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Abstract

In this article, we consider the scenario where remotely sensed images are collected sequentially in temporal batches, where

each batch focuses on images from a particular ecoregion, but different batches can focus on different ecoregions with distinct

landscape characteristics. For such a scenario, we study the following questions: (1) How well do DL models trained in

homogeneous regions perform when they are transferred to different ecoregions, (2) Does increasing the spatial coverage in the

data improve model performance in a given ecoregion (even when the extra data do not come from the ecoregion), and (3)

Can a landslide pixel labelling model be incrementally updated with new data, but without access to the old data and without

losing performance on the old data (so that researchers can share models obtained from proprietary datasets)? We address these

questions by a framework called Task-Specific Model Updates (TSMU). The goal of this framework is to continually update

a (landslide) semantic segmentation model with data from new ecoregions without having to revisit data from old ecoregions

and without losing performance on them. We conduct extensive experiments on four ecoregions in the United States to address

the above questions and establish that data from other ecoregions can help improve the model’s performance on the original

ecoregion. In other words, if one has an ecoregion of interest, one could still collect data both inside and outside that region to

improve model performance on the ecoregion of interest. Furthermore, if one has many ecoregions of interest, data from all of

them are needed.
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Abstract—Preparation and mitigation efforts for widespread
landslide hazards can be aided by a large-scale, well-labeled
landslide inventory with high location accuracy. Recent small-
scale studies for pixel-wise labeling of potential landslide areas
in remotely-sensed images using deep learning (DL) showed
potential but were based on data from very small, homogeneous
regions with unproven model transferability. In this paper we
consider a more realistic and practical setting for large-scale
heterogeneous landslide data collection and DL-based labeling.
In this setting, remotely sensed images are collected sequentially
in temporal batches, where each batch focuses on images from a
particular ecoregion, but different batches can focus on different
ecoregions with distinct landscape characteristics. For such a
scenario, we study the following questions: (1) How well do
DL models trained in homogeneous regions perform when they
are transferred to different ecoregions, (2) Does increasing the
spatial coverage in the data improve model performance in
a given ecoregion (even when the extra data do not come
from the ecoregion), and (3) Can a landslide pixel labeling
model be incrementally updated with new data, but without
access to the old data and without losing performance on the
old data (so that researchers can share models obtained from
proprietary datasets)? We address these questions by extending
the Learning without Forgetting framework, which is used for
incremental training of image classification models, to the setting
of incremental training of semantic segmentation models (e.g.,
identifying all landslide pixels in an image). We call the resulting
extension Task-Specific Model Updates (TSMU). The goal of
this framework is to continually update a (landslide) semantic
segmentation model with data from new ecoregions without
having to revisit data from old ecoregions and without losing
performance on them.

Using the TSMU framework, we conduct extensive experi-
ments on four ecoregions in the United States to address the
aforementioned questions. The results, ordered from unexpected
to most unexpected, show that (i) a DL model trained on data
from one ecoregion can work well on that ecoregion, but (ii) it is
not expected to perform well on ecoregions it has not seen before,
but (iii) data from other ecoregions can help improve the model’s
performance on the original ecoregion. In other words, if one has
an ecoregion of interest, one could still collect data both inside
and outside that region to improve model performance on the
ecoregion of interest. Furthermore, if one has many ecoregions
of interest, data from all of them are needed.

Another interesting feature of the TSMU framework is that

although it never revisits data from old ecoregions when it is being
trained on new ecoregions, its final performance nearly matches
the performance of the computationally expensive ideal setting:
simultaneous training on all of the data. This property will allow
us to make our model public, so that other researchers can update
it with their ecoregions, without losing performance on older
data. With these features, the TSMU framework can be used
to aid in the creation of new landslide inventories or expanding
existing datasets, and also to rapidly develop hazard maps for
situational awareness following a widespread landsliding event.

Our dataset and code is made publicly accessible upon accep-
tance here - https://github.com/deepLDB/landslide-detection

Index Terms—Landslides, semantic segmentation, deep learn-
ing, ecoregions, continual learning, domain adaptation, catas-
trophic forgetting.

I. INTRODUCTION

LANDSLIDES are one of the most widespread geologic
hazards, with over 300M people exposed and over 66M

people living in high-risk areas [1]. Globally, landslides cause
thousands of deaths each year (≈4,164 in 2017 alone [2]),
displacement of communities, and destruction of infrastructure
and habitable lands. Moreover, climate change is projected to
induce more frequent extreme rainfalls and wildfires, which
are expected to result in more landslides and landslide-related
casualties [3], [4].

Long-term efforts to mitigate the effects of landslides
require evaluating landslide susceptibility [5]. Planning and
prediction capabilities can be greatly enhanced by large-
scale databases of landslide events with accurate location
information [6]. For example, in the United States, the U.S.
Geological Survey (USGS) maintains a database of landslide
reports with approximate locations and times, but no im-
ages (https://doi.org/10.5066/P9E2A37P). The database can be
found on our GitHub link for data. It is the most extensive
dataset of its kind, but it relies on intensive manual effort to
map landslides through field investigations or remote sensing
and is still very much incomplete. Furthermore, its spatial
location accuracy leaves much to be desired for planning

https://github.com/deepLDB/landslide-detection
https://github.com/deepLDB/landslide-detection
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Fig. 1: Sample bi-temporal pairs of images and corre-
sponding human annotations from four ecoregions. Pre-
event (top row), post-event (middle row) images and human
annotated labels (bottom row) from four ecoregions of the
United States in our dataset (left to right): Eastern Temperate
Forests (ETF), Marine West Coast Forests (MWCF), North
American Deserts (NAD) and Northwestern Forested Moun-
tains (NWFM). Landslide areas in images may be confused
with human activities such as logging or construction, which
makes it hard for human annotators to discern while labeling.
The excel file containing the coordinates of the landslides used
in this figure will be available in our GitHub link for data.

purposes: recorded coordinates are often not precise enough
for overlaying other datasets. While some entry can be verified
manually from high-resolution satellite images, this process
requires substantial effort and prevents scaling up. These issues
present both an opportunity and a challenge for scalability and
coverage, as recently summarized by the creators of the USGS
database: “our current ability to understand landslide hazards
at the national scale is limited, in part because spatial data on
landslide occurrence across the U.S. varies greatly in quality,
accessibility, and extent” [7].

A grand challenge to a uniform and semi-automated ap-
proach to map landslides globally is the wide ranging modes of
slope failure, from shallow and rapid failures of soil material,
to rock falls, and gradual deep-seated slope movements or
deformation. Rock slope and deep-seated failures are difficult
to identify with imagery based mapping because changes in
vegetation and surface properties are often not detectable.
Instead, we focus on detection of the rainfall and earthquake
triggered shallow landslides or debris flows (i.e., space-visible
landslides) that can be readily detected from satellite imagery
via the resulting disturbance to vegetation. Additionally, due
to their sudden onset and typically rapid movement, these
landslides are the most damaging and deadly.

Given the increasing availability of high-resolution satellite
imagery, a path is now open to collecting information about
space-visible landslide events by having machine learning al-
gorithms scan the images. Several recent efforts [8]–[11] have
considered the use of deep learning for landslide segmentation
(also known as landslide mapping) – identifying the pixels in a
satellite image that correspond to landslides. However, due to
the difficulty of labeling training data, all of these studies only
focused on a single small region and had limited testing data

(for instance, the study in [9] only had three testing images).
As we will show later, this practice may reduce the robustness
of the model and also undermine the potential accuracy of the
model even for the region of interest.

Space-visible landslides are often irregular in shape, are not
always easy to discern in an image, and may be confused
with human activities such as logging or construction (Figure
1). Thus, even human annotators need explicit training. It
takes trained annotators several minutes to locate a landslide
in an image, and then several more minutes to process the
image and map the landslide polygon. Even trained annotators
may not be able to fully discern between erosional features
and landslides, and confirming this distinction would require
high-resolution topographic data, stereographic imagery, or
better yet in-person field characterization. Such data are not
as widely available as the orthorectified satellite images used
here. For these reasons, building a global image database for
space-visible landslides by hand is infeasible. The training
required for human labelers also rules out crowd-sourcing
platforms like Amazon Mechanical Turk [12]. Given the nec-
essary resources and remaining uncertainty with any inventory
of space-visible landslides, automated and semi-automated
approaches for constructing landslide databases appear more
promising [13].

We consider a practical large-scale data collection scenario
where remotely-sensed images are collected over time in
batches. Within a batch, images usually come from the same
ecoregion (an area where ecosystems, soil, and the environ-
ment are generally similar). Different batches may come from
different ecoregions with possibly drastically different environ-
mental features. Space-visible landslides are often identifiable
due to the disturbance of the land surface and vegetation, and
these features vary in appearances among different ecoregions.
In this paper, we use data from four ecoregions - Eastern Tem-
perate Forests (ETF), Marine West Coast Forests (MWCF),
North American Deserts (NAD), and Northwestern Forested
Mountains (NWFM). As can be seen from Figure 1, landslides
in different ecoregions differ in color, texture, landslide size,
and visual contrast with the background. Each ecoregion has
its own distinct data distribution due to visually dissimilar
landscape characteristics (see data section) – this is often
referred to as a domain shift in the machine learning literature
[14], [15].

In such a scenario, the first question we ask is “does a
model trained on a small homogeneous ecoregion [8],
[9] generalize to other ecoregions for which it has not
been trained?” To test this, we perform spatial Leave-One-
Out (LOO) experiments where data from multiple ecoregions
were used for training and data points from another ecoregion
are withheld for testing. The selection was rotated so that
each ecoregion had the chance to serve as a test region. We
examined how model accuracy responded when models were
tested on an ecoregion that is characteristically different from
the training set.

The second question is “does increasing the spatial cov-
erage and diversity of data improve model performance
in a given ecoregion?” For each ecoregion R, we compared
models trained on only region R to those trained on region

https://github.com/deepLDB/landslide-detection
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R plus data from other ecoregions to increase diversity. We
evaluate how well they perform specifically on that ecoregion
R. The answer to this question leads to an informed strategy
regarding data collection, i.e., if a diverse training dataset
significantly improves the results compared to local data alone,
then expanding the spatial extent of our data collection beyond
the specific region of interest would be beneficial.

The third question is “what is an efficient and highly-
performant way to incorporate new batches of geospatial
training data from different environments to update a
semantic segmentation model?” We propose Task-Specific
Model Updates (TSMU), a continual learning [16] semantic
segmentation strategy, which is an extension of Learning
without Forgetting (LwF) [17], which was used for image
classification. TSMU has the following features:

1) It uses only the data from the new batch of data (without
revisiting old data) for training for computational effi-
ciency. This feature allows models to be shared between
research groups without having to share training data that
may be proprietary.

2) Updates of the model parameters will not cause catas-
trophic forgetting [18] (a common machine learning
phenomenon where performance on old data degrades). In
fact, in our experiments we observed that accuracy over
old ecoregions improves as new ecoregions are added.

3) Addresses the domain shift [14] problem in semantic
segmentation by modeling features that are common
to multiple ecoregions and also separately modeling
ecoregion-specific idiosyncracies.

The proposed method drastically reduces the computational
time of efficiently incorporating sequentially acquired batches
of training data while nearly matching the performance of a
computationally expensive “ideal” model that jointly process
all of the data.

II. RELATED WORK

In this section, we describe competing methods in transfer
learning and continual learning used for semantic segmenta-
tion.

A. Landslide Mapping

Detection and classification of landslides is critical for
hazard analysis [19]–[21]. Landslides and associated erosion
can be identified by detecting the disturbance of earth surfaces.
Aerial photographs and satellite images have been widely used
for landslide detection [22]. We briefly review some commonly
used approaches for landslide mapping from remote sensing
images.

1) Classical Approach: Landslides are rare spatially and
are difficult to spot from large swaths of satellite images
[22], [23]. Conventional computer vision techniques [22] are
easily affected by noise [24] and require human intervention
for each scene. Two conventional approaches are commonly
used in the literature [25]: (1) pixel-based methods, which
use spectral information to detect pixels corresponding to
landslides from images (e.g., [26]–[29]); and (2) object-based

image analysis, which uses both spectral and spatial informa-
tion (e.g., [23], [30]). These two approaches are commonly
integrated with image change detection to identify landslides
from multi-temporal remote sensing images [31]. Machine
learning (ML) techniques such as logistic regression, support
vector machines, and random forests have also been used to
improve model performance for both approaches [26], [32],
[33]. However, both approaches require extensive parameter
tuning, feature extraction, and post-processing, limiting their
application at large scales.

2) Deep Learning based Approach: Deep learning (DL) has
been already used for landslide mapping [11], [25], [34]–[40].
Deep learning techniques do not require hand-crafted features
as they perform automatic feature engineering directly from
satellite imagery. Hu et al. [35] used landslide images from
multiple seasons from LandSat satellite and digital elevation
model (DEM) data to extract landslides using three ML
models. Prakash et al. [11] used Sentinel-2 images, DEM
data from light detection and ranging (Lidar), and a derived
normalized difference vegetation index (NDVI) layer to map
landslides using a modified U-Net model [41], [42]. Due to the
sparse availability of high spatial resolution DEMs, especially
in mountainous regions, many times only spectral bands of
satellite images were used. Qi et al. [25] proposed a deep
network called ResU-Net, which uses residual blocks [43]
in the encoder of U-Net architecture. The authors claimed
that the residual block can alleviate the data sparsity prob-
lems [25]. Soares et al. [44] used U-Net to automatically
segment landslides in the city of Nova Friburgo. Lei et
al. [45] compared three DL models – Fully Convolutional
Network, Fully-connected Deep Neural Network, and U-Net
– to detect landslide areas, concluding that U-Net had the
best performance. Prakash et al. [11] used a modified U-
Net model with ResNet34 blocks for feature extraction for
semantic segmentation of landslides at a regional scale using
Earth observation data. With extensive usage and success
of the U-Net architecture with residual building blocks for
semantic segmentation of aerial imagery, we build our network
with the same backbone.

B. Limitations of Homogeneous training data

While the above mentioned studies showed early success,
each of them focused on a small, homogeneous region. For
example, Bragagnolo et al. [10] used a standard U-Net ar-
chitecture on Landsat images from Nepal with 10 testing
images. Amatya et al. [46] and Qi et al. [25] respectively
worked on a small region in Nepal and Tianshui city in the
Gansu province of China. These small scales might have
been inherently limited by the scopes of these studies, but
regardless, two issues arise: (i) it is uncertain whether the
models trained in these regions are applicable outside of
the training region; (ii) it is unclear if these locally trained
models achieve optimal performance when they are specialized
in a small, homogeneous region [47]. For building a global
landslide database with semi-automated DL base labeling, it
is necessary for the model to be robust to changes in data dis-
tributions. Oftentimes, ML model performance has improved
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when exposed to slightly different distributions which, by
virtue of contrast, better inform the model of the nature of
the problem [48]. To the best of our knowledge, no study thus
far has examined the effects of including images from different
regions on vision model performance for landslide mapping.

C. Sequential Data Collection & Continual Learning Ap-
proaches

As discussed earlier, in a realistic setting, training data
arrives sequentially in temporal batches, which may undergo
a domain shift [49]. We use the term task to define landslide
mapping in one ecoregion. A DL model trained on one task
often suffers from catastrophic forgetting [18] when subse-
quently trained on a new task, performing poorly on the old
task. This happens when continuously acquiring incrementally
available information from non-stationary data distributions,
and the parameters in the model change to meet the objectives
of the new task. Hence, there is a need for continually updating
the model while preserving the old information (also known
as learned representations). Taufique et al. [50] proposed a
continual [51]–[53] domain adaptation technique where data
distillation [54] with selective replay mechanism is used to
transfer learned representations across shared layers. Their
technique uses samples of data from old tasks.

The problem of catastrophic forgetting [18] and the contin-
ual learning paradigm have been extensively studied. Contin-
ual Learning [55], [56] approaches can be classified into the
following categories as described below.

1) Replay-based methods: These methods span from naive
rehearsal [52] algorithms, which store old data to pseudo-
rehearsal methods where generative models are used to ap-
proximate previous data samples [57].

2) Regularization-based methods: Data-focused [17], [58]
regularization approaches use data distillation to utilize the
knowledge of old tasks to enhance the performance of the
model. Prior-focused [18], [59], [60] methods use regulariza-
tion loss functions that penalize the shift of important parame-
ters in the network. Importance weights are usually computed
using an unsupervised approach, where the sensitivity of the
network’s output to change in its parameters is measured [60].

3) Parameter Isolation-based methods: These methods
[18], [59]–[62] freeze the parameters that are specific to old
tasks. This is achieved by dynamic extension of the network
[17], [63] or by a fixed architecture [64]. These methods
focus on calculation of parameter importance metrics. The
path integral [59] method calculates the importance of each
parameter for a particular task based on a loss function.
Incremental moment matching [61] proposes a merge of layers
after learning new tasks. Elastic weight consolidation [18]
performs sequential Bayesian estimation and uses second order
derivative of parameters as a metric of importance. This
method, however, assumes that the parameters for each task
are independent, which limits the performance when there is
a significant domain shift in temporal flow of data.

4) Network expansion-based methods: These methods
[65]–[71] assign parameter subsets to different tasks. Expert
Gate [66] trains an expert network for each task and learns an

autoencoder gate to activate corresponding network parameters
according to the input task. Piggyback [71] learns binary
masks to create subnets for each task. These networks are
useful when dealing with continual learning problems where
the data flow undergoes substantial domain shifts. These
methods also do not assume independence between shared
parameters, which makes it more flexible to design.

Learning without forgetting (LwF) [17] is a multi-task
learning training strategy that is a combination of data-focused
regularization and dynamic parameter isolation. Proposed for
classification problems, LwF adds a set of new outputs for
each new task by increasing the size of the final layer of
the network (and thus each task is associated with a set
of output nodes). When a datum for a new task arrives,
the LwF mechanism runs it through the network and stores
the resulting output for all prior task-specific nodes. It then
modifies the network parameters so that the new-task output
nodes improve accuracy on the task, while trying to prevent the
output of the prior task nodes from changing. This is done by
using knowledge distillation loss [54] in the training objective
function. Image classification (e.g., does an image contain a
landslide or not) is a different and easier problem than image
segmentation (labeling which pixels belong to landslides) and
requires different DL architectures. We thus extend LwF to
image segmentation and the refer to this extension as TSMU.
We compare it with several baselines and other state-of-the-art
methods:

1) Feature Extraction: This is a method [72], [73] where
outputs of the lower levels of a trained network (such
as the convolutional layers) are considered to be feature
generators for an input image (because convolutional
layers are thought to extract important visual information
from images). When data for a new ecoregion arrive,
these features layers are re-used as the bottom half of a
new (ecoregion-specific) network and only parameters in
the top half are trained. Feature extraction can be further
improved by subsequent fine-tuning, which we describe
next.

2) Fine Tuning: If a network is trained for a specific task and
new task-specific parameters are added, fine-tuning [74]
continues training the whole (or specific layers of the)
network over the new data with a small learning rate. This
allows the network to leverage its existing knowledge
when learning about the new task. The literature shows
that fine-tuning often performs better on the new task
data than feature extraction [74], [75] and has better
performance than retraining the task-specific network
from randomly initialized weights [76], [77]. The low
learning rate is crucial and is used as an attempt to
preserve the knowledge learned in the original tasks.

3) Joint Training: In this method [78], data from all of the
tasks are available all at once when training the network.
In this case, the network typically has a set of shared
parameters as well as task-specific parameters that are
optimized together. This computationally expensive op-
tion is considered “ideal” in terms of expected accuracy,
and is often the default approach for DL practitioners
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when all data are available at once. Thus, the goal of
methods designed for temporal batches of data is to try
to match the performance of joint training, despite having
to operate in a more restricted setting than joint training.

4) Other competing methods: Knowledge distillation bi-
nary cross entropy (KD-BCE) [79] is a regularization-
based continual learning strategy that performs multi-
class remote sensing semantic segmentation. They use
a replay based mechanism to sample data from old
classes. However, the method assumes a class continual
learning setting where the new class and the old class data
come from the same underlying data distribution. Feng
et al. [80] provide an improvement over [79] where four
different remote sensing datasets are considered for multi-
class classification. This method is based on parameter
isolation where two importance metrics - pixel affinity
structure loss and representation consistency structure
loss are calculated to preserve structural information
across datasets. The method uses a shared network with
addition of task-specific neurons in only the final layer.

III. METHODOLOGY

In this section, we describe our methodology. Our dataset
characteristics (multiple, visually dissimilar regions) provide
the primary motivation for the design of TSMU. We describe
our study area in Section III-A1 and dataset characteristics
in Section III-A2. Data pre-processing steps are explained in
Section III-A3. The proposed TSMU framework and network
architecture are described in Section III-B. Since the archi-
tecture has shared parameters as well as ecoregion-specific
parameters, we explain in Section III-C how the network
determines the ecoregion of the input image in order to route
the image through the network properly.

A. Dataset

The {latitude, longitude} coordinates for all landslide events
in our study area and the subset of them we used in our
experiments can be found on our GitHub link for data.

1) Study Area: We focused on space-visible landslides re-
ported in multiple ecoregions in the US. These landslides have
left visible scars and can be identified from satellite images.
The occurrences of landslides are due to a combined effect
of triggering mechanisms (e.g., rainfall and snow melt) and
predisposing factors (e.g., hillslope environment, ecosystem
dynamics, and geomorphic dynamics) [81], [82]. An ecoregion
defines areas that share similar type, quality, and quantity of
environmental resources, e.g., biomes and topography [83].
Due to the number of landslides we identified and the location
of these landslides, we considered a relative coarse ecoregion
level (i.e., Level I) to ensure each ecoregion had sufficient
images. In the present study, the landslides came from the fol-
lowing ecoregions: Eastern Temperate Forests (ETF), Marine
West Coast Forests (MWCF), North American Deserts (NAD),
and Northwestern Forested Mountains (NWFM). Figure 2
shows the distribution of Level I ecoregions and the landslides
identified in the present study.

Fig. 2: Study area of our dataset. Distribution of identified
space-visible landslides in the present study and Level I
ecoregion map (https://www.epa.gov/eco-research/ecoregions-
north-america ) for the United States.

2) Data Characteristics: Prior studies on landslide segmen-
tation have used datasets with at least one of the following
characteristics: (1) they contained few images, (2) the images
were low-resolution, and/or (3) the images were collected from
a small geographic location with homogeneous characteristics.
For the purposes of this study, our goal was to collect a large
quantity of sub-meter resolution landslide image pairs from
geographically diverse regions.

The USGS provides a nationwide landslide inventory for the
United States. The database contains more than three hundred
thousand landslide point and polygon records and provides
related information for the landslide event, such as the extent
(when available) and times (when available) of landslide
occurrence [7]. As the USGS landslide inventory is com-
piled from many different sources, the accuracy and quality
vary between different landslide records. The USGS landslide
inventory uses a semi-quantitative classification to rank the
relative confidence in landslide occurrence and position for
landslide records in their inventory. Five integer values are
used to represent certainties of landslide records. These values
are “1” (very low confidence), “2,” “3,” “5,” and “8” (very
high confidence) [7]. Our data collection team only focused on
landslide point records with event dates and a confidence level
of at least five to obtain pre- and post-event landslide image
pairs. Google Earth was used as the data source for the present
study, which provides historical archives for multiple high-
resolution aerial and satellite imagery. We examined available
images in Google Earth around the landslide point location
before and after the landslide date to obtain pre- and post-event
images. Multiple pre- and post-event images were examined
and saved as candidates. We filtered out satellite images with
heavy cloud cover or low image quality; only the two highest
quality pre- and post-event images with dates closest to the
landslide event were chosen. Our data collection team visually
examined and compared all the pre- and post-event image
pairs to look for changes in land surface that are likely caused

https://github.com/deepLDB/landslide-detection
https://www.epa.gov/eco-research/ecoregions-north-america
https://www.epa.gov/eco-research/ecoregions-north-america
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TABLE I: Pixel Distribution Statistics

Ecoregion # augmented training
image pairs

Landslide
Pixel
Mean

Landslide
Pixel

Standard
Deviation

Landslide
Pixel

Median

Non-Landslide
Pixel
Mean

Non-Landslide
Pixel

Standard
Deviation

Non-Landslide
Pixel

Median

Mean Salience
#Landslide Pixels

#Non-Landslide Pixels

Eastern
Temperate Forests

(ETF)
405 0.438 0.185 0.443 0.302 0.147 0.291 5910254

103665938
= 0.057

Marine
West Coast Forests

(MWCF)
420 0.491 0.229 0.483 0.313 0.169 0.291 13865231

115633905
= 0.120

North American
Deserts
(NAD)

429 0.612 0.217 0.654 0.464 0.182 0.469 5093959
110773689

= 0.045

Northwestern
Forested Mountains

(NWFM)
400 0.417 0.184 0.419 0.316 0.148 0.314 6879824

96667056
= 0.071

by landslides. Then these areas were manually annotated as
landslides and used as ground truth for this study.

It should be noted that although the USGS landslide in-
ventory contains a large number of landslide records, due to
the availability of satellite images and the size of the landslide
scars, we only identified 1,918 landslide points in the inventory
from satellite images for the four ecoregions we considered in
the present study. Among these landslide points, 112 points are
located in ETF, 64 points are located in MWCF, 728 points are
located in NAD, and 1,014 points are located in NWFM. A
total of 496 georeferenced pre-event/post-event images pairs
with an average size of 1200 by 800 pixels were collected for
these identified landslide points in the four ecoregions (each
post-event image may include more than one landslide point).
The excel file containing the coordinates of these landslide
events can be found on our GitHub link for data.

Landslides in the USGS inventory were curated by humans,
and about two-thirds are in the three West Coast states [7]. This
may be due to the use of high resolution DEMs from lidar
data to include mapping of ancient deep seated landslides that
are not triggered by individual rainfall events. Thus, not all
of these may be detected by our approach. Also, our ability
to identify landslides from satellite images varies from region
to region due to differences in vegetation coverage, landslide
size, and availability of satellite images. Thus, the data have an
inherent domain imbalance in terms of the number of satellite
images in each ecoregion: we obtained 27 images for ETF, 31
images for MWCF, 39 images for NAD, and 400 images for
NWFM. To reduce the domain imbalance, images from ETF,
MWCF, and NAD undergo data augmentation to increase the
number of images in these ecoregions proportional to that of
NWFM, thus obtaining 405, 420, and 429 images, respectively,
as shown in Table I.

The landslide segmentation (pixel labeling) problem was
formulated as a binary classification problem for each pixel
(“is” versus “is not” a landslide pixel). We refer to the ground
truth as a binary mask. A data annotation tool [84] was used
to manually label the landslide areas in the satellite images.
Data were annotated using images with original dimensions
(before reshaping). The tool stored the labels as JSON files.
These files were parsed to extract pixel-level information for
generating binary masks.

Ground truth binary masks used for training were stored

Fig. 3: Histograms of landslide and non-landslide pixel
intensities for the four ecoregions.

as gray-scale images with reshaped dimensions of 512 x 512
and pixel intensities {0,1}. Intensity values of zero represent
non-landslide pixels (background) and intensity values of one
represent landslide pixels (foreground).

Figure 3 shows the histogram of pixel intensities for land-
slide (foreground) and non-landslide (background) pixels for
the different ecoregions. The corresponding quantitative statis-
tics are shown in Table I. They indicate that each ecoregion,
as well as landslides in each ecoregion, appear to have distinct
characteristics. The mean salience indicates that NAD has
the least number of landslide pixels, which indicate narrower
landslides, followed by NWFM. ETF and MWCF have larger
landslides.

More insight can be obtained by using t-stochastic neighbor
embedding (t-SNE) [85], a tool for visualizing the similarities
and differences in high-dimensional data. Figure 4 shows a
two-dimensional t-SNE visualization of landslide pixels in the
data. Each image is mapped to a single point in Figure 4,
with similar images being mapped to points that are closer to
each other. The points are colored by the ecoregion they come
from, and an ellipse is drawn for each ecoregion to cover the
bulk of the points from that region.

From the overlap in the ellipses in Figure 4, one can see a lot
of similarities between the ecoregions; however, there are also
a lot of differences (indicated by regions where the ellipses do
not overlap). This observation motivates the network design
choice of the proposed TSMU (described in Section III-B).
Namely, the network has ecoregion-specific components, but

https://github.com/deepLDB/landslide-detection
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Fig. 4: t-stochastic neighbor embedding (t-SNE) [85] visual-
ization of landslide pixels of four ecoregions. Each colored
ellipse is a distribution of intensity of landslide pixels of an
ecoregion, projected in two dimensions using t-SNE embed-
ding. The black circle shows an overlap of all distributions,
whereas distinct ecoregion-specific landslide pixels are also in
the extremities of every ellipse. This data analysis provides
the motivation for the design choice of TSMU. It can also be
observed that NAD has more outliers than other ecoregions.

also a special subnetwork that is shared by all ecoregions.
Figure 4 also provides an intuitive explanation for our main

experimental findings:
• The presence of substantial areas where the ellipses do

not overlap is caused by properties that are unique to
an ecoregion. Hence, a neural network trained on several
ecoregions (or a small homogeneous region, as in prior
studies) is unlikely to transfer well to new ecoregions
because of this uniqueness.

• The presence of substantial areas of overlap mean that if
we are interested in ecoregion R, it would be beneficial
to collect data not just from ecoregion R, but also from
other ecoregions to improve performance on ecoregion R.
The reason is that images from these other ecoregions still
contain useful information about landslides in ecoregion
R. This finding has important implications for prior
studies, which studied small homogeneous regions and
were limited by the amount of data that can be collected
from their study areas – their results could have likely
been further improved by collecting data outside their
study areas.

3) Data Processing: As a pre-processing step, satellite
images were resized to 512 × 512 pixels, and normalized
by dividing each pixel by the maximum intensity in the
distribution. The final images used for training had pixel
intensities in the range [0,1]. The changes in aspect ratios
corresponding to each image were stored so that the images
and their corresponding network predictions could be reverted

to their original dimensions during the time of inference.
The dataset was used to form training, validation, and test

sets as follows. The test set consisted of 5 (randomly selected)
pre/post image pairs from each ecoregion. These images were
only used for measuring the reported accuracy metrics. We
use the term global test set to refer to the entire test set
(20 images from four ecoregions) and highlight the contrast
with an ecoregion-specific test set (which is the subset of the
global test set belonging to the ecoregion of interest). After the
testing images were removed from the data, a combination of
random augmentations from the set of vertical flips, horizontal
flips, and rotations were performed on the remaining images,
resulting in the training set as shown in Table I.

We also created a validation set for tuning hyperparameters
such as the learning rate and momentum parameter (β) of our
optimizer (Adam [86]) and it was never used to report accuracy
metrics (i.e., the validation set is disjoint from the testing set).
We constructed the validation set from the training data by
applying multiple augmentations from the set of the following
random augmentations to each image pair: diagonal flip,
horizontal flip, vertical flip, zoom, translation, and Gaussian
blur. We note that this is a larger collection of augmentations
than is applied to the training set. This was done intentionally
so that the validation set has slightly different characteristics
from the training set, thus reducing the chance of the model
overfitting to the training set.

B. Task Specific Model Updates (Proposed Model)

In this paper, ecoregions and “tasks” are used interchange-
ably. The biggest challenge in building a semi-automated
global landslide database is how to update the landslide seg-
mentation model as images from new ecoregions are acquired.
Hence, there is a need for a semantic segmentation model
that has the ability to learn new tasks while retaining the
same performance on old tasks. We consider the following
idea: because landslides in different ecoregions share simi-
larities as well as differences, a model should have compo-
nents/parameters that are shared by all ecoregions, as well as
ecoregion-specific components. With this in mind, we propose
Task-Specific Model Updates (TSMU), an extension of Learn-
ing without Forgetting (LwF) [17] from image classification
to semantic segmentation. This extension requires the network
architecture to use a so-called encoder/decoder model, using
loss functions more appropriate to semantic segmentation,
and a multi-stage training procedure that becomes necessary
because of the increased network complexity (because seman-
tic segmentation is a much more complex task than image
classification).

A final distinction is that at deployment time (after training
has finished), the ecoregion of an input image is not known and
must be inferred by the network, while in the LwF framework,
it would be assumed to be known. This is because each
ecoregion is a “task” and LwF assumes that the task of interest
is known at deployment time.

An overview of TSMU is shown in Figure 5, with ecoregion
inference discussed in Section III-C.
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Fig. 5: Illustration of proposed TSMU, illustrated for data from 3 ecoregions acquired sequentially. The semantic segmentation
network contains a shared encoder (Figure 6) that extracts features from images and also contains multiple decoders, one for
each ecoregion (task). Each decoder outputs a landslide segmentation (i.e., “decodes” features into a landslide annotation),
and the ecoregion determines which decoder’s output is used. The encoder follows the ResNet-34 architecture [43] while the
decoders use the U-Net architecture (Figure 7) [41]. When a new ecoregion (new task) is encountered, instead of creating
a completely new model, TSMU adds a new decoder to the existing model. The goal of TSMU is to update the network
parameters in the new decoder and the shared encoder to (1) achieve acceptable accuracy on the new ecoregion (new task)
while (2) maintaining or improving performance on the old ecoregions. This image is best seen in color.

Fig. 6: ResNet-34 Shared Feature Extractor: θs This figure
shows the ResNet-34 encoder that serves as the shared feature
extractor for TSMU. The model consists of sequential {Conv-
ReLU-BatchNorm} blocks. The spatial resolution remains 512
throughout, while the depth of the activations increases from
16 in the first layer to 256 in the last layer. The output of the
shared encoder is the input to the U-Net Decoder.

1) Problem Definition: We formally define the problem as
follows. Consider a sequence of semantic segmentation tasks
for landslide mapping, denoted by T = {T1, T2, T3, ..., Tt, ...}.
Each task Tt is the arrival of a new batch of data from
ecoregiont and when a new task is encountered, new task-
specific parameters are added to the network. Each task Tt has

training data Dt = {xti, yti}|
nt
i=1 with nt number of samples.

In our case, xti is the ith input image pair (a pre- and a post-
landslide image) of Task t and yti is the corresponding ground
truth mask (i.e., labels for each pixel in the image). The set
of all data up to task t is denoted by D[1:t].

The shared parameters (shared by all ecoregions) are de-
noted by θs, and the specific values they take after the network
is updated (via training) with task Tt are denoted by θ

(t)
s .

Similarly, θ1, θ2, . . . , θt are the task-specific parameters for
tasks T1, . . . , Tt. The values of the parameters θi after the
network is updated (via training) for task Tt are denoted by
θ
(t)
i . We let Θt = {θ(t)s ,∪ti=1θ

(t)
i } to be the values of all

parameters after the network is updated with task t. In the
continual learning paradigm, when task Tt is being added,
only data Dt for the current task (ecoregion) are available
and prior data (i.e., D[1:t−1]) are not accessible. The goal is to
train the model on the new data while preserving or improving
performance on the prior tasks, so that the model does not
undergo catastrophic forgetting.

The pipeline of TSMU is shown in Figure 5. Initially, there
is one task (e.g., the ETF ecoregion) and the initial network is
trained with parameters θ(1)s (parameters to be shared with
future tasks) and θ

(1)
1 (parameters for Task 1). When data

from the MWCF ecoregion are collected, an additional set of
parameters are added and all of the parameters are updated,
resulting in θ(2)s , θ

(2)
1 and θ(2)2 . The reason that parameters for

task T1 are updated when data from Task T2 arrive is that the
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Fig. 7: U-Net Task Specific Decoder Architecture. This figure shows the U-Net architecture that serves as task specific
parameters (θo and θn) for TSMU. The model consists of an an encoder made up of {Conv-ReLU-BatchNorm-MaxPool-
Dropout} layers, which reduces the spatial resolution from 512 to 8. This is followed by a decoder made up of {Transposed
Conv-Dropout-Conv-BatchNorm-ReLU} layers, which increases the spatial resolution back to 512. A sigmoid activation is
used to get the output probability map.

shared parameters θs get updated (from θ
(1)
s to θ

(2)
s ) and so

θ1 must be updated to make sure that the changes in θs do
not cause a performance degradation on task T1. When task
T3 arrives, then new parameters are added and all parameters
up to this point are updated, etc.

2) Base Network Architecture: In order to accomodate
shared and task-specific parameters, our model takes the form
of a general Encoder-Decoder [87] architecture. The Encoder
converts a pair of pre-landslide/post-landslide images into a
“feature representation” and is shared among all ecoregions
(tasks). The Decoder takes the feature representation and
creates pixel-wise predictions from it. The way that features
are converted into predictions is ecoregion-specific, and so
each Decoder corresponds to an ecoregion and its parameters
are the task-specific parameters. The input dimensions are
512×512×6 (each image in a pair is 512×512×3 having 3
channels: {R, G, B}). The base architectures of shared encoder
and task specific decoder we used for these experiments is
illustrated in Figure 6 and Figure 7, respectively.

The encoder (Figure 6) is a subset of the ResNet-34 [43]
architecture. We let θs denote the parameters of this encoder.
The convolutional layers [88] of this encoder start with a depth
of eight 3x3 convolutional filters and end at 256 filters. Thus
the output of the encoder has dimensions 512× 512× 256.

The decoder (Figure 7) is a variant of the U-Net architecture
[41]. It consists of a contracting path (first half of the blue
block of Figure 7) followed by an expansive path (second
half of the blue block of Figure 7). The contracting path is
used by the network for additional (ecoregion-specific) feature
engineering and the expansive path uses these features to label
pixels. The reason for this architectural choice is that it will
easily allow us to extend the network for new ecoregions (the
ResNet encoder will be shared by all ecoregions and will learn
how to extract features common to all ecoregions; each new
ecoregion will then be explicitly learned by a separate U-Net
decoder that will further extract region-specific representations
in the contracting path, followed by pixel labeling in the
expansive path.

In the decoder, a repeating building block RC is used in the

contracting path. It consists of a 3 × 3 separable convolution
(to reduce the number of trainable parameters) [89], [90] and
a batch normalization layer [91], followed by a rectified linear
unit (ReLU) [92] activation function. Seven such RC blocks
are used, starting with a depth of 8 filters (channels) and
ending with 512 filters. A 2×2 max pooling [93] layer with a
stride of 2 is used between each RC block to downsample the
resolution by half. The number of filters is doubled at every
down-sampling step. This is followed by a spatial dropout
[94] layer acting as a regularizer to avoid overfitting. For the
expansive path in the decoder, we use a repeating block RE .
It consists of a 2× 2 upsampling block that uses a transposed
convolution (deconvolution) [95] layer. This upsamples the
layer’s input as well as decreases the number of channels by a
factor of two. A skip connection [96] from the contracting
path at every downsampling step is concatenated with the
corresponding output of the deconvolution block to get back
the pre-upsampled resolution. This is fed into into a 3 × 3
convolution followed by a Batch Normalization layer and a
ReLU activation. Six such RE blocks are used, starting with
a depth of 256 filters and ending with 8 filters. At the final
layer, a 1×1 convolution [88] with sigmoid activation is used
to generate predictions at the same spatial resolution as that
of the input image. The final output from the decoder is of
resolution 512× 512× 1.

3) Training Algorithm: The algorithm for TSMU is out-
lined in Algorithm 1. Given the complete set of parameters
Θt up to task t, the prediction of the model on input x is
denoted as f(x | Θt). Note that this prediction is a matrix.
Each entry of the matrix is a prediction for the corresponding
pixel and represents the predicted probability that the pixel
is a landslide pixel. As we add decoders to the model, we
will use subscripts like fj to refer to the output of decoder j.
Because data D[1:t−1] are unavailable for task t, the idea is
to use all the previously learned parameters Θt−1 (up to the
previous task t − 1) to preserve the model’s performance on
old tasks. This is the key idea from LwF that we are using.
Specifically, we feed the input from the new ecoregion into
the network and record the responses of the decoders for all
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ecoregions. The goal of the parameter updating is to improve
performance on the new ecoregion while trying to keep the
responses of the other decoders on this input from changing.
Formally, the training approach is as follows:

A Initial Training: In this step, we train the base archi-
tecture of our model described in section III-B2 for the
first task T1 consisting of data D1 = {xi, yi}|n1

i=1. The
data D1 can consist of image pairs from one or more
ecoregions. The values of the parameters after training the
model on D1 is Θ1 = {θ(1)s , θ

(1)
1 }, where θs represents

the common encoder (Figure 6) that will be shared with
future ecoregions and θ1 represents the first task specific
decoder (Figure 7). The parameter set is optimized until
convergence on data D1 using Soft Dice Loss L1

SD [97]
with Adam [98] optimizer. The output of decoder 1 for
an input x is denoted by f1(x|Θ1).

B Incremental Freeze Training: Now data from a new task
(ecoregion) come in and we must update the network.
This is done in two steps, incremental freeze training and
joint fine-tuning. We describe incremental freeze training
step first. Without loss of generality, let Tt be this latest
task and Dt be the corresponding data. In this case, the
most recently updated model currently has parameters
Θt−1. The output of decoder j (for j = 1, . . . t−1) on an
input x would be denoted as fj(x|Θt−1). We add a new
decoder for this new ecoregion and randomly initialize
its task specific parameters θt. We freeze the weights
Θt−1 (which are the shared parameters and parameters of
the previous t− 1 tasks) and only train the new weights
θt with the new data. Soft Dice Loss LtSD with Adam
optimizer is used for optimization. The resulting values
of the parmeters θt are denoted as θ∗t .

C Joint Fine Tuning: Next step, we jointly fine tune
all parameters using Knowledge Distillation loss (KD)
[54]. For each input xti in the new data, we run it
through each of the decoders of the previous tasks and
store the results. That is, for j = 1, . . . , t − 1 we let
zi,j = fj(x

t
i|{Θt−1, θ

∗
t }) denote the stored response of

decoder j for input xti. Then we train all of the parameters
together using a loss function that consists of two parts.
The first part of the loss function, denoted by LtKD
uses knowledge distillation loss so that the output of
decoder j on input xti would be close to zi,j for all
of the prior tasks (j = 1, . . . , t − 1). Thus, even as the
shared encoder parameters θs change, the parameters of
the old task decoders are updated to compensate for this
change so that their output for xti remains almost the
same. Meanwhile, we use soft dice loss, denoted by LtSD
to try to force decoder t (of the actual ecoregion of the
input) to try to match the ground truth yti for input xti.
The overall loss is a weighted sum λ1L

t
SD + λ2L

t
KD,

where λ1 and λ2 are hyperparameters that are tuned on
the validation set using a grid search. We also add weight
decay regularization [99] during this training step. Once
this training step is done, the updated parameters are now
referred to as Θt = {θ(t)s ,∪ti=1θ

(t)
i }.

Now, as each new ecoregion is added, a corresponding

decoder for the ecoregion is added and the incremental
freeze training and joint fine-tuning steps are applied to
update the network parameters.

Algorithm 1 Task-Specific Model Updates Training
Input:
Sequential Semantic Segmentation Tasks: T = (T1, T2, ..Tt...)
Training Data: Dt = {xti, yti}|

nt
i=1 with nt samples

Hyperparameters for Loss functions: λ1, λ2, µo, τ
Output:
Parameter Set optimized for Task Tt: Θt = {θ(t)s ,∪ti=1θ

(t)
i }

1: while Task Tt do
2: Get Training Data Dt for the current task
3: if t = 1 then . First Task
4: Initial Training:
5: Randomly initialize Parameter Set Θ1 = {θs, θ1}
6: Output of decoder 1 on input x is f1(x|Θ1)
7: Compute Soft Dice Loss L1

SD . Eq 3
8: Update parameter set Θ1 with Adam optimizer:
9: Θ1 = {θ(1)s , θ

(1)
1 } = argmin{θks ,θk1}L

1
SD

10: else . t = {2, 3, ...}
11: Incremental Freeze Training:
12: Add new decoder j for data Dt

13: Randomly initialize its task specific parameters θt
14: Freeze values of: Θt−1 = {θ(t−1)s ,∪t−1i=1θ

(t−1)
i }

15: Output of new decoder j on input x is fj(x|θt)
16: Compute Soft Dice Loss LtSD . Eq 3
17: Update new parameter set θt with Adam optimizer:
18: θ∗t = argmin{θkt }L

t
SD

19: Joint Fine Tuning:
20: Make all parameters of Θt−1 trainable . Unfreeze
21: Store zi,j = fj(x

t
i|{Θt−1, θ

∗
t }), j = 1, ..t− 1

22: Compute fj(xti|Θt), j = 1, ..t− 1
23: Compute ft(xti|Θt)
24: Compute Soft Dice Loss LtSD . Eq 3
25: Compute KD Loss LtKD . Eq 5
26: Compute Total Loss
27: Lttotal = λ1L

t
SD + λ2L

t
KD

28: Update parameter set Θt:
29: θ

(t)
s = argmin{θks }L

t
total

30: ∪t−1i=1θ
(t)
i = argmin{θki }L

t
total

31: θ
(t)
t = argmin{θkt }L

t
total

32: return output Θt = {θ(t)s ,∪t−1i=1θ
(t)
i , θ

(t)
t }

4) Loss Functions: Soft Dice Loss LtSD is a differential
approximation of the Intersection Over Union (IoU) metric
(IoU measures the intersection between the predicted landslide
pixels and actual landslide pixels, then divides by their union).
We use LtSD to force decoder t to try to match the ground
truth yti for each input xti in the new data at time step t. The
output of decoder t is denoted by ft(·). The Intersection It

and Union U t are given by

It =

∣∣∣∣∣
∣∣∣∣∣
nt∑
i=1

yti ⊗ ft(xti|Θt)

∣∣∣∣∣
∣∣∣∣∣
1

(1)
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U t =

∣∣∣∣∣
∣∣∣∣∣
nt∑
i=1

yti + ft(x
t
i|Θt)

∣∣∣∣∣
∣∣∣∣∣
1

(2)

where ⊗ denotes the pointwise product (recall that the mask
and predictions are matrices with an entry for each pixel) and
the L1 norm sums up over the pixels (matrix entries).

The Soft Dice loss LtSD, with hyperparameter µ0, is:

LtSD = 1− 2It + µo
U t + µo

(3)

The value of µ0 was set to 1 based on a grid search on the
validation set.

At the end of Incremental Freeze Training step, the resulting
values of parameters θt of the new decoder t are denoted by
θ∗t . For each input xti in the new data at time step t, we evaluate
and store the outputs of each of the decoders of the previous
tasks T[1:t−1]. For decoder j, where j = 1, ..., t−1, the stored
response for input xti is given by

zi,j = fj(x
t
i|{Θt−1, θ

∗
t }) (4)

The Knowledge Distillation loss LtKD is given by

LtKD =

∣∣∣∣∣∣
∣∣∣∣∣∣−

t−1∑
j=1

nt∑
i=1

Φ(zi,j)⊗ log(Φ(fj(x
t
i|Θt)))

∣∣∣∣∣∣
∣∣∣∣∣∣
1

(5)

where the log is taken pointwise,⊗ is pointwise multiplication,
and Φ(·) is the rescaling function (also applied pointwise) that
has a hyperparameter τ :

Φ(µ) =
µ1/τ

µ1/τ + (1− µ)1/τ
(6)

Here τ was set to 2 based on a grid search on the validation
set. As before, the L1 norm in Equation 5 adds up the values
(they are always positive) over the pixels.

C. Selecting Decoders at Test Time

At deployment time, a new pre/post image pair is provided,
with the goal of identifying if and where landslides occurred
between the date of the pre-image and the date of the post-
image. Pre/post image pairs can be collected automatically and
so are typically not labelled with the ecoregion they belong
to. Thus, we propose an automated method that determines
which ecoregion a new image pair belongs to and hence
which decoder of TSMU to use for landslide labeling. We
train an autoencoder [100] gate for each ecoregion separately,
as shown in Figure 8. An autoencoder is a neural network
that learns to compress its input (nonlinear dimensionality
reduction) and then decompress it (lossy reconstruction). Each
autoencoder gate At is trained until convergence using binary
cross entropy loss [101] with Adam optimizer to minimize
the reconstruction error et. After learning the autoencoders
{At}τt=1 for all the tasks, a softmax layer is added to take the
reconstruction errors {et}τt=1 as inputs, given a test sample
x. The reconstruction error et of the t-th autoencoder At
is the Euclidean distance between output of At and x. The
softmax layer gives the confidence values of each autoencoder.
The most confident autoencoder indicates the corresponding

Fig. 8: Test-time TSMU decoder selection using autoen-
coder gates. This figure shows the mechanism used to select
the decoder branch for predicting the output probability map
of an unknown test sample x.

decoder of TSMU to choose for test-time prediction of sample
x. The probability pi of autoencoder Ai is given by:

pi =
e(−ei/τ)∑T
i=1 e

(−ei/τ)
(7)

The hyperparameter τ was set to 2 using grid search on the
validation set. For tasks that have some overlap, it can be
convenient to activate more than one decoders and take the
average map of the output probabilities.

IV. EXPERIMENTS & RESULTS

In this section, we provide a detailed description of our
experimental setup and the results. The implementation details
and evaluation metrics are described in Sections IV-A and
IV-B, respectively. Our experiments have two main variants
(spatial holdout and sequential) that we explain in Section
IV-C. In Section IV-D, we describe the baselines and com-
peting methods we use for comparisons. In section IV-E, we
present the quantitative experimental results and in section
IV-F, we present some qualitative case studies.

A. Implementation Details

All of our models were trained with an initial learning rate
of 1e−3 for 10k iterations with a batch size of 2 on an NVIDIA
RTX 2080 Ti GPU cluster with 16GB memory. We use a
decay of 0.001 and momentum of 0.9 for the Adam optimizer.
We use a learning rate scheduler to exponentially decay the
learning rate by a factor of 0.01 until we reach 1e−8. Data pre-
processing and the creation of training, validation, and test sets
were performed as described in section III-A3. We average
the results by performing all the experiments three times to
decrease the effect of randomness during training.
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B. Evaluation Metrics

All our models take as input a pair of pre-event and
post-event (bi-temporal) images and, for each pixel, output a
number between 0 and 1 (which is interpreted as a probabilistic
estimate that the pixel is part of a landslide). We convert
each per-pixel probability into a per-pixel prediction value of
0 or 1 (1 = landslide and 0 = background) by thresholding
probabilities at 0.5.

For quantitative evaluation of the models, we use mean
intersection over union [102] and the following continual
learning metrics from the literature that test the amount of
forgetting that a model may experience: Average Continual
Accuracy (ACA) [80] and Average Forgetting (AF) [62]. All
of these are defined next.

Mean intersection over untion (mIoU) is the area of overlap
between predicted and ground truth pixels divided by the area
of their union, averaged over all the classes, the classes being
“landslide” and “background” (non-landslide). The mIoU of a
model trained on sequential tasks T1 to Tk calculated on the
test set of task Tj can be mathematically written as:

mIoUk,j =
1

2

1∑
x=0

pxx∑1
y=0[pxy + pyx]− pxx

(8)

where pxy denotes the number of pixels of category x pre-
dicted as category y. mIoU is evaluated over the testing data.

Let wj be the number of test images in Task Tj (in our
case, the number of testing images from each ecoregion is the
same, as explained in Section III-A3). After the model has
been updated with the kth task, the Weighted Average (WA)
of mIoU on all tasks from T1 up to task Tk can be written as

WAk =
1∑k

j=1 wj

k∑
j=1

wj ×mIoUk,j (9)

The Weighted Forgetting (WF) up to task Tk is defined by
considering, for each task, the difference between the mIoU
of the best prior model for that task and the current model, and
then averaging across tasks. Mathematically it can be written
as:

WFk =
1∑k−1

j=1 wj

k−1∑
j=1

wj × fkj (10)

where

fkj = max
{l∈{1,..k−1}}

{mIoUl,j} −mIoUk,j ∀j < k (11)

Positive values of WFk mean that the most recent model’s
performance has degraded for the prior tasks, while negative
values of WFk mean that the current model’s performance on
the prior tasks is better than before.

C. Experimental variants: spatial holdout vs. sequential

We consider the setting where data arrive over time in
batches, and every new batch of data may belong to a different
ecoregion with distinct landscape characteristics. We perform
our experiments with two variants of this data collection
setting, which we call spatial holdout and sequential. (1)

Spatial Holdout: This setting is designed to test how well
a single update works. Thus, in this setting, data from three
ecoregions are available in the beginning and data from one
ecoregion will arrive later. Note that since we have 4 total
ecoregions, there are 4 possible ways of doing this grouping
(and we consider all of them). The initial group of 3 ecoregions
is treated as one task (i.e., they all share the same encoder
and decoder) and the 4th ecoregion, which arrives later in
time, will get its own task-specific decoder in the TSMU
framework. (2) Sequential: This setting considers how well
multiple sequential updates are performed. Initially, data points
from only one ecoregion are available. Then, data from the rest
of the ecoregions arrive, one ecoregion at a time. After each
ecoregion, a new task-specific decoder is added and a model
update is performed. Hence, our final model will have four
task specific decoders at the end (Figure 7).

D. Compared Methods

1) Baseline Catastrophic Forgetting Experiments: We per-
form six incrementally complex baseline experiments for
comparison with TSMU and highlight the value of each added
procedure. The first four methods do not involve revisiting old
data, while the last two revisit old data (hence they serve to
measure what performance, if any, is lost when operating in
the more restricted setting that TSMU was designed for). All
the baseline experiments use the spatial holdout (IV-C) data
collection setting to explore the performance of TSMU when
one new ecoregion is added.

1) Naive Transfer (NT) [103]: The first reference option for
a baseline, is to simply not update the network in response
to the new training data. This allows us to evaluate
how well a model trained on one homogeneous region
performs on other regions, and to determine whether
adding training data from those regions is necessary. We
use this for the spatial holdout experiments, so the base
architecture described in Section III-B2 is trained on three
ecoregions at a time, which serves as the old task. The
new task is the arrival of data from the fourth ecoregion.

2) Retraining [18]: The next option is to take a previously
trained model and continue training it using data from
only the new ecoregion. In order to guard against catas-
trophic forgetting, this subsequent training is done using
a small learning rate, which is a common DL practice.
The purpose of this baseline is to explore performance
when no new parameters are added in response to data
from the new ecoregion.

3) Feature Extraction [75]: The next option is to add new
task specific parameters (Figure 7) in response to data
from new ecoregions. However, the shared parameters of
the encoder (Figure 6) are frozen for the new data (i.e.,
they are not allowed to change) and hence their purpose
is to extract features from the new ecoregion using the
knowledge of how to extract features obtained from the
initial task. The decoder (i.e., task-specific weights) that
is added to the model has weights that are trainable. This
method avoids catastrophic forgetting as the response of
the model to old data remains unchanged (because the
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shared parameters do not change and the decoders for
the previous tasks also do not change).

4) Fine Tuning [74]: This is an extension of Feature Extrac-
tion. In this option, unlike Feature Extraction, the shared
parameters along with the newly added task specific
parameters are trained together. This changes the response
of the model to old data due to the change in the shared
parameters and so has the potential to cause catastrophic
forgetting. The purpose of this baseline is to explore the
performance when new task specific parameters are added
and the shared parameters change in response to new data.

5) Joint Training with all data (JTAD) This is the ap-
proach of training the entire TSMU architecture (shared
encoder and region-specific decoders) using all of the
data collected at a given time step (i.e., old data points are
revisited). This allows us to measure what performance
may be lost in the more restrictive setting that TSMU
is forced to work in (with data arriving over time, and
without the ability to revisit old data). JTAD is the most
computationally expensive baseline and is expected to
be the most accurate. Thus, the goal of TSMU is to
approach the accuracy of JTAD despite operating in a
more restricted setting.

6) Joint Training with all data - Single Decoder (JTAD-
SD): This approach, like JTAD, uses all of the data at
once, but only uses a single decoder for all regions. The
purpose of this baseline is to measure the effect of using
region-specific parameters (JTAD vs. JTAD-SD).

2) Competing methods in Continual Learning: We also
compare TSMU framework with several state-of-the-art con-
tinual learning mechanisms to evaluate its effectiveness of alle-
viating catastrophic forgetting. We consider the following three
competitive methods for continual learning for segmentation.
All of them use variants of Knowledge Distillation [54] in
their objective functions. (1) KD-BCE [79] is a regularization-
based continual learning strategy that performs multi-class
remote sensing semantic segmentation. This method uses a
replay based mechanism to sample data from old classes.
The objective function in this method penalizes the shift of
important parameters in the network. However, the method
assumes a class continual learning setting where the new class
and the old class data come from the same underlying data
distribution. (2) Incremental Learning Techniques for Seg-
mentation (ILT) [104] is a parameter isolation based method
that proposed four KD variants, out of which we choose the
one they reported works the best (output feature alignment
distillation loss implementation). This method again assumes
class continual mechanism where a class is added sequentially
while the data arrive from the same underlying distribution.
(3) Continual learning with Structured Inheritance (SI) [80] is
another parameter isolation based method, which in addition to
KD, introduces two more terms in the objective function: Pixel
Affinity Structure (PAS) loss and Representation Consistency
Structure (RCS) loss. The paper works with four remote sens-
ing datasets. Their approach is class continual as well, where
new classes from a different dataset are added sequentially
to the same network. Their datasets are collected from similar

geographical locations with multiple class overlap. This means
that the sequentially added datasets the paper uses do not
undergo substantial domain shift. This is the main reason
their experiments do not need task specific parameters. Unlike
the three methods, TSMU is a regularization based network
expansion method, where we add task specific parameters for
every newly encountered ecoregion.

Fig. 9: Sample images to help interpret mIoU scores.
Sample images containing (from left to right) the pre-event,
post-event, human-generated landslide annotations (“ground
truth”), and predictions of various quality, with mIoU scores
ranging from 28.3% to 88.4%. The purpose is to help un-
derstand how mIoU is correlated with visual quality. It can be
observed that the number of false positives and false negatives
decrease as the mIoU score increases. mIoU values around
65% are considered fairly good. The excel file containing
the coordinates of the landslides used in this figure will be
available in our GitHub link for data.

https://github.com/deepLDB/landslide-detection
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E. Results

In this section, we quantitatively compare TSMU framework
with baseline and state-of-the-art methods under two data
collection settings. These comparisons also inform us of the
effect of each added operation. Human-generated pixel-wise
landslide annotated binary masks are treated as the ground
truth for all experiments. The intensity at each pixel is either 0
or 1, where 0 represents non-landslide pixels and 1 represents
landslide pixels. A sample binary map can be seen in Figure
1.

1) Spatial Holdout: These experiments use the spatial hold-
out (IV-C) data collection setting. All metrics are computed
over the test images.

(i) Model Transferability:

TABLE II:
PERFORMANCE COMPARISON (MIOU) FOR NAIVE TRANSFER
BASELINE. THE MODEL IS TRAINED ON THREE ECOREGIONS

(OLD TASK) AND EVALUATED ON (1) TESTING DATA FROM THOSE
ECOREGIONS AND (2) TESTING DATA FROM A NEW ECOREGION

(NEW TASK).

Naive Transfer Baseline
Data: Old Task mIoU: Old Task Data: New Task mIoU: New Task

ETF + MWCF + NAD 66.6 NWFM 38.5
MWCF + NAD + NWFM 67.4 ETF 47.4
NAD + NWFM + ETF 68.8 MWCF 44.2
NWFM + ETF + MWCF 69.1 NAD 21.8
Average mIoU: 67.9 37.9

The Naive Transfer experiments, presented in Table II
show that models trained on an initial set of ecoregions
do not transfer very well to new ecoregions. It can be
observed from Table II that all models have a pixel-level
mIoU in the high 60s when evaluated on the testing data
of the initial set of ecoregions [80], but have drastically
lower mIoU on the new ecoregion. A pixel-level mIoU
of above 60 indicates fairly good performance. To under-
stand how mIoU is related to visual prediction quality,
Figure 9 shows some sample mIoU scores along with
ground truth and predicted landslide pixels.

We note from Table II that NT suffers a severe decline
in performance when used for a new ecoregion. The
declines are larger than 20%, with the average at 30%
(from 67.9% to 37.9%). The poorest transferability is
found with the model trained on ETF + MWCF + NWFM
with a mIoU of 69.1 is tested on NAD, resulting in
mIoU of 21.8. This is because NAD has substantially
narrower landslides with very different background pixel
distribution as shown in Section III-A2. The learned
representations of the trained model seems unable to
generalize on a new unseen task, which is character-
istically dissimilar compared to the data used to train
the model. This experiment also implicitly indicates the
domain shift in ecoregions as the cause for the drastic
drop in mIoU. This experiment highlights the geographic
specificity of landslide detection and that training only
over homogeneous regions is insufficient for building a
large-scale/global landslide identification model.

(ii) Model Updates:

Having established that models do need to be updated
with training data from new ecoregions, we now compare,
in Tables III to VI, the competing model update methods
described in section IV-D. Here we are still in the spatial
holdout setting, in which a network is trained on an
initial set of three ecoregions and then a model update
is performed using training data from the fourth region.
In the tables, we use Ref mIoU (old) to refer to the mIoU,
on the old task, of Naive Transfer. Ref mIoU (new) refers
to the mIoU of Naive Transfer when evaluated on the
test set of the new ecoregion. These reference mIoUs are
used as baselines to determine the amount of forgetting
on the old task and amount of improvement on the new
task when the model update methods are applied.

Tables III to VI feature the same experimental setup,
except the difference in which ecoregion is treated as the
new task.

TABLE III:
PERFORMANCE COMPARISON (MIOU) FOR MODEL UPDATE

METHODS STARTING FROM {ETF+MWCF+NAD} TO {NWFM}

Naive Transfer baseline: Ref mIoU (old) = 66.6 ; Ref mIoU (new) = 38.5
Methods [ETF + MWCF + NAD] (old) → [NWFM] (new) Weighted Average (WA)
Retraining [18] 37.4 65.9 44.5
Feature Extraction [75] 66.6 48.8 62.7
Fine Tuning [74] 46.8 67.9 52.2
KD-BCE [79] 55.8 54.6 55.5
ILT [104] 57.7 56.8 57.5
SI [80] 59.9 58.8 59.6
JTAD-SD 66.1 65.9 66.0
JTAD 68.8 69.2 68.9
TSMU (ours) 67.2 66.9 67.1

Performance, after model update, on the old tasks, new task, and the
Weighted Average (WA) = (w1 ·mIoUoldtask + w2 ·mIoUnewtask)/20, where
w1 = 15 (5 per ecoregion, (ETF+MWCF+NAD)) and w2 = 5 (NWFM).

TABLE IV:
PERFORMANCE COMPARISON (MIOU) FOR MODEL UPDATE

METHODS STARTING FROM {MWCF+NAD+NWFM} TO {ETF}

Naive Transfer baseline: Ref mIoU (old) = 67.4 ; Ref mIoU (new) = 47.4
Methods [MWCF + NAD + NWFM] (old) → [ETF] (new) Weighted Average (WA)
Retraining [18] 43.2 69.7 49.9
Feature Extraction [75] 67.4 54.8 65.5
Fine Tuning [74] 48.4 68.1 53.3
KD-BCE [79] 58.6 57.8 58.4
ILT [104] 60.1 60.8 60.3
SI [80] 60.9 61.2 61.0
JTAD-SD 66.9 68.2 67.2
JTAD 69.5 71.8 70.1
TSMU (ours) 68.6 69.1 68.7

WA = (w1 · mIoUoldtask + w2 · mIoUnewtask)/20, where w1 = 15 (5 per
ecoregion, (MWCF+NAD+NWFM)) and w2 = 5 (ETF).

TABLE V:
PERFORMANCE COMPARISON (MIOU) FOR MODEL UPDATE

METHODS STARTING FROM {NAD+NWFM+ETF} TO {MWCF}

Naive Transfer baseline: Ref mIoU (old) = 68.8 ; Ref mIoU (new) = 44.2
Methods [NAD + NWFM + ETF] (old) → [MWCF] (new) Weighted Average (WA)
Retraining [18] 45.8 67.4 51.2
Feature Extraction [75] 68.8 53.6 65.3
Fine Tuning [74] 47.8 68.7 53.0
KD-BCE [79] 57.1 56.6 56.9
ILT [104] 61.7 62.2 61.9
SI [80] 62.9 63.3 63.0
JTAD-SD 66.6 67.1 66.7
JTAD 68.7 69.9 69.0
TSMU (ours) 67.6 68.8 67.9

WA = (w1 · mIoUoldtask + w2 · mIoUnewtask)/20, where w1 = 15 (5 per
ecoregion, (NAD+NWFM+ETF)) and w2 = 5 (MWCF).

As expected, the performance of retraining [18] the
model on only the new data results in significantly
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TABLE VI:
PERFORMANCE COMPARISON (MIOU) FOR MODEL UPDATE

METHODS STARTING FROM {NWFM+ETF+MWCF} TO {NAD}

Naive Transfer baseline: Ref mIoU (old) = 69.1 ; Ref mIoU (new) = 21.8
Methods [NWFM + ETF + MWCF] (old) → [NAD] (new) Weighted Average (WA)
Retraining [18] 36.9 66.2 44.3
Feature Extraction [75] 69.1 35.9 62.1
Fine Tuning [74] 40.8 68.8 47.8
KD-BCE [79] 58.5 55.4 57.7
ILT [104] 60.2 63.9 61.2
SI [80] 64.2 64.9 64.4
JTAD-SD 66.2 67.9 66.6
JTAD 71.8 70.1 71.3
TSMU (ours) 69.9 67.3 69.3

WA = (w1 · mIoUoldtask + w2 · mIoUnewtask)/20, where w1 = 15 (5 per
ecoregion, (NWFM+ETF+MWCF)) and w2 = 5 (NAD).

degraded performance on the old data. The highest degra-
dation can be observed in row 1 in Table VI, where the
mIoU on the old task after updating the model is 36.9%,
dropping by 34%. This is again because NAD undergoes
a significant domain shift in the pixel distribution. The
next highest degradation due to retraining is observed in
row 1 in Table III, where the mIoU on the old task after
updating the model is 37.4%, with a degradation of 30%.
This is also because NWFM contains landslides that share
the distribution with all the other three ecoregions, as
shown in Figure 4.

The performance of Feature Extraction [75] on the
new tasks is much worse than for the retraining method.
However, there is no performance degradation on the
old tasks. This indicates that shared parameters (which
are not updated for the new ecoregion in this baseline)
will indeed require (careful) updating in order to achieve
good performance on old and new tasks. The lowest
new task mIoU after update is 35.9% in row 2 in Table
VI. This is because NAD is significantly different from
other ecoregions. The encoder (which contains the shared
parameters) that is trained to extract good features for
the old task is unable to extract effective features for
capturing landslides in the NAD ecoregion.

Fine Tuning [74] (row 3 in Tables III-VI), shows
catastrophic forgetting on old tasks but appears to be
uniformly better than the retraining approach on both
old and new tasks. Bacause the main difference between
the finetuning and retraining baselines is the addition of
new task-specific parameters, this shows that this archi-
tectural choice can be important (although it continues
to show that the shared parameters need to be updated
carefully to avoid catastrophic forgetting).

The three parameter isolation methods KD-BCE [79],
ILT [104] and SI [104] perform significantly better than
retraining, feature extraction and fine tuning on old tasks.
This shows the importance of adding the constraint of
Knowledge Distillation [54] to the objective function,
reducing the effect of catastrophic forgetting. However,
the performance on the new task is poor when compared
to Fine Tuning. We think the reason is that these methods
assume parameter independence and share all parame-
ters (and hence indicates that task-specific parameters
are indeed necessary). But the performance is generally
better than retraining and feature extraction on new tasks.

However, the weighted average of these tasks is higher
than the above mentioned methods, with the average over
all the four models being 57%, 60%, and 62% for KD-
BCE, ILT, and SI, respectively. SI is higher than the others
as it uses two additional constraints: PAS and RCS in its
objective function.

The upper bound baselines JTAD-SD and JTAD
(which require old data to be revisited, along with the new
data) are considered next. JTAD and JTAD-SD differ only
on the architecture, as explained in Section IV-D. Both
these methods performed better than the other baselines,
which is expected considering that they operate in a less
restricted setting. The mean weighted average of JTAD-
SD across all the tables is ≈ 67%, while that of JTAD is
≈ 69%. Approaching this level of performance would
be the desired behavior for an update method that is
restricted from revisiting the old data.

The proposed TSMU compares favorably with JTAD
and JTAD-SD and often outperforms JTAD-SD, illus-
trating that a good choice of architecture can overcome
JTAD-SD’s built-in advantage of having all the data at
once.

Additionally, it can be observed that for TSMU there
is actually a boost in the performance of old tasks with
increases of 0.6%, 1.2%, and 0.8% in tables III, IV, and
VI (compared to the reference mIoUs in these tables) but
a decrease of 1.2% in Table V. This appears to show that
the updates to the shared parameters (performed when
new data are received) may be beneficial to the old tasks.
However, this difference becomes much more clear when
we compare JTAD (trained on all data) to the reference
mIoU in each table (trained on three ecoregions). For
example, in Table III, the performance of JTAD on ETF,
MWCF, and NAD is 68.8% and it outperforms the refer-
ence mIoU (66.6%) that is trained on EFT+MWCF+NAD
at the same time. The only difference between them is the
addition of NWFM into the training data of JTAD, which
shows that adding this ecoregion into the training data
improved performance on the other ecoregions. Similarly,
JTAD vs. reference mIoU are 69.5% vs. 67.5% in Table
IV, 68.7% vs. 68.8% in Table V, and 71.8% vs. 69.1% in
Table VI further shows that adding ecoregions outside
a region of interest can improve performance on the
region of interest.

The design of TSMU leverages the following obser-
vations from other model update methods: (1) Shared
parameters set is sensitive to changes in input data dis-
tribution as shown by feature extraction and fine tuning,
so, we need a controlled constraint to train the shared
parameters to avoid catastrophic forgetting. (2) Increasing
data diversity by including data from new ecoregions
results in increased accuracy on older ecoregions, as
shown by increased accuracy of Fine Tuning when com-
pared to complete retraining from scratch. (3) Knowledge
Distillation provides a constraint mechanism to control
the change in model parameters, thus decreasing catas-
trophic forgetting. This is shown by KD-BCE, ILT and SI.
(4) task specific parameters are necessary for increased
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performance in scenarios where sequential flow of data
undergoes significant domain shift as shown by Fine
Tuning and Feature Extraction. TSMU uses task specific
parameters, feature extraction in incremental freeze train-
ing step and fine tuning with knowledge distillation in the
joint fine tuning step.

Fig. 10: Performance Comparison Plots for Sequential
Model Update methods. The two plots show the Weighted
Average (WA) (higher is better) and Weighted Forgetting
(WF) (lower is better) metrics over four sequential learning
steps from ETF to MWCF to NAD to NWFM.

2) Sequential: As discussed in Methods, the sequential
data collection setting (IV-C) tests the ability of the models
to perform multiple updates, as would be expected in a
deployed setting. The base architecture (Section III-B2) is

initially trained on ETF. This is followed by the model being
updated on data from MWCF, followed by NAD and finally
NWFM. Task specific decoders (Figure 7) are appended for
each update as shown in Figure 5. Higher values of Weighted
Average (WA) mIoU and lower values of Weighted Forgetting
(WF) denote reduction of catastrophic forgetting and increased
performance of continual learning.

The results are shown in Figure 10. Generally, TSMU is
the best performing method that does not revisit old data
and compares favorably with JTAD and JTAD-SD (both of
which do revisit old data as new ecoregions arrive in this
sequential setting). The retraining baseline shows the worst
performance with a final weighted average (WA) of 50.1%.
Feature extraction has no effect on the initial Reference mIoU
on ETF as the shared parameter set is not changed. It can be
observed that the values of WA decrease over sequential steps,
with a final value of 51.8%. This decline can also be observed
in Figure 10. Similar to feature extraction, fine tuning turns
out be a non-performing strategy in the long term, presenting a
final value of only 48.1%. fine tuning shows the compounding
effect of catastrophic forgetting over sequential learning steps.
Parameter isolation methods KD-BCE, ILT and SI perform
better than the previous methods, with the final WA of 58.3%,
60.2% and 61.1%. The trend of WA is increasing over the
sequential learning steps for JTAD with the final WA of 67.5%.
Similar to LOO experiments, TSMU performs the best on
sequential updates as well, with a final WA of 68.3%. This
is supported by the regularization effect its Joint Fine Tuning
step which increases the mIoU of the old task in each update.

For these methods, it can be observed that the value of
WA decreases with addition of NAD (step #3), and increases
with the addition of NWFM. For all methods except JTAD,
it can be observed that the average forgetting rate increases
when NAD is added, as also shown in Figure 10. This is
because NAD is the most characteristically different ecoregion
among the four, as shown in Figure 3. TSMU also has a dip
in performance when data from NAD are incorporated, where
the WA drops to 67.1% from 67.4%. Addition of NWFM
boosts the performance. This is because the data distribution
of NWFM overlaps with that of the other three ecoregions as
shown in Figure 4.

F. Case Studies
In this section, we visualize landslide segmentation pre-

diction maps obtained as outputs from TSMU. At test time,
we use an Autoencoder gate mentioned in section III-C to
route the test image through the network to the corresponding
ecoregion-specific decoder. The predictions for sample test
input images from all ecoregions can be observed, which
are output by a trained TSMU network and can be observed
in Figure 12. Prediction maps from JTAD are also provided
for reference, which can be used as baseline to evaluate the
performance of TSMU. It can be seen that the outputs of
TSMU closely match the ground truth maps and perform better
than JTAD in most of the samples, showing TSMU’s effective
performance on unseen data points from all ecoregions.

We have already observed quantitative results in tables
II to VII, where adding data from a new ecoregion boosts
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TABLE VII:
PERFORMANCE COMPARISON (MIOU) FOR SEQUENTIAL MODEL UPDATES STARTING FROM ETF TO MWCF TO NAD TO NWFM

Methods

Naive Transfer baseline:
Ref mIoUETF (old) = 67.7
Ref mIoUMWCF (new) = 49.6

Naive Transfer baseline:
Ref mIoUETF (old) = 67.7
Ref mIoUMWCF (old) = 49.6
Ref mIoUNAD (new) = 28.4

Naive Transfer baseline:
Ref mIoUETF (old) = 67.7; Ref mIoUMWCF (old) = 49.6
Ref mIoUNAD (old) = 28.4; Ref mIoUNWFM (new) = 39.2

ETF (old) → MWCF (new) WA1 ETF (old) → MWCF (old) → NAD (new) WA2 ETF (old) → MWCF (old)→ NAD (old)→ NWFM (new) WA3

Retraining [18] 46.4 67.2 56.8 30.6 32.8 65.9 43.1 44.2 46.6 41.4 68.2 50.1
Feature Extraction [75] 67.7 52.4 60.1 67.7 52.4 37.8 52.6 67.7 52.4 37.8 49.1 51.8
Fine Tuning [74] 48.2 69.6 58.9 37.6 42.7 67.1 49.2 35.4 40.8 45.8 70.1 48.1
KD-BCE [79] 60.2 58.3 59.3 55.3 56.2 60.8 57.5 57.9 58.8 54.2 62.3 58.3
ILT [104] 62.9 60.4 61.7 59.4 58.3 60.9 59.5 60.6 59.9 55.2 64.8 60.2
SI [80] 64.2 61.3 62.8 60.9 60.1 57.2 59.4 61.4 60.8 56.9 65.2 61.1
JTAD-SD 66.1 67.5 66.8 65.9 66.9 67.8 66.7 66.2 67.5 66.5 69.8 67.5
JTAD 68.8 67.6 68.2 68.9 69.1 67.8 68.6 69.8 70.1 67.2 69.2 69.1
TSMU (ours) 68.6 66.2 67.4 67.2 67.1 66.9 67.1 68.1 68.9 65.1 70.8 68.3

A model with our base architecture (Section III-B2) is initially trained on ETF until convergence. Ref mIoUETF is the mIoU of this model when evaluated
on the test set of ETF. The same trained models is then evaluated on test sets of MWCF, NAD and NWFM, which give the corresponding Ref mIoUMWCF,

Ref mIoUNAD and Ref mIoUNWFM. These are used as baselines to analyse the performance of different model update methods when data from MWCF,
NAD and NWFM are incorporated sequentially to update this base model.
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Fig. 11: Increase in Spatial diversity of data increases model performance on a given ecoregion. From left to right, pre-
event image, post-event image, human-annotated landslide pixel-wise map overlayed on post image (ground truth), prediction
of model trained on old ecoregion on an image from old data, prediction of same model on the same image when data
from new ecoregion is sequentially added. The figure shows sample predictions of the base architecture of TSMU before and
after addition of data from a new ecoregion. It can be observed that sequential addition of data from new ecoregions boosts
the performance of the model on already trained ecoregions. This image is best seen in color. The excel file containing the
coordinates of the landslides used in this figure will be available in our GitHub link for data.

https://github.com/deepLDB/landslide-detection
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Pre Image Post Image Prediction: JTAD Prediction: TSMU Ground TruthEcoregion

ETF

MWCF

MWCF

NWFM

NAD

NWFM

NAD

NAD

NAD

Fig. 12: Comparative visualization of prediction map samples of JTAD and TSMU from all four ecoregions. From left
to right, pre-event image, post-event image, human-annotated landslide pixel-wise map overlayed on post image(ground truth),
prediction of JTAD model trained on all data and prediction of the corresponding task-specific decoder of TSMU after being
trained on all data. This image is best seen in color. The excel file containing the coordinates of the landslides used in this
figure will be available in our GitHub link for data.

https://github.com/deepLDB/landslide-detection


19

performance on the the older ecoregions. We notice a regular-
ization effect during the joint fine tuning step of the TSMU
algorithm (Algorithm 1), which boosts the performance on
older ecoregions. This is qualitatively shown in Figure 11. A
model is initially trained on one of the ecoregions and then
introduced to a new ecoregion. We notice an increase in mIoU
of some images belonging to older ecoregions when the model
is sequentially updated for the new data.

We notice that data from the ecoregion NAD is charac-
teristically dissimilar (Figure 4) to the data from the other
three ecoregions. The landslides in NAD are much thinner,
have very low contrast from the background and have lower
salience (percentage of coverage of landslide pixels in a
given image (Table I)). We train a model on one of the
ecoregions other than NAD. We then sequentially add the
data from NAD and continually train our model using TSMU
algorithm. We observe that this model performs significantly
better on narrower landslides from the other three ecoregions
(Figure 11). We observe similar behavior when data from all
other ecoregions are incorporated sequentially. The improved
regions in the prediction maps can be seen clearly. The
corresponding increase in the mIoUs are shown as well. ETF
and MWCF help boost performance in images that have
shadows and forests. NAD helps improve performance on
thinner landslides. NWFM boosts the overall performance on
all ecoregions due to its diversity as NWFM’s distribution
overlaps with the other three ecoregions as shown in Figure
4.

V. CONCLUSION

We asked “does a model trained on a small homogeneous
ecoregion generalize to other ecoregions for which it has
not been trained?”. Our Naive Transfer results clearly showed
that a model trained on a small region would almost always
fail, often drastically, on datasets collected from characteris-
tically different regions. This problem also exists for other
geoscientific object identification as well as modeling [105],
[106] tasks.

The answer to the second question, “does increasing the
spatial coverage and diversity of data improve model
performance in a given ecoregion?”, is Very Likely, but the
correct methods are required to harness such benefits. It seems
a naive method (retraining, feature extraction or fine tuning)
leads to significant forgetting so such an improvement would
be nonexistent. However, the proposed TSMU (and especially
JTAD) can benefit from the diversity in data. If we start from
small data (one ecoregion, as shown in Figure 10), the benefit
of including more data was more steady and prominent. The
synergy between data from different regions is due to the
nature of deep learning and the fact that there is underlying
commonality between the appearances of landslides even in
vastly different environments. This synergy implies, if one
has only one ecoregion of interest, one could still collect
data both inside and outside that region to improve model
performance on that region. Conversely speaking, the best
performance of a model cannot be achieved by training on
a small, homogeneous region.

With respect to the third question “what is an efficient
and highly-performant way to incorporate new batches
of geospatial training data from different environments
to update a semantic segmentation model?”, we proposed
an algorithm TSMU that favorably retains memory of the old
task during learning sequential batches of data, resulting in a
well-generalized, yet highly efficient (in terms of memory and
training time), algorithm. This algorithm is not only relevant
to landslides but also to other geoscientific tasks. Geoscientific
and especially remote sensing datasets can extraordinarily
large and the proposed algorithm can also serve as a means to
reduce memory footprint so that the problem is tractable with
the current graphical processing units.

The TSMU algorithm has considerable value for practical
applications in landslide hazards. In particular, this new DL ap-
proach can efficiently identify previously unrecognized areas
of historical landsliding from existing satellite imagery, and
with limited training it can be used to rapidly assess areas of
potential landsliding following a widespread triggering event
(e.g., major storm or earthquake).

All the supplemental information including code and
data - excel files containing coordinates of all (1) land-
slide events used in our experiments, (2) landslide events
used in our figures and (3) landslide events in the
USGS database are made available in our GitHub link -
https://github.com/deepLDB/landslide-detection.
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