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Abstract

The synoptic-scale (3 - 7 days) variability is a dominant contributor to the Indian summer monsoon (ISM) seasonal precipitation.
An accurate prediction of ISM precipitation by dynamical or statistical models remains a challenge. Here we show that the sea
level pressure (SLP) can be used as a proxy to predict the active-break cycle as well as the genesis of low- pressure-systems
(LPS), using a deep learning model, namely, convolutional long short-term memory (ConvLSTM) networks. The deep learning
model is able to reliably predict the daily SLP anomalies over Central India and the Bay of Bengal at a lead time of 7 days.
As the fluctuations in SLP drive the changes in the strength of the atmospheric circulation, the prediction of SLP anomalies is
useful in predicting the intensity of ISM. It is demonstrated that the ConvLSTM possesses better prediction skill compared to a
conventional numerical weather prediction model, indicating the usefulness of a physics guided deep learning model in medium

range weather forecasting.
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Prediction of synoptic-scale sea level pressure over
the Indian monsoon region using deep learning

Aryaman Sinha, Mayuna Gupta, K S S Sai Srujan, Hariprasad Kodamanat, S Sandeepy

Abstract—The synoptic-scale (3 - 7 days) variability is a domi-
nant contributor to the Indian summer monsoon (ISM) seasonal
precipitation. An accurate prediction of ISM precipitation by
dynamical or statistical models remains a challenge. Here we
show that the sea level pressure (SLP) can be used as a proxy
to predict the active-break cycle as well as the genesis of low-
pressure-systems (LPS), using a deep learning model, namely,
convolutional long short-term memory (ConvLSTM) networks.
The deep learning model is able to reliably predict the daily SLP
anomalies over Central India and the Bay of Bengal at a lead
time of 7 days. As the fluctuations in SLP drive the changes
in the strength of the atmospheric circulation, the prediction of
SLP anomalies is useful in predicting the intensity of ISM. It
is demonstrated that the ConvLSTM possesses better prediction
skill compared to a conventional numerical weather prediction
model, indicating the usefulness of a physics guided deep learning
model in medium range weather forecasting.

Index Terms—ConvLSTM, Sea Level Pressure, Monsoon

I. INTRODUCTION

HE Indian summer monsoon (ISM) is the key to water
security of Southeast Asia, with a population of more
than 1.5 billion. An accurate forecast of the ISM rainfall on
various temporal and spatial scales is of great importance, from
planning for agriculture to disaster preparedness. A dominant
mode of ISM rainfall variability, known as synoptic-scale
variability, has a temporal scale of 3-7 days and can be
extended over the spatial scale of 1000-2000 km [1]. A reliable
prediction of synoptic-scale rainfall events is still challenging
for conventional dynamical and statistical models [2], [3], [4],
[5]. While the data driven models are found to be useful
in atmospheric/oceanic predictions, such as El Nifio southern
oscillation, their skill in ISM rainfall prediction is yet to be
proven [6], [7], [8], [9], [10]. The precipitation, being a highly
intermittent process, is rather challenging to predict [11]. An
easy way to predict the precipitation variability might be to use
a proxy variable that is spatially and temporally continuous.
Chen and Majda[12] have used outgoing longwave radiation
as a proxy to model intraseasonal variability of ISM rainfall.
Here, we explore the possibility of using mean sea level
pressure (SLP) as a proxy variable to predict the synoptic scale
variability of ISM.
The ISM rainfall variability is closely linked to the fluc-
tuations in the intensity of large-scale monsoon circulation
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which is driven by the surface pressure gradient [13]. The
onset of ISM is also found to be strongly correlated with
the surface pressure gradient over India in the month of May
[14]. The active and break cycles of ISM are considered as
important characteristics of the monsoon [15], [16], [17], [18].
The monsoon breaks have originally been defined on the basis
of surface pressure anomalies and later a precipitation based
index was developed [17]. Krishnan et al.[16] have identified
a northwestward propagating Rossby wave from the Bay of
Bengal prior to the onset of the break spells. Such large-scale
oscillation patterns indicate an inherent predictability in the
active-break cycle of ISM. A 5-6 day oscillation in surface
pressure gradient over continental India was reported [19]. In
this study, we try to predict the daily mean sea level pressure
(SLP) anomalies over the central India with a view to test
whether the active-break cycles of ISM can be predicted a
week ahead.

The low pressure systems (LPS) which are the synoptic
scale storms that form over the Bay of Bengal are responsible
for more than half of the seasonal rainfall over the central and
northern India [20]. The LPS activity is often associated with
the flooding over continental India [21], [22], [23]. The LPS
genesis tend to be clustered in the active phase of ISM [24].
As the genesis of LPS is associated with a drop in the SLP, we
examine whether the predicted SLP anomalies over the Bay
of Bengal give any indication of an LPS formation.

The conventional statistical or dynamical models are known
to have limitations in predicting tropical rainfall as it involves
a hierarchy of stochastic processes [2], [4]. The deep learning
techniques are advancing at fast pace in the recent years and
found to be efficient in atmospheric-oceanic predictions [25],
[26], [27], [6]. While there have been attempts to predict
monsoon onset and regional rainfall using machine learning
methods [28], [29], no one has reported prediction of SLP
anomalies over monsoon region using deep learning algo-
rithms, to the best of our knowledge. To this extent, we employ
a deep convolutional long short-term memory (ConvLSTM)
model to predict the SLP anomalies over continental India and
the Bay of Bengal at a lead time of seven days during summer
monsoon season. ConvLSTM elegantly blends properties of
(i) LSTM networks in modeling sequential data, and (ii)
CNN in handing spatio-temporal data, and therefore a suitable
candidate flexible deep learning model to model SLPA data
[6], [30], [31]. We indeed show that, SLP being a continuous
variable is more amenable to reliable predictions with inherent
predictability and guides as an excellent pointer for identifying
active break cycles of ISM.
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II. DATA AND DEEP LEARNING FRAMEWORK

The daily SLP data from NCEP/NCAR reanalysis during
1990-2019 is used for developing the ConvLSTM model [32].
Daily SLP anomalies are computed by removing long term
mean from the data sets. Further, two regions have been
selected - one over the continental India and the second over
the Bay of Bengal - to predict SLP anomalies. The region over
continental India is bound by 20 °N to 30 °N and 70 °E to
80 °E. The region over the Bay of Bengal is bound by 12 °N
to 22 °N and 80 °E to 95 °E. The daily precipitation data
at a horizontal resolution of 1°x1° from India Meteorological
Department (IMD) is also used in this study [33], [34] for
validation purposes. The daily precipitation anomalies over
Central India (16°N - 26°N and 74°E-86°E) are computed by
removing the long-term mean. The active (break) spells are
defined as three or more consecutive days with precipitation
anomalies above (blow) 1 standard deviation of seasonal (1%
June to 30™ September) precipitation [33]. The monsoon LPS
genesis dates were taken from the LPS tracks derived from
ERA-Interim daily SLP data by [20] which was also reported
by [35]. The ConvLSTM predictions are compared with the
SLP from the NCEP-GFS 7-day forecasts for the years 2015 to
2019, as the public archive of NCEP-GFS forecasts is available
from 2015.

The data was organised into training and test sets of 1990-
2010 and 2011-2019, respectively, and area averaged grid
values were computed for the test data. Data stacks for training
data were prepared in a sliding window fashion for seven day
ahead predictions. The overall schematic of the ConvLSTM
architecture is shown in Fig. 1. A sequential architecture is
used with its first layer as a ConvLSTM 2D layer with ten
filters for handling the spatio-temporal training data. The input
to the layer is a 5-dimensional tensor having the following
attributes: size of training data, channels, latitude, longitude,
stack size/time steps. Each input data is a stack of seven
frames corresponding to the seven day lagged data for SLP
anomalies predictions. The output from this layer is then fed
into two blocks consisting of a Conv3D layer having five
filters and subsequent batch normalisation layer. A dropout
layer is also added to ensure that overfitting of data does not
take place during the training phase. Subsequent layers include
MaxPooling layers, a flattening layer, and two fully connected
dense layers. The salient features of each layer including the
number of parameters (trainable + non-trainable) are enlisted
in Table L.

For optimisation of the model, the hyper-parameters and
layers were tuned to obtain suitable activation, number of
filters , optimiser, dropouts, loss functions, epochs, and batch
size. The number of epochs were varied from 10 to 500 and the
batch sizes were varied 32 to 200 and we obtained satisfactory
results with 100-200 epochs and 150-200 batch size during
training. A one-third validation split was used on the training
data. The best results were obtained with RMSProp optimiser
and Rectified Linear Unit (ReLu) activation. Application of
both Mean squared error (MSE) loss function and Huber Loss
Functions yielded models with good prediction capability.
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Fig. 1. Deep learning architecture used to predict the sea level pressure
anomalies
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Fig. 2. Composites of sea level pressure anomalies (units: hPa) for (a) active
days and (b) break days of Indian summer monsoon during 2000 - 2017. A
total of 282 (243) active (break) days were detected during this period. The
two boxes in panel (b) show the regions selected to carry out ConvLSTM
predictions.

III. RESULTS AND DISCUSSION

The composites of daily SLP anomalies for active and
break monsoon spells during 2000 - 2017 (June - September)
period are depicted in Fig. 2. The active composite shows an
anomalously low SLP pattern over the Central India, indicating
strengthened surface pressure gradient and monsoon circula-
tion (Fig. 2a). The break composite shows an anomalously
high pressure over Central India which is associated with
weaker meridional pressure gradient and monsoon circulation
(Fig. 2b). The daily SLP anomaly predictions are done over
two representative regions of ISM - one over continental India
and the second over the Bay of Bengal, as shown in Fig. 2b.

Although the ConvLSTM predictions are performed for
2013 - 2019 period, we limit our discussions for four years
(2014 - 2017) for brevity. The predicted and observed daily
SLP anomaly time series for 1°* June to 30" September for
four years are shown in Fig. 3. The ConvLSTM predictions of
each day are made at a lead time of 7 days. Also, superimposed
are the corresponding time series of daily precipitation anoma-
lies. The active and break days are shaded in the precipitation
anomaly time series. Overall, the predicted and observed SLP
anomalies are in good agreement for all the years, except
for slight differences in the amplitude. A closer look at the
time series shows that often the predicted SLP anomalies
are slightly higher than the observations. A comparison of
observed precipitation anomaly time series with the SLP
anomalies reveals that the active (break) spells are aligned with
the low (high) SLP anomalies. Even if we look beyond active-
break cycles, the low (high) SLP anomalies are associated
with the strong (weak) precipitation anomalies throughout
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TABLE I
CONVLSTM ARCHITECTURE DETAILS
Layer (type) Activation | # Filters | Kernel size | Dropout | Bias | Pool Size
ConvLSTM2D | Relu 10 3x3 - - -
Conv3D Relu 5 3x3x1 - True | -
Conv3D-2 Relu 5 3x3x1 0.2 True | -
MaxPooling3D | - - - 0.2 - 3x3x1
Dense Relu 10 - - True | -
Dense-2 Linear 1 - - True | -
TABLE II
Box 1 & BOX 2: R2 SCORE AND RMSE OF CONVLSTM V/s GFS
Box-1 Box-2
convLSTM GFS convLSTM GFS
Year | R2 Score | RMSE | R2 Score | RMSE R2 Score | RMSE | R2 Score | RMSE
2019 | 0.93 0.84 -0.16 343 0.83 1.15 -0.40 3.26
2018 | 0.93 0.92 0.23 2.99 0.85 1.02 0.02 2.60
2017 | 0.87 0.92 -0.19 2.83 0.83 0.76 -0.74 2.42
2016 | 0.87 0.85 -0.74 3.16 0.69 0.97 -1.31 2.65
2015 | 0.88 1.04 0.22 3.40 0.83 0.94 -0.40 2.71
2014 | 0.78 0.94 NA NA 0.79 0.89 NA NA
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The horizontal lines indicate +1 standard deviation of the daily precipitation
anomalies during 1% June to 30" September. The active and break days of
monsoon are shaded in blue and red colors, respectively. The sea level pressure

anomalies are predicted at a lead time of 7 days.

Fig. 4. Time series of observed and predicted sea level pressure anomalies
over the head Bay of Bengal for the years (a) 2014, (b) 2015, (c) 2016, and
(2017). The markers indicate the dates of genesis of low-pressure systems
over the Bay of Bengal.
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the monsoon season. In 2014, two long spells of high SLP
anomalies, in June-July and mid-August, are associated with
prolonged dry spells (Fig. 3a). A weak wet spell in 2015 seem
to be associated with a weak positive SLP anomaly in late July
(Fig. 3b). However, other active and break spells of monsoon
are all correctly captured by the SLP anomalies. In 2016, there
were no break spells over Central India which is in line with
the weak positive SLP anomalies in the observations (Fig. 3c).
However, the ConvLSTM predicted higher values of positive
SLP anomalies, especially during mid-July and late-August.
The reason for this overprediction needs to be explored. The
longer break spell in August of 2017 is correctly reflected
in the high SLP anomalies, though the model overpredicted
SLP anomalies in the early part of the break period (Fig.
3d). In general, the SLP anomaly is a good indicator of the
active-break phases of ISM over continental India and the
ConvLSTM model has reliably predicted the SLP anomalies
a week ahead. The realistic prediction of synoptic-scale SLP
anomalies by the deep learning model is not surprising as an
oscillation with 5-6 day period in SLP is already established
[19]. The data-driven models have a good skill in capturing
such recurring patterns in complex datasets [26].

The observed and predicted SLP anomaly time series over
the Bay of Bengal for the years 2014 - 2017 are shown in
Fig. 4a-d. Like the predictions over continental India, the
ConvLSTM model has reliably predicted the SLP anomalies
over the bay. Interestingly, the model slightly under-predicted
the peaks in SLP anomalies compared to the over-prediction
over the continental India. As the head Bay of Bengal is the
core LPS genesis region, it is important to see if the negative
SLP anomalies are giving any indication of storm genesis. The
analyses for the four years shown here indicate a genesis of
LPS either slightly before a sudden drop in SLP or coincident
with the peak negative SLP anomaly. There are also a few
exceptions that might be attributed to the differences in the
SLP data sets used for ConvLSTM training and tracking of
LPS activity.

We compared the performance of the ConvLSTM model
with that of a conventional numerical weather prediction
model, namely NCEP-GFS model. The RMSE and R? values
of the 7 day ahead SLP predictions by ConvLSTM and NCEP-
GFS are computed with respect to the corresponding SLP
observations for six years (Table II). For the central Indian
box, the R? of ConvLSTM predictions range from 0.78 to
0.93 while that of NCEP-GFS vary from -0.75 to 0.22, clearly
indicating the superior skills of the deep learning model. The
RMSE values of SLP predictions by ConvLSTM are in the
range of 0.84 to 1 whereas in the case of NCEP-GFS, the
RMSE values range from 2.8 to 3.4. Similar statistics are
obtained for the SLP predictions over the Bay of Bengal box
as well. These statistics confirm that the ConvLSTM model
has outperformed the numerical weather prediction model in
predicting daily SLP at a lead time of 7 days. It is well known
that the forecast quality of the numerical weather prediction
models deteriorate over time, due to the errors in the initial
conditions as well as the chaotic nature of the atmosphere [36],
[37]. Unlike numerical models, the deep learning models are
not sensitive to the initial conditions. Also, the deep learning

models can perform well when oscillatory signals are present
in the data, such as the synoptic scale oscillation in the SLP
over India during summer monsoon.

IV. CONCLUSIONS

In this study, we demonstrate the prediction of SLP anoma-
lies at a lead time of seven days over two representative
regions of ISM using a ConvLSTM model. Although deep
learning methods have been successfully used to predict phe-
nomena such as ENSO, their skill in predicting ISM remained
ambiguous. The prediction of monsoon precipitation may be
difficult, due to the intermittent and stochastic nature of the
process. It has long been known that the fluctuations in
SLP gradient result in waxing and waning of the monsoon
circulation and rainfall. The pressure, being a spatially and
temporally continuous variable, is relatively easy to predict by
the data driven models. This assumption has been verified by
the ConvLSTM predictions of SLP anomalies a week ahead.
The apparent relationship between the SLP anomalies and the
fluctuations in monsoon rainfall has been clear in our analyses.
Our results suggest that the synoptic-scale SLP variability over
the continental India can be predicted at least a week ahead.
As the SLP anomalies can give an indication of the strength
of monsoon rainfall over a broader area, these predictions are
useful for planning purposes and have great societal impact.
The skill of deep learning model in predicting SLP at a lead
time of one week is demonstrated to be better than the skill
of numerical weather prediction model. These results suggest
that a physics guided deep learning model for ISM rainfall
prediction is the way forward.
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