
Joint Training. These methods are evaluated for comparative
analysis with TSMU:

1) Feature Extraction: Feature Extraction [50], [51] is a
method where outputs of the lower levels of a trained network
(such as the convolutional layers) are used as features for a
given image, since convolutional layers are believed to extract
important visual information from images. These features are
then fed into a different (task-specific) network.

Feature extraction can be further improved by fine-tuning,
which we describe next.

2) Fine-tuning: If a network is trained for a specific task
and new task-specific parameters are added, fine-tuning [52]
continues training the whole (or specific layers of the) network
over the new data with a small learning rate. This allows
the network to leverage its existing knowledge when learning
about the new task. The literature shows that fine-tuning often
performs better on the new task data than feature extraction
[52], [53] and has better performance than retraining the task-
specific network from randomly initialized weights [54], [55].
The low learning rate is crucial and is used as an attempt to
preserve the knowledge learned in the original tasks.

3) Joint Training: In this method [56], the old, new, and
shared parameters are jointly optimized by utilizing samples
from every task. Joint training improves generalization on each
task by utilizing the domain information in the training data.
It is the most computationally-expensive alternative, and can
be considered to be the upper bound for TSMU and other
continual learning approaches.

III. STUDY AREA

Fig. 5: Distribution of identified space-visible landslides in the
present study and Level I ecoregion map for the United States.

Landslides are commonly-seen natural processes that are
widely distributed across the North American continent, which
has a rich and diverse landscape ranging from forest to desert.
In this study, we focused on space-visible landslides that oc-
curred in the contiguous United States and were reported in the
USGS landslide inventory [8]. The occurrences of landslides
are due to a combined effect of triggering mechanisms (e.g.,

rainfall and snow melt) and predisposing factors (e.g., hillslope
environment, ecosystem dynamics, and geomorphic dynamics)
[57], [58]. Thus, the distribution of landslides varies from
region to region, favoring different combinations of triggering
mechanisms and landscape factors. Although landslides do
occur in all fifty United States, we focus here on the conter-
minous states (i.e., lower 48 states) where landslides are often
concentrated along the West Coast, the Appalachian Moun-
tains, and the Intermountain West. An ecoregion defines areas
that share similar ecosystems, such as hillslope environment
and climate [11]. In the present study, the landslides came from
the following ecoregions: Eastern Temperate Forests (ETF),
Marine West Coast Forests (MWCF), North American Deserts
(NAD), and Northwestern Forested Mountains (NWFM). We
focus on landslides that have left a space-visible scarp; hence,
landslides such as rockfalls and topples are excluded. Figure 5
shows the distribution of Level I ecoregions and space-visible
landslides identified in the present study.

IV. DATASET CHARACTERISTICS

Prior studies on landslide segmentation have used datasets
with at least one of the following characteristics: (1) they con-
tained very few images, (2) the images were low-resolution,
and/or (3) the images were collected from a small geographic
location with homogeneous characteristics. For the purposes
of this study, our goal was to collect a large quantity of sub-
meter resolution images from geographically diverse regions.
We obtained landslide locations using the landslide inventory
from the United States Geological Survey (USGS) [8].

This inventory provides approximate locations and times of
landslide events. To get post-event images, our data collection
team examined these locations to find space-visible landslides
with sub-meter resolution satellite images. We filtered out
images that had heavy cloud cover or low resolution. For
every post-event image found, we obtained a pre-event image.
Multiple pre-event images at different times were examined
and the clearest pre-event image was chosen. The images were
then manually annotated to mark the landslide areas, resulting
in 496 pairs of georeferenced pre-event/post-event images with
an average size of 1200 by 800 pixels.

Satellite images of rainfall-triggered landslide events in the
United States are relatively infrequent (i.e., sparse), and about
two-thirds of the landslides in the USGS inventory were in
the three West Coast states [8]. Thus, the data had a class
imbalance in terms of number of satellite images in each
ecoregion: we obtained 27 images for ETF, 30 images for
MWCF, 39 images for NAD, and 400 images for NWFM

Histograms of landslide and background pixel intensities
for each of the four ecoregions (Figure 6) indicate that each
ecoregion, as well as landslides in each ecoregion, had distinct
characteristics. Quantitative statistics (Table I) indicate that the
distributions were dissimilar, suggesting that a model trained
on a subset of ecoregions may not transfer well to ecoregions
on which it has not been trained. These analyses also suggest
that without care, training a model on new ecoregions could
cause its performance to degrade on old ecoregions due to
these dissimilarities between ecoregions.
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Fig. 6: Pixel-wise Landslide and Background Distributions for ecoregions: Eastern Temperate Forests (ETF), Marine West
Coast Forests (MWCF), North American Deserts (NAD) and Northwestern Forested Mountains (NWFM)

TABLE I: Pixel Distribution Statistics

Ecoregion # of training
image pairs

Landslide
Pixel
Mean

Landslide
Pixel

Standard
Deviation

Landslide
Pixel

Median

Background
Pixel
Mean

Background
Pixel

Standard
Deviation

Background
Pixel

Median

Eastern
Temperate Forests

(ETF)
27 0.454 0.186 0.461 0.306 0.142 0.295

Marine
West Coast Forests

(MWCF)
30 0.504 0.219 0.503 0.317 0.171 0.293

North American
Deserts
(NAD)

39 0.597 0.176 0.624 0.459 0.151 0.461

Northwestern
Forested Mountains

(NWFM)
400 0.389 0.161 0.404 0.304 0.129 0.308

The pixel labeling problem was formulated as a binary
classification problem for each pixel (“is” vs “is not” a
landslide pixel). We refer to the ground truth as a binary
mask. A data annotation tool called LabelMe [59] was used to
manually label the landslide areas in the satellite images. Data
was annotated using images with original dimensions (before
reshaping). The tool stored the labels as JSON files. These files
were parsed to extract pixel-level information for generating
binary masks. Ground truth binary masks used for training
were stored as gray-scale images with reshaped dimensions
of 512 x 512 and pixel intensities {0,1}. Intensity values of
zero represent non-landslide pixels (background) and intensity
values of one represent landslide pixels (foreground).

As a pre-processing step, satellite images were resized to
512 × 512 pixels, and normalized by dividing each pixel by
the maximum intensity in the distribution. The final images
used for training had pixel intensities in the range [0,1]. The

changes in aspect ratios corresponding to each image were
stored so that the images and their corresponding network
predictions could be reverted to their original dimensions
during the time of inference.

V. METHODS

A. Data Processing
The dataset was used to form training, validation, and test

sets as follows. The test set consisted of 5 (randomly selected)
pre/post image pairs from each ecoregion. These images were
only used for measuring the reported accuracy metrics. We
use the term global test set to refer to the entire test set and
highlight the contrast with an ecoregion-specific test set (which
is the subset of the global test set belonging to the ecoregion of
interest). Random augmentations (vertical or horizontal flips of
the images) were performed on the remaining images, resulting
in the training set.
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The validation set was used to tune hyperparameters such
as the learning rate and momentum parameter (β) of our
optimizer (Adam [60]). Validation images were never used
to report accuracy metrics. We constructed the validation
set from the training data by applying 2 or more of the
following random augmentations to each image pair: diagonal
flip, horizontal flip, vertical flip, zoom, translation, Gaussian
blur. We would like to note that this is a larger collection
of augmentations than is applied to the training set. This
was done intentionally so that the validation set had slightly
different characteristics from the training set, thus reducing
the chance of the model overfitting to the training set.

Overall, after augmentation, we obtained approximately
2880 image pairs.

Due to the sparse availability of rainfall-triggered landslides
in the United States, there was a class imbalance in terms of
the number of satellite images in each ecoregion. In other
words, we obtained 400 total image pairs in the Northwestern
Forested Mountains (NWFM) ecoregion, but only ≈ 30 image
pairs in each of the other three ecoregions (see Table I).
Training a machine learning model with such a skewed data
distribution tends to bias a model towards focusing on cases
with more data, at the expense of the others. To mitigate this
problem, we used a method called “uniform sub-sampling”
during training. Specifically, during each training epoch, we
randomly sub-sampled 35 image pairs from the NWFM train-
ing data. This way, training images for each training epoch
were balanced among the 4 ecoregions, but since model
training consists of multiple epochs, all of the training images
were eventually used.

B. Metrics and Evaluation Criteria

The model takes as input a pair of pre- and post-event
images, and for each pixel outputs a prediction value of 0 or
1 (1 = predicted landslide and 0 = predicted non-landslide).

We employed standard metrics commonly used to evaluate
the quality of pixel-labeling tasks: Intersection over Union
(IoU), Recall, Precision, and F1 score. Specifically, IoU is
the number of correctly predicted landslide pixels (intersection
between the prediction and ground truth) divided by the total
number of ground truth and predicted landslide pixels (union).
Precision is the fraction of predicted landslide pixels that were
correct. Recall is the fraction of the true landslide pixels that
were correctly captured by the model, and F1 is the harmonic
mean of precision and recall. These metrics, mathematically
defined in Equations 1-4, were calculated for each image,
using the number of True Positive (TP), False Positive (FP),
True Negative (TN), and False Negative (FN) pixels.

Intersection over Union (IoU) =
TP

TP + FP + FN
(1)

Precision (P) =
TP

TP + FP
(2)

Recall (R) =
TP

TP + FN
(3)

F1 Score =
2*P*R
P + R

(4)

For catastrophic forgetting experiments, training consisted
of two phases. In the initial phase, the model was trained
on a subset of ecoregions. In the second phase, the model
was updated with data from the remaining ecoregion(s). Since
the competing approaches differed in how the second phase
was performed, we evaluated their training costs using the
following metrics:
• Number of epochs: number of training epochs needed for

the model to converge during the second training phase.
• Time to convergence: Amount of (wall clock) time taken

to converge during the second training phase.
• Number of image pairs used for training: The total

number of image pairs used in the second phase of
training.

• Number of trainable parameters: The total number of
trainable parameters in the second phase of training.

C. Model Transferability

Our first set of experiments was designed to gauge whether
models trained over homogeneous regions were likely to
perform well on new regions. We called these Leave-One-Out
experiments because we trained a model using the training
data for 3 ecoregions and tested it on the testing data for the
remaining ecoregion. Since there were 4 ecoregions in our
dataset, this resulted in 4 sets of experiments.

1) Base Architecture: The base architecture we used for
these experiments is illustrated in Figure 3 (without the new-
task portion). It consists of an encoder, which transforms a pre-
and post-event image pair into an array of features, followed
by a decoder which uses the features to label each pixel in
the post-event image (1 for landslide pixel and 0 for non-
landslide). The input dimensions are 512×512×6 (each image
in a pair is 512x512 and has 3 RGB channels).

The encoder follows a ResNet-34 [6] architecture. We let
θs denote the parameters of this encoder. The convolutional
layers [61] of this encoder start with a depth of eight 3x3
convolutional filters and end at 128 filters. Thus the output of
the encoder has dimensions 512× 512× 128.

The decoder (blue block of Figure 3) is a variant of the
U-Net architecture [7]. It consists of a contracting path (first
half of the blue block of Figure 3) followed by an expansive
path (second half of the blue block). The contracting path
is used by the network for further feature engineering and
the expansive path uses these features to label pixels. The
reason for this architectural choice is that it will easily allow
us to extend the network for new ecoregions (the ResNet
encoder will be shared by all ecoregions and will learn how to
perform feature engineering common to all ecoregions; each
new ecoregion will then be given a separate U-Net decoder
which will perform futher region-specific feature engineering
in the contracting path followed by pixel labeling in the
expansive path).

In the decoder, a repeating building block RC is used in the
contracting path. It consists of a 3 × 3 separable convolution
(to reduce the number of trainable parameters) [62] and a
Batch Normalization layer [63], followed by a rectified linear
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unit (ReLU) [64] activation function. Seven such Rc blocks
are used, starting with a depth of 8 filters (channels) and
ending with 512 filters. A 2×2 max pooling [65] layer with a
stride of 2 is used between each RC block to downsample the
resolution by half. The number of filters is doubled at every
down-sampling step. This is followed by a spatial dropout
[66] layer acting as a regularizer to avoid overfitting. For the
expansive path in the decoder, we use a repeating block RE .
It consists of a 2× 2 upsampling block that uses a transposed
convolution (deconvolution) [67] layer. This upsamples the
layer’s input as well as decreases the number of channels by a
factor of two. A skip connection [68] from the contracting
path at every downsampling step is concatenated with the
corresponding output of the deconvolution block to get back
the pre-upsampled resolution. This is fed into into a 3 × 3
convolution followed by a Batch Normalization layer and a
ReLU activation. Six such RE blocks are used, starting with
a depth of 256 filters and ending with 8 filters. At the final
layer, a 1×1 convolution [61] with sigmoid activation is used
to generate predictions at the same spatial resolution as that
of the input image. The final output from the decoder is of
resolution 512× 512× 1.

D. Continual Learning/Catastrophic Forgetting Experiments

The next set of experiments considered the situation where
a model has been trained on 3 ecoregions and then must be
updated with data coming from a 4th ecoregion. We compared
our proposed TSMU with other baseline methods described in
this section. We started with the baseline methods in order to
contrast the different choices that TSMU makes based on the
Learning without Forgetting [5] framework. A visual guide to
each of the alternatives is shown in Figure 7.

1) Baseline Methods:
We used six baseline methods. The first four methods do

not involve revisiting old data, while the last two do revisit
old data.

(i) Leave One Out (LOO): The first option for a baseline, is
to simply not update the network in response to the new train-
ing data. It is computationally cheap (after the initial training
on the old ecoregions) and avoids catastrophic forgetting. The
downside is potentially poor accuracy on new ecoregions. This
model uses the base architecture described in Section V-C1.

(ii) Retraining the LOO model (Retraining): The next
option is to take the model trained on the old ecoregions
and to continue training it using just the data from the new
ecoregion. In order to guard against drastic forgetting, this
subsequent training is done using a small learning rate, which
is a common deep learning practice. This model uses the same
base architecture as LOO. The purpose of this baseline is to
explore performance when no new parameters are added in
response to data from the new ecoregion.

(iii) Fine-tuning: For this option, a model using the base
architecture is trained on the old ecoregions. However, when
data for a new ecoregion arrives, a new decoder is added for
this ecoregion. Thus the architecture bifurcates, as shown in
Figure 7. The old and new ecoregions share the same ResNet
encoder. Its parameters are denoted by θs. The parameters for

the decoder for the old ecoregions are denoted by θo (“o”
for old task) and the parameters for the additional decoder
added for the new ecoregion are denoted by θn. The model is
updated with the new data as follows. The old-task decoder
parameters (θo) are frozen (not updated). The shared decoder
parameters θs and the new decoder parameters θn are updated
(e.g., using gradient descent with the Adam optimizer [60]).
Thus after training, the new values θ′s of the shared parameters
may differ from the old values.

(iv) Feature Extraction: This is a variant of the fine-tuning
approach where the parameters θs of the shared decoder are
not updated. Only the parameters θn of the new decoder are
updated. In other words, the shared decoder is viewed as a
feature extractor (extracting features from the input). Those
features are fed into the new decoder (whose parameters are
updated) but the feature extractor remains unchanged.

(v) Joint Training: This option extends the feature extrac-
tion option. As before, we use the bifurcated structure shown
in Figure 7. As in feature extraction, the shared encoder and
old ecoregion decoder are trained on the old ecoregions, then
the new decoder is added and only its parameters are updated.
Afterwards, we combine the new data together with an equally
sized random sample of the old data and update all of the
parameters (this last added step is the difference from feature
extraction). The drawback of this approach is that it requires
training on old and new data, so can be computationally
expensive as the landslide database grows.

(vi) One model trained on all of the data: As an alternative
to joint training with the bifurcated model, here we train the
base architecture. First it is trained on the old ecoregions.
When data from a new ecoregion arrives, the model is retrained
on all of the data (old and new ecoregions). This is also a
very computationally-expensive approach and is expected to
perform the best. The goal of continual learning is to achieve
performance as close to this as possible while significantly
reducing the computational expense.

2) Task-Specific Model Updates (Proposed Model): We
consider two types of architectures. The first is the bifurcated
architecture that our other baselines use. This allows for a fair
comparison between the training methods for TSMU and the
baselines. We also consider an archictecture (Sequential Task-
Specific Model Updates in Figure 7) in which there is one
shared encoder and a separate decoder for each ecoregion (not
just a single decoder for the old ecoregions and one decoder
for the new ecoregion). This version is closest to how we
would practically deploy TSMU– data for one ecoregion are
collected, the model is trained; data for the second ecoregion
are collected and the model is updated, and so on.

The underlying training methodology is based on Learning
without Forgetting [5] and is outlined in Algorithm 1. The
training approach consists of four phases:

A Initial Training: As with the baseline methods, train the
shared encoder and old-task decoder(s) using gradient
descent with the Adam optimizer on the data for the
first set of ecoregions. This step sets the initial shared
parameters θs and old-task-specific parameters θo.

B Incremental Freeze Training: This step is the same as
for the feature extraction baseline. When data from a
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Fig. 7: Overall Block diagram of each of the methods employed. Shared parameters θs correspond to the ResNet-34 feature
extractor; θo correspond to the old-task-specific UNet parameters; θn correspond to the new-task-specific UNet parameters.
Task-Specific Model Updates and Sequential TSMU are based upon our proposed methods. The model trained on data from
all the ecoregions serves as a clear upper bound in our experiments.

new ecoregion is added, we add a new decoder for this
ecoregion, with its own parameters θn. These parameters
are optimized using gradient descent while the shared
decoder parameters θs and old-task decoder parameters
θo are frozen (unchanged).

C Stored responses: For each example (i.e., pre- and post-
event image pair) Xi

n in the new data Xn we compute the
output of the old-task decoder(s), and call this fo(Xi

n);
in contrast, the output of the new-task decoder is denoted
fn(X

i
n). We store the outputs fo(Xi

n) for each item Xi
n

in the new data. The reason is that we will later train
all of the parameters, and ideally, we do not want the
old-task predictions to be adversely affected (i.e., on the
old-task data, the output of the old-task decoder should
be unchanged). However, since we do not want to revisit
the old data (to save on computation, since it is larger
than the new data), we use a surrogate criterion: the old-
task decoder’s output fo(Xi

n) for the new data should
not change much during training. Thus we save fo(Xi

n)
for the new data and use it in the next phase. Note
that the output layer of our network architecture has a
sigmoid activation function, so the output fo(Xi

n) is a
matrix that holds a prediction for each pixel p, and its
value is between 0 and 1 (the final landslide/no-landslide
prediction is obtained by thresholding – values above 0.5
are converted to 1, and values below are converted to 1).

D Joint Fine Tuning: Now we train all of the parameters
θs, θo, θn with a small learning rate. The goal is to

finetune all of the parameters so that knowledge extracted
from the new data can also be applied to the old data.
The parameters are trained to minimize a combination of
soft Dice loss [69] Ldice for improving accuracy on the
new data and Knowledge Distillation loss [49] LKD to
make sure that the old-task decoder outputs do not stray
too far from their previously-stored responses fo(Xi

n).
Let us denote yin to be the ground truth for the ith pre-
/post-even image pair; denote ŷin to be the current output
of the new-task decoder; and denote ŷio to be the current
output of the old-task decoder for this ith image pair (in
contrast fo(Xi

n) is the previously stored response for the
initial weights and does not change during training). The
overall loss function that is minimized during training is:

n∑
i=1

Ldice(y
i
n, ŷ

i
n) + λ

∑
i

LKD(fo(X
i
n), ŷ

i
o)

where the hyperparameter λ weights the relative impor-
tance of the two loss functions. In our experiments, we
simply set λ = 1. Note that during training, we use
weight decay regularization [70] which adds another term
to the objective function (see Algorithm 1).

Now, soft Dice loss Ldice is a differentiable approxi-
mation to the Intersection over Union (IoU) performance
measured. It is defined as follows, using the notation that
for a given pixel p in data item Xi

n, yin[p] is the ground
truth label for the pixel and ŷin[p] is the predicted label
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Algorithm 1: Task-Specific Model Updates training mechanism

PHASE 1: INITIAL TRAINING
Old-Task Training Data: {Xi

o, y
i
o}

Parameters to be trained: {θs, θo}
Parameters frozen: None

Outline:
1. Random Initialization: {θs, θo} → {θ′s, θ′o}
2. Train on old-task data: ỹio = fo(X

i
o|θ′s, θ′o)

3. Optimize using Soft Dice Loss: θ′s, θ
′
o ← argmin

θ′s,θ
′
o

{Ldice(yio, ỹio) +R(θ′s, θ
′
o)}

4. Repeat steps 2 and 3 till saturation.

PHASE2: INCREMENTAL FREEZE TRAINING
New-Task Training Data: {Xi

n, y
i
n}

Parameters to be trained: {θn}
Parameters frozen: {θ′s, θ′o} → {θ′∗s , θ′∗o }

Outline:
1. Store response of old-task parameters on new data: fo(X

i
n|θ′∗s , θ′∗o )→ fo(X

i
n)

2. Random Initialization: {θn} → {θ′n}
3. Train on new-task data with frozen θ′∗s : ỹin = fn(X

i
n|θ′∗s , θn)

4. Optimize new parameters on new data using Soft Dice Loss: θ′n ← argmin
θ′n

{Ldice(yin, ỹin) +R(θ′n)}

5. Repeat steps 3 and 4 till saturation.

PHASE 3: JOINT FINE-TUNING
Training Data (new-task data with stored responses): {Xn, fo(X

i
n), y

i
n}

Parameters to be trained: {θ′s, θ′o, θ′n}
Parameters frozen: None

Outline:
1. Train on new-task data: ŷio, ŷ

i
n = f(Xi

n|θ′s, θ′o, θ′n)
2. Optimize whole model

using Knowledge Distilla-
-tion and Soft Dice Losses: θ̂s, θ̂o, θ̂n ← argmin

θ̂s,θ̂o,θ̂n

{λo ∗ LKD(fo(Xi
n), ŷ

i
o) + Ldice(y

i
n, ŷ

i
n) +R(θ̂s, θ̂o, θ̂n)}

3. Repeat steps 1 and 2 till
saturation.

Parameters obtained after Training: θ̂s, θ̂o, θ̂n

for the pixel:

I(yin, ŷ
i
n) =

∑
pixels p

yin[p] ŷ
i
n[p] (5)

U(yin, ŷ
i
n) =

∑
pixels p

(yin[p] + ŷin[p]) (6)

DiceCoeff(yin, ŷ
i
n) =

2I(yin, ŷ
i
n) + µo

U(yin, ŷ
i
n) + µo

(7)

Ldice(y
i
n, ŷ

i
n) = 1− DiceCoeff(yin, ŷ

i
n) (8)

The value for the hyperparameter µ0 was chosen to be 1 using
a grid search based on the validation set. Ldice is used for the
initial training of the old-task data for TSMU as well as the
baselines. It is also used during the incremental freeze training
portion of TSMU.

The knowledge distillation loss LKD is defined as fol-
lows:

ŷi
∗

o [p] =
ŷio[p]

1/T

ŷio[p]
1/T + (1− ŷio[p])1/T

(9)

f i
∗

o [p] =
fo(X

i
n)[p]

1/T

fo(Xi
n)[p]

1/T + (1− fo(Xi
n)[p])

1/T

(10)

LKD(fo(X
i
n), ŷ

i
o) = −

∑
pixels p

f i
∗

o [p] log(ŷi
∗

o [p]) (11)

The value for the hyperparameter T was chosen to be 2
using a grid search on the validation data.

E. Selecting Decoders at Test Time

At deployment (test) time, a new image pair is typically
not labelled with the ecoregion it belongs to. Thus, we have
an automated method that determines which ecoregion a new
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image pair belongs to (and hence which decoder to use for
landslide labeling). We train an autoencoder for each region.
An autoencoder is a neural network that learns to compress
its input (nonlinear dimensionality reduction) and then decom-
press it (lossy reconstruction). To select the appropriate ecore-
gion, we pass the image pair through each of the autoencoders.
The ecoregion of the autoencoder which has the smallest
reconstruction error (measured in terms of mean squared error)
is the one that is chosen. We use a 1-hidden-layer fully
connected network for the encoder (which compresses the
input) and also for the decoder (which reconstructs the input).
The decoder has a sigmoid activation in the final layer and is
trained using binary cross entropy [71].

F. Implementation Details

All of our models were trained with an initial learning
rate of 1e−3 for 200 epochs with a batch size of 2 on a
NVIDIA RTX 2080 Ti GPU cluster with 16GB memory. The
regularization R mentioned in Algorithm 1 is a weight decay
of 0.0003 every 20 epochs until the value of 1e−9 is reached.
Data pre-processing is performed before training.

VI. RESULTS

The previously-described experiments were designed to
cover three questions: (1) in order to build a global landslide
database, is it sufficient to train a model over a small homo-
geneous region (will the model transfer to other regions?); (2)
can model performance in a region be improved when we add
data from more ecoregions?; and (3) how can the model be
updated with more data to improve its accuracy while avoiding
the computational cost of completely retraining the model with
all of the data?

A. Model Transferability Experiments

The results of the model transferability experiments suggest
that these models do not transfer well across ecoregions (Table
II). As a reminder, our dataset contained four ecoregions: ETF,
MWF, NAD, and NWFM. In the experiments, we trained a
model using the training dataset for 3 ecoregions, and then
evaluated the model on the test dataset for the 4th ecoregion
(which the model hadn’t seen before). For example, in the
first line of Table II, we trained the model on ETF, MWF,
and NAD. For the testing set of these ecoregions (the old-
task column), the model achieved an IoU score of 0.638.
Such a score indicates fairly good performance (for context,
Figure 8 shows some sample pre-event/post-event image pairs
along with the ground truth labels and model predictions
with IoU scores, from top to bottom, of 0.621, 0.665, 0.632,
0.657 and 0.603). However, when this model was evaluated
on the test set of the 4th ecoregion (NWFM), there was a
dramatic drop in IoU (0.392). In this instance, the model
did not transfer well. We repeated this experiment for each
ecoregion, so the 2nd row in Table II shows results when ETF
was treated as the new ecoregion, and so on. The largest loss
of performance occurred when the North American Deserts
(NAD) ecoregion was considered as the new ecoregion (4th

Fig. 8: Sample images containing the pre-event, post-event,
ground truth, and prediction labels (left-to-right) from one of
the trained models having IoU scores in the range of 0.6. The
IoU scores from top to bottom were specifically 0.621, 0.665,
0.632, 0.657 and 0.603.

row). The other three ecoregions all have forests and therefore
are the most homogeneous grouping in these experiments. This
underscores the point that training over homogeneous regions
is insufficient to building a generic landslide identification
model and therefore heterogeneity in the training data should
be an important data collection goal.

B. Model Updating Experiments – Model Quality

When a landslide database is updated with training data
from new ecoregions, the model should be updated as well. We
have two natural but competing goals: making the model as ac-
curate as possible, and minimizing the amount of computation
needed to perform the update. An ideal method would have
the best (or nearly the best) accuracy along with significant
savings over complete retraining of the model on the entire
dataset. We compared TSMU with six baseline methods that
have similar architectures but one or more differences in the
training approach, thus letting us evaluate the design choices
in TSMU. We first report the model quality results and then
separately report the runtime costs.

The second baseline model (retraining), which did not add
new parameters but simply continued training only on the new
data with a low learning rate (thus saving on computations
since the more numerous older data were not revisited),
worked well for the new region but often exhibited catastrophic
forgetting for the old tasks, as demonstrated below (Table
III). The first row in Table III shows the case where the data
initially contained the ETF, MWF, and NAD ecoregions, and
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later on the new ecoregion NWFM was used for retraining.
After the model was trained on the first 3 ecoregions, it
achieved an IoU of 0.638 (2nd column) on testing data for
those ecoregions, while its IoU on NWFM testing data was
only 0.392 (third column) because it had not yet seen this
ecoregion. After the “retraining” phase was completed, its
performance on the new ecoregion improved substantially
(increasing from 0.392 to 0.624 in the last column) but
exhibited classical catastrophic forgetting: performance on the
old ecoregions dropped to 0.332 (second to last column). This
behavior was consistent regardless of which ecoregion was
treated as the new one, and thus this approach is not viable.

The third baseline model (finetuning) added a new decoder
for the new ecoregion and updated the parameters of this
decoder, along with the shared encoder, using the new data.
Performance was improved for the new task, but moderate
forgetting occurred for old tasks (Table IV). After the initial
training on 3 ecoregions, the finetuning process was performed
to incorporate data from the 4th ecoregion. The last column
in Table IV shows that this approach achieved comparable
IoU on the new ecoregion to that of the retraining baseline.
The second-to-last column in Table IV shows that there was
moderate forgetting – performance on the old ecoregions
dropped, but not as much as for the retraining baseline.

The fourth baseline model (feature extraction), which added
a new decoder for the new ecoregion and updated only
the parameters of the decoder and nothing else, showed no
forgetting on the old task but suboptimal performance on the
new task (Table V). Since the shared encoder was not updated,
the old-task decoder made exactly the same predictions on the
old ecoregions and so there was absolutely no forgetting (or
any other performance change) for the old ecoregions (second-
to-last column). However, because the shared encoder was not
adapted to extract better features for the new ecoregion, its
performance on the new task was slightly worse than for the
finetuning baseline.

Having examined the four baseline methods that did not
revisit old data, we found that the finetuning approach achieved
the best performance on the new data while exhibiting mod-
erate forgetting. Meanwhile, the feature extraction approach
effectively guarded against forgetting (at the expense of lower
accuracy on the new task). We now compare these to TSMU,
which also avoids revisiting the old data.

Results for TSMU show that the algorithm achieved state-
of-the-art performance on both old and new tasks, without
much compromise (Table VI). Since its training has 3 phases,
we show results after each phase. The initial training, which
was common to all of the baselines, is shown in the first
two columns. The next phase (incremental freeze training)
of TSMU updated only the new decoder parameters (hence
predictions made by the old-task decoders are unaffected).
The middle column shows that this phase improved the per-
formance on the new task (and of course the results on the
old ecoregions remained identical to what they were before).
The last phase of TSMU used the stored response of the new
data on the old-task decoders, and added further improvement
in performance for the new ecoregion (last column). Overall,
we see this improvement is generally better than all of the 4

baselines that only used the new data. Meanwhile, the second-
to-last column shows that the performance on the old tasks also
improved.

The results so far have shown that TSMU (which only
uses new data for updates) clearly dominated all of the
baseline methods that only used new data for updates. The
next question is whether it left anything on the table – how
much better were computationally-heavy models that revisit
all of the data?

The joint training baseline model, which has the same ar-
chitecture as TSMU including the incremental freeze training
part of the model fitting procedure (during this phase, only
the newly added parameters were trained), showed a marginal
benefit over TSMU. It differs from TSMU in that afterwards,
instead of using the stored responses from the new data, it
trains all parameters by combining the new data with an
equally sized sample of the old data (to reduce computational
cost). The results (Table VII) show a slight improvement over
TSMU with respect to performance on the new task (last col-
umn), as well as a slight improvement on the old task (second-
to-last column). We later discuss the computational differences
between the two (Table IX) to examine the computational cost
of this improvement.

The last baseline that revisited the old data was the single
model that was trained on all of the data (in this case there
was no distinction between new and old data since they were
combined together). Its mean IoU on the combined test set
for all ecoregions is shown in Table VIII, along with the IoU
values for the other methods over the combined test sets. As
expected, this clearly was the best option purely in terms of
performance. However, it requires complete retraining every
time data for a new ecoregion are obtained, which could be
computationally expensive.

The second-to-last row of Table VIII also shows for ref-
erence the IoU that was achieved when TSMU was updated
sequentially (one ecoregion at a time, instead of training on
the first 3 together and then adding the 4th one), referred to as
Sequential TSMU. After all of the ecoregions were added, its
mean IoU of 0.671 was the second best among all methods.

C. Model Updating Experiments – Training Time

We now consider the training time needed for these al-
ternative methods (Table IX). For the methods Retraining,
Fine-tuning, Feature Extraction, TSMU, and Joint Training,
we report the extra time needed to update the model with the
4th ecoregion, while for Sequential TSMU and training with
all of the data, we report end-to-end training times.

We see that out of the 4 methods that do not revisit the old
data, TSMU is more computationally expensive, adding an
extra hour of training time. However, among those methods it
is the only one that improved on the new task and old tasks
(no forgetting). Joint training revisits some of the old data and
achieves slightly higher accuracy metrics than TSMU, however
it requires more than twice as much training time. Training on
all of the data is by far the most expensive of all.

Moreover, the cost for both joint training and training on
all data is both additive (because it only grows as more data
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TABLE II: Model Transferability Experiments measuring
mean Intersection over Union on a new ecoregion. Test (old
task) means the model is tested in the regions where it is
trained. Test (new task) means the model is tested in a region
withheld from training.

Leave-One-Ecoregion-Out: mean Intersection over Union
Experiments:

Trained on ecoregions
test

(old task)
test

(new task)
ETF + MWF + NAD 0.638 0.392 (NWFM)

MWF + NAD + NWFM 0.643 0.498 (ETF)
NAD + NWFM + ETF 0.661 0.469 (MWF)
NWFM + ETF + MWF 0.674 0.238 (NAD)

Average 0.654 0.399

are added) and iterative (it needs to happen in every iteration)
and thus can grow markedly during a project lifetime.

It is instructive to compare the marginal cost of TSMU
adding a new ecoregion (3rd line) with the full cost of adding
a region one at a time (e.g., train on ETF, then use the training
method to add in MWF, then use the training method to add
NAD, etc.) which appears on the second to last line vs. the
full cost of training from scratch (last line). The marginal
cost of adding a new ecoregion using TSMU is about 3
hours worth of training, so approximately 12 hours for the
4 ecoregions. The marginal cost of adding a new ecoregion
when retraining completely on all of the data keeps increasing
– if there was a fifth ecoregion to add, then the additional cost
would exceed 13.8 hours (last line of the table). Thus the
total computational cost of adding new ecoregions appears to
be linear (i.e., constant marginal cost per ecoregion) while the
total cost of constantly retraining over all of the data appears
to be quadratic (linear marginal cost per ecoregion).

Thus, overall, TSMU appears to strike a good balance
between performance and computational expense.

VII. DISCUSSION AND CONCLUSIONS

Overall, landslide mapping is a difficult task. It is nontrivial
for humans and requires complex modeling (such as deep
neural networks). Different ecoregions have different visual
characteristics, so mapping potential landslide areas based on
satellite data requires a heterogeneous training set in order to
be viable on a global scale.

Such a dataset is naturally constructed in pieces, where
data from one ecoregion are downloaded and a small number
are manually annotated. Subsequently, data from the next
ecoregion are downloaded, and the annotation process repeats.
Updating a deep learning model as new data are acquired is a
non-trivial task. Naive training approaches exhibit catastrophic
forgetting, where the network performance degrades for the
older data. We evaluated several approaches to defend against
this phenomenon and observed that catastrophic forgetting can
be avoided without expending the full computational cost on
retraining on all of the data collected thus far.

The feature extraction method completely avoids catas-
trophic forgetting at a reasonable computational cost. How-
ever, performance on the old data will not improve as new
data are collected. The proposed TSMU method, based on the
Learning without Forgetting framework is the computationally

cheapest option for which performance improves both on the
old and new data. Further improvements are possible, but come
at an increased computational cost (at least 2x the training time
for the next best alternative).

There are several interesting implications of this finding:
(1) not only does the proposed method avoid forgetting, it
continues to improve the old-task performance, and (2) all
of the information contained in the model update is due
to the new data; that is, it is the information in the new
data that is helping to improve performance on the old data.
The implication of this latter point is that if we have a
specific region of interest, we can improve accuracy on this
region by obtaining data from other regions even if they
have different characteristics. This result also suggests that
if we only train on data from one region, as done in the
vast majority of papers in the literature, we will not obtain
the optimal model for any of these regions. For example, the
last row considers the case where the initial ecoregions were
the relatively homogeneous forested areas NWFM, ETF, and
MWF while the new ecoregion was the North American Desert
(NAD). The NAD landslide data helped improve IoU for
these old ecoregions from 0.674 to 0.683 even though deserts
have significant differences from forested regions. This finding
encourages us to shift our mindset of landslide databases from
a regional scale to a global scale.

Even though we consider these results promising, some
challenges remain. It seems that human supervision is still
necessary to some extent, to monitor auto-labeled images for
errors and for annotating a few images from new ecoregions.
Even skilled geologists may have trouble distinguishing be-
tween erosion and landslide features from satellite imagery
without stereographic photographs, a high-resolution digital
elevation model, or field-site visits. This study leverages
widely available satellite imagery to better and more rapidly
characterize potential landslides. The approach could present
an over-prediction in those specific cases where disturbances
from erosional features or construction are not readily dis-
tinguishable from landslides. However, this would be a po-
tential limitation for any technique, manual or automated,
that relies solely on such data. Additionally, identification
of even potential landslide areas that have not been fully
vetted by a geologist can be exceedingly useful for many
applications (e.g., emergency response to a major storm or
earthquake event). Techniques for further reducing the amount
of manual effort are needed to rapidly scale such a database.
In addition to landslide detection, another challenge is how to
use such a database for landslide susceptibility modeling to
aid preparation and mitigation efforts.

Our proposed algorithm, TSMU, can efficiently update a
model using newly acquired images while improving perfor-
mance on other ecoregions, demonstrating that if one has
a region of interest, obtaining data from other regions can
boost performance. This proposed scheme sets the basis for
semi-autonomously compiling an unprecedentedly-large-scale
landslide database.
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TABLE III: Retraining: mean Intersection over Union

“Retraining” Baseline: mean Intersection over Union
Phase 1 - Initial Training {θs, θo} → {θ′s, θ′o} Phase 2- Retraining {θ′s, θ′o} → {θ′s, θn} (with low learning rate)

Experiments:
Trained on ecoregions

test
(old task)

test
(new task)

Experiments: Same model
trained only on ecoregion

test
(old task)

test
(new task)

ETF+MWF+NAD 0.638 0.392 NWFM 0.332 0.624
MWF+NAD+NWFM 0.643 0.498 ETF 0.372 0.672
NAD+NWFM+ETF 0.661 0.469 MWF 0.398 0.655
NWFM+ETF+MWF 0.674 0.238 NAD 0.401 0.641

Average 0.654 0.399 0.375 0.648

TABLE IV: Fine-tuning: mean Intersection over Union

Fine-tuning: mean Intersection over Union
Phase 1 - Initial Training {θs, θo} → {θ′s, θ′o} Phase 2- Fine-tuning {θ′s, θ′∗o , θn} → {θ̂s, θ′∗o , θ′n} {θ′∗ = trained and frozen}

Experiments:
Trained on ecoregions

test
(old task)

test
(new task)

Experiments: Shared and New
task specific parameters

trained only on ecoregion

test
(old task)

test
(new task)

ETF+MWF+NAD 0.638 0.392 NWFM 0.582 0.642
MWF+NAD+NWFM 0.643 0.498 ETF 0.615 0.665
NAD+NWFM+ETF 0.661 0.469 MWF 0.604 0.658
NWFM+ETF+MWF 0.674 0.238 NAD 0.631 0.654

Average 0.654 0.399 0.608 0.655

TABLE V: Feature Extraction: mean Intersection over Union

Feature Extraction: mean Intersection over Union
Phase 1 - Initial Training {θs, θo} → {θ′s, θ′o} Phase 2- Feature Extraction {θ′∗s , θ′∗o , θn} → {θ′∗s , θ′∗o , θ′n} {θ′∗ = trained and frozen}

Experiments:
Trained on ecoregions

test
(old task)

test
(new task)

Experiments: New task
specific parameters trained

only on ecoregion

test
(old task)

test
(new task)

ETF+MWF+NAD 0.638 0.392 NWFM 0.638 0.632
MWF+NAD+NWFM 0.643 0.498 ETF 0.643 0.655
NAD+NWFM+ETF 0.661 0.469 MWF 0.661 0.647
NWFM+ETF+MWF 0.674 0.238 NAD 0.674 0.642

Average 0.654 0.399 0.654 0.644

TABLE VI: Task-Specific Model Updates

mean Intersection over Union
Phase 1 - Initial Training Phase 2 - Incremental Freeze Training Phase 3 - Joint Fine-Tuning

Experiments:
Trained on
ecoregions

original model
{θs, θo} → {θ′s, θ′o}

Experiments:
New task-specific

parameters trained
only on ecoregion

(with frozen
original model)

new model
{θ′∗s , θ′∗o , θn} → {θ′∗s , θ′∗o , θ′n}

(θ′∗ = trained and frozen)

Experiments:
Trained
only on

ecoregion
(all parameters
are fine-tuned)

new model
{θ′s, θ′o, θ′n} → {θ̂s, θ̂o, θ̂n}

test
(old task)

test
(new task)

test
(new task)

test
(old task)

test
(new task)

ETF+MWF+NAD 0.638 0.392 NWFM 0.632 NWFM 0.649 0.641
MWF+NAD+NWFM 0.643 0.498 ETF 0.655 ETF 0.657 0.678
NAD+NWFM+ETF 0.661 0.469 MWF 0.647 MWF 0.672 0.668
NWFM+ETF+MWF 0.674 0.238 NAD 0.642 NAD 0.683 0.661

Average 0.654 0.399 0.644 0.665 0.662

TABLE VII: Joint Training: mean Intersection over Union

Joint Training: mean Intersection over Union
Phase 1 - Initial Training Phase 2 - Incremental Freeze Training Phase 3 - Joint Training

Experiments:
Trained on
ecoregions

original model
{θs, θo} → {θ′s, θ′o}

Experiments:
New task-specific

parameters trained
only on ecoregion

(with frozen
original model)

new model
{θ′∗s , θ′∗o , θn} → {θ′∗s , θ′∗o , θ′n}

(θ′∗ = trained and frozen)

Experiments:
Trained on

random subset
of old data and on

new ecoregion
(all parameters
are fine-tuned)

new model
{θ′s, θ′o, θ′n} → {θ̂s, θ̂o, θ̂n}

test
(old task)

test
(new task)

test
(new task)

test
(old task)

test
(new task)

ETF+MWF+NAD 0.638 0.392 NWFM 0.632 NWFM 0.653 0.645
MWF+NAD+NWFM 0.643 0.498 ETF 0.655 ETF 0.662 0.683
NAD+NWFM+ETF 0.661 0.469 MWF 0.647 MWF 0.678 0.672
NWFM+ETF+MWF 0.674 0.238 NAD 0.642 NAD 0.684 0.668

Average 0.654 0.399 0.644 0.669 0.667
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TABLE VIII: Accuracy on all testing data (mean IoU ± std)

Experiments Average ± std
Leave One Out 0.591 ± 0.019

Retraining 0.443 ± 0.015
Fine-tuning 0.620 ± 0.014

Feature Extraction 0.648 ± 0.014
Task Specific Model Update 0.665 ± 0.015

Joint Training 0.668 ± 0.032
Sequential Task Specific Model Update 0.671 ± 0.006

Trained with all the data 0.676 ± 0.015

TABLE IX: Additional Training Time

Experiments
{ETF+MWF+NAD}

+
{NWFM}

{MWF+NAD+NWFM}
+

{ETF}

{NAD+NWFM+ETF}
+

{MWF}

{NWFM+ETF+MWF}
+

{NAD}
Retraining Number of epochs 100 100 100 100

Time to convergence (hours) ∼1.2 ∼1.2 ∼1.2 ∼1.2
Number of images used for training 700 440 500 680

Number of trainable parameters 5,052,945 5,052,945 5,052,945 5,052,945
Number of epochs 200 200 200 200

Fine-tuning Time to convergence (hours) ∼2.3 ∼2.3 ∼2.3 ∼2.3
Number of images used for training 700 440 500 680

Number of trainable parameters 9,796,930 9,796,930 9,796,930 9,796,930
Number of epochs 200 200 200 200

Feature Extraction Time to convergence (hours) ∼2.3 ∼2.3 ∼2.3 ∼2.3
Number of images used for training 700 440 500 680

Number of trainable parameters 9,796,930 9,796,930 9,796,930 9,796,930
Task Specific Number of epochs 300 300 300 300

Model Time to convergence (hours) ∼3.3 ∼3.3 ∼3.3 ∼3.3
Update Number of images used for training 700 440 500 680

Number of trainable parameters 9,796,930 9,796,930 9,796,930 9,796,930
Number of epochs 450 450 450 450

Joint Time to convergence (hours) 7.1 6.8 6.8 7.1
Training Number of images used for training 1400 800 1000 1360

Number of trainable parameters 9,796,930 9,796,930 9,796,930 9,796,930
Sequential Number of epochs 600

TSMU {Trained Time to convergence (hours) 11.6
on one ecoregion Number of images used for training 1820

at a time} Number of trainable parameters 19,278,820
Number of epochs 400

Trained with Time to convergence (hours) 13.8*
all the data Number of images used for training 2320

Number of trainable parameters 5,052,945
*At least this much time is required for every subsequent ecoregion.
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