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Abstract

High-quality sleep is essential to our daily lives, and real-time monitoring of vital signs during sleep is beneficial. Current

sleep monitoring solutions are mostly based on wearable sensors or cameras, the former is worse for sleep quality, the latter

is worse for privacy, dissimilar to such methods, we implement our sleep monitoring system based on COTS WiFi devices.

There are two challenges need to be overcome in the system implementation process: First, the torso deformation caused by

breathing/heartbeat is weak, how to effectively capture this deformation? Second, movements such as turning over will affect

the accuracy of vital signs monitoring, how to quickly distinguish such movements? For the former, we propose a motion

detection capability enhancement method based on Rice-K theory and Fresnel theory. For the latter, we propose a sleep motion

positioning algorithm based on regularity detection. The experimental results indicated the performance of our method.
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Abstract—High-quality sleep is essential to our daily lives, and
real-time monitoring of vital signs during sleep is beneficial.
Current sleep monitoring solutions are mostly based on wearable
sensors or cameras, the former is worse for sleep quality, the
latter is worse for privacy, dissimilar to such methods, we
implement our sleep monitoring system based on COTS WiFi
devices. There are two challenges need to be overcome in the
system implementation process: First, the torso deformation
caused by breathing/heartbeat is weak, how to effectively capture
this deformation? Second, movements such as turning over will
affect the accuracy of vital signs monitoring, how to quickly
distinguish such movements? For the former, we propose a
motion detection capability enhancement method based on Rice-
K theory and Fresnel theory. For the latter, we propose a sleep
motion positioning algorithm based on regularity detection. The
experimental results indicated the performance of our method.

Index Terms—Wi-Fi, CSI, sleep monitoring, vital signs, wire-
less sensing

I. INTRODUCTION

Humans spend almost a third of life in sleep, therefore
quality sleep is essential to health and well-being [1]. However,
many diseases are threating our sleep now, such as cardiac
arrest [2], sleep apnea [3] and asthma [4]. Some study also
shows that disordered breathing is a major cause of Sudden
Infant Death Syndrome (SIDS) for sleeping infants [5]. In
numerous instances, patients with respiratory/heart disease
only show the symptoms for a short period or on casual
occasions. Hence, continuous, real-time and cost-effective vital
signs(breath and heart rate) monitoring in home environments
during sleep are indispensable.

Traditional schemes mainly use attached sensors to detect
vital signs, such as Polysomnography (PSG) [6] and Electro-
cardiogram (ECG) [7]. Nonetheless, these dedicated devices
are not suitable for home environments, they are expensive
and damage sleep quality. Other solutions based on pressure
or acceleration sensors are required to be in contact with the
body too, and lighting conditions limit computer vision based
solutions. Recently, Radio Frequency (RF) based methods [8]–
[10] has attracted considerable attention as they provided non-
invasive vital signs monitoring use SDR (Software Defined
Radio). However, the devices used in these solutions are
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generally expensive. And we realized a real-time system that
can carry on the long-term continuous monitoring, experiments
have proved the effectiveness of our scheme.

Due to the widespread deployment of WiFi equipment,
WiFi-based vital signs detection has received widespread
attention [11]–[14]. This is possible because the breath and
heartbeat can cause weak deformations in the abdomen and
chest, and these deformations can affect the propagation of
WiFi signals, which can be recorded by the WiFi Channel
State Information (CSI). Nevertheless, there are few researches
focus on the simultaneous detection of breath and heart rate
[15], which is difficult because the trunk (or torso) deformation
caused by breath is small and trunk deformation caused by
heartbeat is even weaker.

Moreover, state-of-the-art motion detection capability en-
hancement schemes based on the Fresnel theory [12], [16] still
have limitations. Fresnel based method only based on signal
reflect path (dynamic path), it have not consider the ratio of
dynamic path and static path, etc. how much signals reflected
by human gesture, such ratio can influence the WiFi-based
detection. Because the inference of these schemes is based on
the premise that the components of the dynamic path do not
change significantly, when the proportion of the dynamic path
changes, the role of the Fresnel theory is limited.

Current method based on FFT or count number of waveform
peak to extract vital signs, it can obtain accurate results.
However, these method lack a accurate motion detection
method which can differentiate different kind of motions
in sleep(such as breath and turn over), such motions can
influence the vital signs detection performance, and accurate
detect and obtain motion is also important for sleep motion
recognition. After obtaining the data containing vital signs
information, the most important step is to process the data
to obtain vital signs. Current research has adopted methods
based on FFT [17] or crest detection [15] when extracting
vital signs, both methods are mature and effective. However,
most of the schemes do not consider the problem of accurate
sleep movement detection. These movements will be mixed
with breathing/heartbeat and affect the accuracy of vital signs
detection, and motion detection is also very important for sleep
state recognition.

In this paper, We aim to propose a low cost, continuous and
contactless vital signs monitoring.There are two challenges we
need to overcome to build an efficient vital signs monitoring
system during sleep. On account of the torso deformation
caused by breath is tiny, and the deformation caused by
heartbeat is even smaller; the first challenge needs to work out
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is how to improve the detection sensitivity to the deformation
caused by breath and heartbeat? Furthermore, sleep motions
such as turning over can be mixed with the torso deformation
caused by breath and heartbeat. Such motions can influence
the vital signs detection performance, and it is necessary
to position them and filter them out. However, breath and
heartbeat and other motions during sleep all cause the CSI
waveform to fluctuate. The second problem thus is how to
locate the sleep motions which are different from breath and
heartbeat? To this end, we propose a motion detection capabil-
ity enhancement method based on the Rice-K theory to solve
the first issue. We propose an algorithm based on regularity
detection to accurately locate sleep motions different from
breath and heartbeat to solve the second technical challenge.

The main contributions of this paper are summarized as
follows:

1) We propose a motion detection capability enhancement
method based on the Rice-K theory, which greatly en-
hance the detection ability of weak deformation caused
by breath and heartbeat. Note that this method can also
be applied in other WiFi-based motion detection and
recognition research.

2) We propose a sleep motion positioning algorithm based
on regularity detection, which can accurately locate the
position of sleep motions (such as turn over and get up)
different from breath and heartbeat.

3) We implement a prototype system to evaluate our
method. The experimental results indicated the perfor-
mance of our method, and the accuracy is 96.618% and
94.708% forbreath and heart rate detection, respectively

We organize the remainder of this paper as follows: in
section II, we provide an overview of the related work. We
describe our motion detection capability enhancement method
in section III. And we introduce our system design in section
IV. Then, we evaluate our method and show the experimental
results in section V. Finally, we conclude our work in section
VI.

II. RELATED WORK

A. Wireless sensing with WiFi

Due to the widespread deployment of WiFi devices and the
convenience of wireless sensing, research on passive sensing
based on WiFi has received widespread attention [19]–[21].
These research mainly use Received Signal Strength Index
(RSSI) or CSI. RSSI is easy to acquire, but the perceiving
granularity is coarse. CSI can be obtained by modifying the
underlying driver of the WiFi network card, and the perceiving
granularity is better than RSSI. With the help of WiFi RSSI
or CSI information, person detection, gesture recognition,
position, sleep movement detection, driving activity detection,
and many other applications can be realized [19].

Based on WiFi, current research can implement person
detection [22], gesture recognition [23], position [24], [25],
sleep movement detection [26] and driving activity detection
[27], etc. Based on the passive sensing characteristics of WiFi
signals, some tasks can be better carried out. In the past two
years, research based on WiFi perception has been further

expanded into new fields. [28] use WiFi devices to image
key points of the human body, enabling human visualization
without vision equipment. [29] use WiFi devices to track finger
draws in the air. [30] achieved steal mobile phone passwords
using COTS WiFi devices.

B. Breath and heartbeat detection

Respiratory frequency and heart rate are critical physiolog-
ical indicators of the human body, and they are important
indicators for evaluating health conditions. In general, the
methods used to track such information can be categorized
into three groups: sensors based, vision-based, and RF signal
based.

Most of the traditional solutions use sensors for physiolog-
ical signal detection, for example, Polysomnography (PSG)
[6] and Electrocardiogram (ECG) [7] measures body functions
like breath or heart rate by attaching multiple sensors to a pa-
tient. H.Aly et al. [31] utilize the accelerometer and gyroscope
on the mobile phone to detect the chest breathing action of the
person. Smart sleeping mat [32] uses pressure sensor arrays for
breath detection. However, sensors-based methods are usually
expensive, complex to deploy and invasive.

Vision-based solutions [33] are usually subject to light
conditions and also raise privacy concerns. Recently, research
on ‘taking wireless radio signals as sensors’ has received
more and more attention. When RF signal travels from a
transmitter to a receiver, it can be influenced by the breathing-
induced chest movement on the propagation paths. RF signal-
based solutions are usually based on special equipment, such
as ultra-wideband [8] and Frequency Modulated Continuous
Wave (FMCW) radar [9], [10]. The equipment used in these
solutions is expensive and not suitable for daily environments.
Compared with these solutions, WiFi-based solutions are less
expensive and simple to deploy, can be implemented using
standard equipment.

Previous WiFi-based breath detection researches are mostly
based on RSSI [34]–[36]. RSSI characterizes the total received
power of all paths, which is coarse-grained and inherently
incapable of capturing multipath effect. In contrast, CSI can
reflect fine-grained channel information, and reflect multipath
information well. Therefore, the latest related schemes are
mostly based on CSI [12], [13], [15], [16], [18], [37], [38].
In particular, Liu et al. [18] obtain respiratory rate by using
Short-Time Fourier Transform (STFT) on the CSI amplitude,
it can obtain breath information in different sleeping postures.
Nevertheless, this solution needs to deploy two routers and
three computers. The authors of [15] use a pair of devices to
monitor the breath rate in different sleeping postures.However,
they need the line of sight between the WiFi device and access
point crossing the person’s chest.

The authors of [17] use CSI phase to detect breath rate,
they use cables and splitters to connect the transmitter and
receiver, and need to process two receiver data streams to
eliminate phase errors. [12] calculates the best position to
detect respiration by deriving the Fresnel diffraction model.
However, Fresnel theory is limited by other factors like receive
antennas and obstacles in the real environment. [13] uses the
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TABLE I: The latest research work compares with our system

Reference Vital signs Real-time Performance Requirements Theory Support
[18] breath rate(various sleep

postures)
no greater than 85% 2 transmitters and 3 receivers, 3

data streams, natural breath
no

[15] breath rate(various sleep
postures) and heart rate

(only supine)

no 80% estimation errors are less than
0.5bpm for breath rate, 90% of

estimation errors are less than 4bpm
for heart rate

pair of transceivers, one data
stream, use metronome to control

breath

no

[17] breath rate(various
postures)

no Over 99% pair of transceivers, cables and
splitters, two data stream, use
metronome to control breath

yes

[12] breath rate(various sleep
postures)

no For the good positions, the overall
estimation accuracy is as high as

98.8%. For bad positions, the accuracy
decreases to 61.5%.

pair of transceivers, one data
stream, natural breath

yes

[13] breath rate(various sleep
postures)

yes less than 0.3bpm for breath rate pair of transceivers, two data
streams, natural breath

yes

Our System breath rate and heart rate
(all for various sleep

postures)

yes 96.887% for breath rate and 94.708%
for heart rate

pair of transceivers, one data
stream, natural breath

yes

CSI-quotient of two receive antennas to eliminate the phase
offset and utilize the complex plane projection to achieve
long-distance breath detection. However, this method based
on signal reconstruction; it cannot recover the heart rate. We
compare these systems and our work in Table I.

Note that this paper is an extension of our previous work
[39]. In this paper, we use Rice-K theory beside Fresnel theory
to enhance the detection accuracy. We also propose a new sleep
motion positioning algorithm based on regularity detection,
which can accurately locate the position of sleep motions (such
as turn over and get up) different from breath and heartbeat.
We also improve the related work section and the experimental
section over our previous work.

III. MOTION CAPTURE CAPABILITY ENHANCEMENT

In this part, we analyze the experimental phenomena to
explain why the WiFi detection method based on the Fres-
nel theory is limited. Then, we propose our motion capture
capability enhancement method based on Rice-K theory and
Fresnel theory.

A. CSI Collection

CSI describes the signal’s attenuation on its propagation
paths, such as scattering, multi-path fading or shadowing
fading caused by motions, and power decay over distance.
In frequency domain,it can be characterized as:

®. = ®� · ®- + ®# (1)

Where ®. and ®- are the received and transmitted signal vectors,
respectively. ®# is the additive white Gaussian noise, and ®� is
the channel matrix representing CSI information.

B. Effectiveness and Shortcoming of The Fresnel Theory
Based WiFi Detection

As shown in Fig. 1, Fresnel zones are defined as a series
of concentric ellipsoids, and %1 and %2 are the positions of
the transmitting antenna and receiving antenna, respectively.
)G and 'G represent the sender and receiver, respectively. For
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Fig. 1: Fresnel Zone

a given radio wavelength _, we could construct Fresnel zones
by the following equation [40]:

|)G&= | + |&='G | − |)G'G | = =_/2 (2)

where &= is a point at the boundary of the =th Fresnel zone.
A subject can reflect a WiFi signal, and if the subject moves

a small distance, it leads to changes in the phase of the WiFi
signal on the corresponding path. If the subject moves 3 (C),
since wireless signals travel at the speed of light, denoted as
2, g: (C) can be represented as 3 (C)/2. Let _ represent the
wavelength, where _ = 5 /2. Thus, the phase shift can be
written as 4− 92c3 (C)/_.

When a subject appears at the boundary of the even/odd
Fresnel zone, the dynamic path phase shift Δ? is equal to c and
2c, respectively. As a result, the combined signal amplitude
should be degraded in the even zones and enhanced in the
odd zones. In other words, if an object continues to pass
through multiple Fresnel zones, the amplitude of the received
CSI signal exhibit a sine-like wave.

The larger the effective displacement of the action, the more
obvious the response is on the CSI waveform. The effective
displacement is along the direction of the normal line, which
can cause the reflection path length change.

Previous researches show that when the direction of the
human body is 0 degree, the detection efficiency is the best.
As the angle increases, the effective displacement becomes
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Fig. 2: The antenna settings for the preliminary experiments. The elliptical area between the antennas is the FFZ (First Fresnel
Zone) range. The part between the solid chest line and the dotted line is the chest deformation range caused by breath.
(a)Setting1, T1 is transmit antenna and R1,R2,R3 are receive antennas, the distance from T1-R3 is 80cm, T1-R1 is 120cm;
(b) Setting2, the chest is on the LOS of T1-R2, the distance from T1-R3 is 20cm, T1-R2 is 120cm; (c) Setting3, the chest is
in the FFZ of T1-R2, the distance from T1-R3 is 30cm, T1-R2 is 120cm.

smaller, and the detection effect becomes worse [16]. More-
over, the closer a human is to the Tx/Rx, the better detection
performance is [12]. Based on these findings, we construct a
prototype system to carry out some preliminary experiments.
[Prototype] Our prototype system composes of two commodi-
ties MiniPCs, which are all equipped with an Intel Network
Interface Controller 5300 and are transmitting and receiving
device, respectively. Antennas settings are shown in Fig. 2.
[Participant] One 22 year-old student participated in prelim-
inaries experiments.
[Environment] We conduct the experiments in a 7 × 10<2

office room, with the furniture including chairs, couches,
computer desks, and book cabinets. Other students are also
in the same room during the experiments, as shown in Fig. 4.
[Setting] The package sending rate is set to 1000Hz, partici-
pant conducted the experiment with different sleeping postures
(prone, supine, facing left recumbent and facing right recum-
bent) with different antenna setting (as shown in Fig. 2), the
experiments results as shown in Fig. 3.

We analyze the preliminary results and obtain the following
key observations:

Breath indeed affects channel response and experimental
setting affects the channel response: Firstly, we confirm that
breath in terms of signal variations has been recorded by all
settings. Through the severity and regularity of the received
signal’s fluctuations, we can observe that breathing does affect
CSI in all settings.

Fresnel theory does enable CSI based detection As shown
in Fig.3b and 3c, it’s hard to observe significant fluctua-
tion which caused by breath with some sleeping postures
sometimes. It owing to the deformation direction of torso in
anteroposterior dimension (breath mainly cause deformation
in this dimension) is almost parallel to the LOS path of
T1-R2, that is, the direction of the human body is nearly
90 degrees, the deformation of the trunk can only cause
very weak dynamic path changes (the length of dynamic
path does not change when moving along the ellipse border
of Fresnel Zone.). It is difficult to cause obvious effective
displacement according to the Fresnel based theory [16].
And the abdominal/thoracic deformation during respiration in

mediolateral dimension is too small to detect (when facing
left/right recumbent, deformation in mediolateral dimension is
perpendicular to T1-R2, however, the area and the deformation
of the trunk due to breathing of the side of the body are small).
These phenomenon can be explained by the Fresnel theory, and
prove the effectiveness of the motion detection method based
on the Fresnel theory.

Fresnel theory based detection can be further improved
For setting 1, when a human is prone or supine, the direction
of abdominal/thoracic deformation in anteroposterior dimen-
sion caused by breath is nearly parallel to T1-R3. according
to the Fresnel theory only, the effective displacement of
chest/abdomen is tiny, and the performance of T1-R3 should
not be excellent. However, T1-R3 performance good, even if
we adjust the height of T1-R1 to make the distance between
T1-R1 equal to T1-R3, T1-R3 is still better than T1-R1. This
phenomenon is different from the description of the previous
work [16], according to wang’s theory, T1-R1 should perform
better than T1-R3 when humans lying down, because of the
body orientation is 0 degree for T1-R1, but nearly 90 for T1-
R3.

In summary, the Fresnel theory is beneficial, but other
factors in wireless perception can also affect perception. We
find that blocking the LOS path can help detect motions too.
Next we analyze why blocking the LOS path can increase
motion detection sensitivity based on Rice-K theory, and
propose a motion detection capability enhancement method
based on the Rice-K theory and the Fresnel theory.

C. Detection Capability Enhancement Based on Rice-K The-
ory

The Rice K factor is defined as the ratio of the power in
the LOS path to the power in the NLOS path. The baseband
in-phase/quadrature-phase (I/Q) representation of the received
signal can be expressed as follows [41]:

G(C) =
√

 Ω

 + 1
4 9 (2Π 5�2>B (\0)C)+q0 +

√
Ω

 + 1
ℎ(C) (3)

Here  is the Rice factor, Ω denotes the total received power,
\0 and q0 are the Angle of Arrival (AOA) and phase of the
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Fig. 3: (a) Detection results of setting 1; (b) Detection results of setting 2; (c) Detection results of setting 3.

LOS, respectively, 5� is the maximum Doppler frequency
and ℎ(C) is the diffuse component given by the sum of a
large number of multipath components, constituting a complex
Gaussian process.

For WiFi CSI, the received signal’s CFR (channel frequency
response) can be expressed simply as the superposition of
dynamic path CFR and static CFR, and it can be represented
as:

� ( 5 , C) = �B ( 5 , C) + �3 ( 5 , C) (4)

The received signal has a time-varying amplitude in complex
plane [16]:

|� ( 5 , \) |2 = |�B ( 5 ) |2+ |�3 ( 5 ) |2+2|�B ( 5 ) | |�3 ( 5 ) |2>B\ (5)

\ is the phase difference between the static vector and the
dynamic vector, the part that causes the amplitude fluctuation
of the CSI waveform is 2|�B ( 5 ) | |�3 ( 5 ) |2>B\. It can be seen
that in the case where the range and position of the motion are
constant, \ is constant, and the factor affecting the fluctuation
range is |�B ( 5 ) | and |�3 ( 5 ) |.

Since antenna do not move in the experiments, ie 5� = 0,
we simplify Equation (3) to get:

G(C) =
√

 Ω

 + 1
4q0 +

√
Ω

 + 1
ℎ(C) (6)

In the case where the torso does not block LOS, all LOS
components and part of NLOS components belong to the
static path; part of NLOS components belong to the dynamic
path. Combined with Equation (6) and ignoring the transmitted
power, we define |�B | and |�3 | as follows:

|�B | =
 

 + 1
+ 1
 + 1

· d (7)

|�3 | =
1

 + 1
· (1 − d) (8)

d is the proportion of static paths in the NLOS components.
Combine with Equation (5) to get the following equation:

|� |2 = |�B |2 + |�3 |2 + 2|�B | |�3 |2>B\

=
( + d)2
( + 1)2

+ (1 − d)
2

( + 1)2

+2( + d) (1 − d)
( + 1)2

2>B\

(9)

Signal amplitude variation caused by motion can be quan-
tified as:

5 ( , d) = 2|�B | |�3 |2>B\ =
2( + d) (1 − d)
( + 1)2

2>B\ (10)

The value of the above formula is related to three variables,
namely \,  and d. Consider that the change in phase
difference caused by breath is relatively stable, we omit \
without considering. Then take the derivative of equation 10
of  to get the following formula:

5 ′( ) = 2(1 − d) (− 2 − 2d + 1 − 2d)
( + 1)4

(11)

When  > 1 − 2d, 5 ( , d) decreases as  increases, under
normal circumstances, only a small part of the signal of the
omnidirectional antenna can be reflected by the human body,
which means that d is generally bigger than 0.5. In other
words, blocking the LOS path appropriately can make CSI
more sensitive to motions.

Will blocking the LOS make perception capability worse?:
Blocking the LOS path can reduce the Rice-K value, but
will blocking must improve the detection capability? Equation
10 have two main variables,  and d. Whether there such
a situation that block the LOS path can reduce  , but d
increased, results in poorer motion perception ability? We
believe that such a situation is hard to happen. Assuming that
the worst case, which is blocking the LOS path increases the
NLOS by !, but ! is not allocated to the dynamic vector at all.
At this time, the values of |�B | and |�3 | are unchanged, their
product will not change, and the motion detection capability
will not be worse, just equal to the original situation. In the
actual indoor environment, it is difficult to make the blocked
LOS signal do not propagate towards the human body at
all due to reflections from indoor objects. Nevertheless, no
matter d is larger, smaller, or unchanged, the motion detection
capability will not be deteriorated by block the LOS (Unless
the occlusion affects the signal reception at receiver).

IV. SYSTEM DESIGN

In this section, we present the system design as shown in
Fig. 4. We collect better data through the motion detection
capability enhancement method based on the Rice-K theory.
After obtaining the CSI data, the receiver sent it to the monitor
computer through the network for real-time process and dis-
play. We selecting the best performing subcarrier by subcarrier
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Fig. 4: System architecture

selecting first, then positioning the abnormal motions and skip
them in the subsequent processing. The data is divided into
two parts, mainly including breathing and mainly containing
heartbeat respectively by denoising and frequency domain
segmenting, then extract the breathing rate and heart rate
separately then display.

A. System Overview

After obtaining the CSI data containing vital signs, we need
to process the data to obtain vital signs information. Our Wital
system is shown in Fig. 4. The system is divided into two parts:
Data Preprocessing. We selecting the best performing sub-
carrier by subcarrier selecting first, then positioning the sleep
motions and skip them in the subsequent processing.
Vital Signs Extracting. The data after preprocessing are
divided into two parts by frequency domain segmenting, one
mainly including breathing and other one mainly containing
heartbeat, then extract the breathing rate and heart rate sepa-
rately by Vital Signs Extracting model.

B. Data Preprocessing

Subcarrier Selecting. Different subcarriers have different
central frequencies. They may have different performances
even for the same motion. Therefore, it is essential to choose
proper subcarrier that can better capture the breath. According
to previous experience [39], we choose the subcarrier with the
most significant variance.
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Sleep Motion Positioning. People may also have other mo-
tions such as turning over, kicking besides breath and heartbeat

a during sleep.These motions have close frequency with breath
and heartbeat and make it difficult to separate them. Therefore,
we design a sleep motion positioning algorithm to locate and
filter these motions different from breath/heartbeat. Different
types of motions have different regularities, such as breath and
walking, and CSI data can record this regularity. We select
a collected CSI waveform that includes two turning over and
normal respiration to verify this conjecture, as shown in Fig. 5.
We set a window � with variable length and a window � with
fixed length. � starts at the beginning of the CSI waveform,
and � starts from the end of �, both � and � have an initial
length of 2000 packages.

Then we calculate the minimum euclidean distance (MED)
from the CSI waveform contained in � and the waveform in
�, then, the start point of � do not change, but the end point
moves backward by 100 packages. The start point of � moves
backward by 100 packages, and the length do not change,
repeated calculation of the MED. The result is shown in Fig.5,
when the first turning over occurs, the MED increases sharply,
and when the motion ends, the MED begins to decrease. Since
� already contains a turning over motion, when the second
turning over occurs, its MED changes are not dramatic. We
can see that the regularity between different types of motions is
different, and the regularity between the same types of actions
is similar. The key steps of this algorithm are as follows:

1) Initialization. Set a window � with variable length
and a window � with fixed length. � starts from the
beginning of the CSI waveform, and � starts from the
end of �, both � and � have an initial length of 2000
packages, empty the collection "�;

2) Positioning activation point. Let the window � slide
backwards (start point of B move back, and length of
B remain unchanged) on � in steps of 100 package to
calculate the MED until � touches the endpoint of �. If
"�� > E ·0E4("�) (0E4() as a function of averaging),
this point is a positioning activation point (PAP) , go
to the next step; else extend the length of A by 100
packages and moving B back, record MED into "�,
repeat this step (E is a manual threshold to determine if
a motion has occurred, in our experiment, E = 2.5);

3) Start-point positioning. In the MED waveform, we
construct a waveform similar to a relu function. Set the
point in front of the PAP as a turning point (TP), the dis-
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tance from TP to WEP (wave endpoint) is 20 packages,
the constructed waveform is shown in Fig.5. Calculate
the Euclidean distance between the constructed wave-
form and the MED waveform at this time and record,
move the TP forward by one package, repeat the above
steps to calculate the Euclidean distance. Finding the
minimum Euclidean distance and map this TP to the
point on the actual CSI waveform as the start-point of
motion;

4) End-point positioning. Set the start-point we positioned
as the beginning of the CSI waveform, initialize the
parameters as described in the first step, and calculate the
MED as described above. Then use the previous method
for positioning the end of the motion. Set the end-point
as the beginning of the CSI waveform, and turn to step
1.

Our sleep motion positioning algorithm performance is
shown in Fig. 6, it can very accurately positioning sleep
motions.
Data Denoising. Received CSI data contains a lot of inter-
ference noise due to equipment and environmental factors.
In the preprocessing module, we choose the Hampel filter to
filter out the outliers which have significantly different values
from other neighboring CSI measurements. The goal of the
Hampel filter is to identify and replace outliers in a given
series. We computes the median of a window composed of
the sample and its six surrounding samples, three per side.
It also estimates the standard deviation of each sample about
its window median using the median absolute deviation. If a
sample differs from the median by more than three standard
deviations, it is replaced with the median.

C. Vital Signs Extracting

Frequency Domain segmentation. The trunk deformation
caused by the heartbeat is very small, the CSI waveform
change caused by it will be overwhelmed by the change caused
by breath [15]. Therefore, we need to distinguish them in
the frequency domain. The CSI waveform with the frequency
range related to normal heart rate range of people (i.e., 60bpm
to 120bpm which corresponds to 1Hz to 2Hz) will input
to our heart rate estimation model, and the CSI data with
the frequency range related to normal breath rate range of
people (i.e., 15bpm to 30bpm which corresponds to 0.25Hz to
0.5Hz) will input to our breath rate estimation model. We use
Butterworth bandpass filters to separate such data.
Vital Signs Extracting. We use bandpass filters to obtain
data containing mainly heart rate and data containing mainly
respiratory rate, then extract heart rate and respiratory rate
by FFT. We design a real-time system to process and display
these vital signs in real time use Matlab as show in Figure. 7.
Considering the requirements of real-time and the weak multi-
threading capabilities of Matlab, our extraction algorithm
favors simple and efficient FFT.

V. PERFORMANCE EVALUATION

In this section, we first evaluate the effectiveness of the
motion capture enhancement method, then evaluate the real-
time vital signs detection system.

A. Evaluation of Motion Detection Capability Enhancement
Method

In order to verify our inference in the Section .III, we first
calculated the Rice-K value of each stream in setting 1 (the
setting as show in Figure.2a) as shown in Figure. 8, it can be
found that the larger the K is, the worse the motion capture
effect is. Then we placed a Lead sheet between the T1-R1
antenna pair in setting 1 (decrease K) to perform a breath
detection experiment, the result as shown in Fig.10. It can
be seen that the motion detection capability of T1-R1 has
been significantly improved. We show the average breathing
detection error (BDE), the variance of the CSI waveform
(VAR), and the mean amplitude difference (MAD) as Figure.9.
It can be observed that both the detection accuracy and the
sensitivity to motion have improved.

Although our system only needs one data stream, we must
place the other two antennas, and can’t block the LOS between
at least one receiving antenna and T1. Because of the CSI tool
must receive the data stream of three receiving antennas at
the same time to collect CSI data. Moreover, we found in the
experiment that no matter how the signal is blocked (Without
using a wall to completely block the signal or absorb a lot of
signal energy), there always have a data stream with an SNR of
about 20, which is the least sensitive for motions. If put three
antennas together, there always have one least sensitive data
stream, and it’s not fixed. Every time you restart the system,
you need to find the best data stream. Many studies have
not noticed this phenomenon, they merely put three receiving
antennas together like [12].
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B. Experimental Setup

In the actual setup, we build our prototype system based on
setting 1. Due to the limitations of bed, the person’s torso is
closer to R3 when lying down or face down; in other words,
the torso is far away from the mid-perpendicular of T1-R3.
When we are lying down/lying with face down, the chest
displacement caused by breath/heartbeat in anteroposterior
dimensions still has a significant effect on T1-R3 based on
the Fresnel theory. It ensures the monitoring performance in
different sleeping postures. If we block T1-R1, as shown in
Figure.10, when the person is facing left/right recumbent, T1-
R1 is sensitive to the breath of the mediolateral dimensions.
However, when the person’s arm blocks the flank, the moni-
toring effect becomes poor. It is due to when facing left/right
recumbent, the main factor affects the CSI received by R1
is the torso deformation of the flank. This is why we chose
T1-R3 to monitor vital signs instead of T1-R1.

We first calculate the Fresnel diffraction model of T1-R3, by
adjusting the distance of T1-R3 and their position, to keep the
bed stay in a sensitive detection area. That is, leaving the bed
outside the second Fresnel zone of T1-R3, but not too far away,
then place a lead sheet under T1 to block the LOS path of T1-
R3. CSI are collected use csitool [42] and Intel 5300 NIC, after
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Fig. 10: Obstacle the direct signal from T1 to R1 in setting1,
the K factor of the T1-R1 stream decrease to 12.4, the K factor
of the T1-R3 stream increase to 5076.

the receiver receives the CSI data, then transmit them to the
processor through the network for real-time processing, We
received three streams from three receive antennas, but only
process one of them for vital signs detection.

We use off-the-shelf hardware devices to implement the
proposed system. Specifically, we use two mini PC as the
sending and the receiving devices, and their network cards are
Intel Link 5300 WiFi NIC. The miniPCs have a 2.16GHz Intel
Celeron N2830 processor with 2GB RAM and Ubuntu OS
in version12.04. Real-time monitoring machine is a desktop
computer equipped with an Intel Core i5 3450 CPU (3.1G
HZ), 2GB storage.
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Fig. 11: Prototype System

Our antennas settings are shown in Fig. 11, the distance
from T1-R3 is 80cm, we placed lead sheet under T1 to enhance
the performance of R3, and there is no blocking between R1
and T1. We only use stream T1-R3 to monitor vital signs; the
purpose of place other two antennas is to prepare for future
sleep monitoring system expansion (sleep motions recognition
such as turning over, sit up; perceive motion direction and
disease alert such as epilepsy).

We experimented in a lab environment as shown in Fig.
11, a total of ten volunteers participated in the experiments (6
males and 4 females) whose age ranges is 21 to 26. These ten
volunteers were general university students who volunteered
for the experiments. In the experiments, we did not limit the
normal activities of others in the lab.
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Each participant underwent an actual test of 30 minutes
in different sleeping postures naturally (prone, supine, facing
left recumbent, and facing right recumbent). Different from
previous work [15], [17], we did not use a metronome to
control the volunteer’s respiratory rate, and we do not need
to use a directional antenna to detect heart rate under LOS
conditions. The ground truths of breath and heartbeat are
measured by a accelerometer attached to the abdomen and
a fingertip pulse oximeter, respectively. Our real-time system
is shown in Fig. 7.

C. Evaluation Results

The CSI waveform, which mainly containing the respiratory
information obtained by the bandpass filter, is compared with
the acceleration sensor data attached to the abdomen, as
shown in Fig. 12. It can be seen that the CSI waveform is
highly consistent with the respiratory waveform obtained by
the acceleration sensor. Fig. 13 compares the normalized CSI
waveform which contain heartbeat to an acceleration sensor’s
reading attached to the chest, the occurrence of a heartbeat
on the accelerometer is consistent with the detection result of
CSI. It is indicate that the normalized CSI obtained from WiFi
signals could be utilized to extract the fine-grained heartbeat
and breath information.
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Fig. 12: Comparison of processed CSI and accelerometer
(ACC) readings for breath.
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We evaluate the overall performance of breath and heart
rate estimation under different sleep postures, the final result
is an average error of 0.498 bpm (beat per minute) for detect
breath, 3.531 bpm for detect heart rate, and the accuracy is
96.887% and 94.708% respectively.

1 2 3 4 5 6 7 8

Participants

0

1

2

3

4

5

Breath

Heartbeat

E
rr
o
r(
b
p
m
)

Fig. 14: Performances of different sleep volunteers

supine  facing right recumbent  facing left recumbent prone

Sleep Postures

0

1

2

3

4

5

E
rr

o
r(

b
p

m
)

Breath

Heartbeat

Fig. 15: Performances of different sleep postures

Figure. 14 illustrates the vital signs (breath and heart rate)
monitoring error of different participants; they have different
body types, which results in different final results. However,
in general, our system has high accuracy in detect respiration,
and the error in detect heart rate is also within the acceptable
range in a non-clinical environment.

Figure. 15 illustrates the vital signs (breath and heart rate)
monitoring error of different sleeping postures, in supine and
facing right recumbent postures, monitoring error is relatively
small. However, for facing left recumbent posture, the error in
monitoring heart rate is largest. For prone posture, the error in
monitoring breathing rate is largest. In general, our system can
accurately monitor vital signs for different sleeping postures.

VI. CONCLUSION

In this paper, we show that we could use WiFi signals to
track breath and heartbeat with different sleeping postures
using only one pair of WiFi devices. To achieve this, We
propose a motion detection capability enhancement method
based on the Rice-K theory and the Fresnel theory to help
detect the minor motions caused by breath and heartbeat. We
also design a sleep motion positioning algorithm based on
regularity detection, which can accurately position the range
of sleep motions (such as turn over and get up). We also use
the Rick-K theory to explain why it is beneficial for vital
signs detection when blocking part of the LOS signal. We
implement a prototype system to evaluate our method. The
experimental results indicated the performance of our method,
and the accuracy is 96.618% and 94.708% for breath and heart
rate detection, respectively.
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