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Abstract

In the recent advancement of machine learning methods for realistic image generation and image translation, Generative

Adversarial Networks (GANs) play a vital role. GAN generates novel samples that look indistinguishable from the real images.

The image translation using a generative adversarial network refers to unsupervised learning. In this paper, we translate

the thermal images into visible images. Thermal to Visible image translation is challenging due to the non-availability of

accurate semantic information and smooth textures. The thermal images contain only single-channel, holding only the images’

luminance with less feature. We develop a new Cyclic Attention-based Generative Adversarial Network for Thermal to Visible

Face transformation (TVA-GAN) by incorporating a new attention-based network. We use attention guidance with a recurrent

block through an Inception module to reduce the learning space towards the optimum solution.
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Transformations
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Abstract—In the recent advancement of machine learning
methods for realistic image generation and image translation,
Generative Adversarial Networks (GANs) play a vital role. GAN
generates novel samples that look indistinguishable from the real
images. The image translation using a generative adversarial
network refers to unsupervised learning. In this paper, we
translate the thermal images into visible images. Thermal to
Visible image translation is challenging due to the non-availability
of accurate semantic information and smooth textures. The
thermal images contain only single-channel, holding only the
images’ luminance with less feature. We develop a new Cyclic
Attention-based Generative Adversarial Network for Thermal
to Visible Face transformation (TVA-GAN) by incorporating a
new attention-based network. We use attention guidance with
a recurrent block through an Inception module to reduce the
learning space towards the optimum solution. TVA-GAN is tested
and evaluated for thermal to visible face synthesis over the WHU-
IIP and Tufts Face Thermal2RGB datasets. The results using the
proposed TVA-GAN is promising for face synthesis as compared
to the state-of-the-art GAN methods.

Index Terms—GAN, Attention-GAN, Synthesized Loss, Cycle
Synthesized Loss, Thermal-Visible Transformation, Thermal-
Visible Face Synthesis, Recurrent-Inception module, Attention
Block.

I. INTRODUCTION

Visible image generation using thermal images is a very
challenging task rather than using Infrared or Near-Infrared
images. Near-infrared (NIR) images are close to redlight
wavelengths between 700 nm - 1400 nm. NIR images are
very close to human vision and discard the color wavelength
pieces of information. This results in most articles looking
similar to the image converted into gray scale images. Most
NIR cameras at night utilizing IR LEDs for illumination are
limited in range, usually not more than 500m. While on the
other hand, thermal images are far-infrared images with wide-
area emission detection. Thermal Infrared (TIR) cameras are
sensitive to heat radiation produced by a body. Heat is the
electromagnetic waves emitted by a body above the absolute
zero temperature, which contains different wavelengths. Both
NIR and TIR images capture non-overlapping electromagnetic
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spectrum. However, thermal images and near-infrared images
are very different from each other since thermal images are
more specific to capturing images for a particular range of
temperature only. Thus, the thermal images(TIR) have more
noisy data than the NIR images. So, it is more challenging
to generate the actual visible domain images from the corre-
sponding thermal domain images.

In the current scenario of deep learning [1], the image
generation tasks handle various applications of computer vi-
sion, including image restoration [2], image synthesis [3], face
synthesis [4] [5] and many more. We consider the visible
face synthesis from the thermal face image as an image-to-
image translation problem due to the images’ inter-domain
transformation. The image-to-image translation [6] method is
inspired from the language transformation problem proposed
by Mark Twin [7]. Here the language is first transformed
from French to English and then back to French, and the final
results are compared with the source text string for better trans-
lations. The image-to-image translation is effectively handle
by Generative Adversarial Networks(GANs) which works on
the principle of training a model which learns by balancing
false results against true results. With the modern influence
of deep learning, different Generative Adversarial Network
(GAN) methods [8], [9], [10], [11] have been proposed to deal
with the image-to-image translation problems. GAN based
models have been also utilized for different applications such
as image segmentation [12], image colorization [13], image
super-resolution [14], image style transfer [15], and face
photo-sketch synthesis [16].

Deep learning methods are prevalent for image-to-image
translation in multi-domain scenarios in computer vision, and
bio-metrics [1] [17]. The deep learning methods consist of
two domains: supervised and unsupervised learning methods.
The supervised framework needs tremendous manual work
for labeling the data. Generative Adversarial Networks(GANs)
have gained massive popularity because of their ability to
generate realistic samples within training samples distribution.
In proposed TVA-GAN used a thermal face image to feed into
the generator network for producing a synthesized real-looking
visible face image as the output. The GAN-based image-to-
image translation methods comprise two networks: generator
and discriminator networks. The discriminator network in-
cludes a Convolutional Neural Network (CNN) for two-class
classification between the real and fake samples. The generator
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network is an auto-encoder [6][2] that produces high-quality
images within the given training set distribution.

The significant commitments of this paper are as follows:

• We propose an Attention-based Generative Adversarial
Network (TVA-GAN) for thermal to visible face transfor-
mation using an image-to-image translation framework.

• The proposed TVA-GAN’s learning space narrowed down
towards optimal learning by using attention guidance and
the deep feature extraction using the inception network,
which helps to learn more local sparse structure and
performs better than the traditional methods.

• We proposed a novel generator architecture for TVA-
GAN using Recurrent Inception block with attention
mechanism to improve the training of Attention network.

• We tested the proposed TVA-GAN for thermal to visible
face synthesis using real thermal face images and found
improvement over various state-of-the-art methods.

The rest of the paper is described in the following manner: a
concise literature review for image translation and thermal to
visual transformation is presented in Section II; The proposed
TVA-GAN with network analysis and losses are described in
Section III; The experimental setup is described in Section
IV; The experimental results and observations are described in
Section V; and Lastly, the conclusion of the paper is provided
in Section VI.

II. RELATED WORK

In the area of methods using machine learning, feature
classification using classifiers for recognition task proposed
by Jun Li et al. named hallucinating faces using thermal
infrared images. In the methods using machine learning,
feature classification using classifiers for recognition task
proposed by Jun Li et al. [18] named hallucinating faces using
thermal infrared images. In comparison, Choi et al. [19] pre-
processed the thermal image and normalize the intensity values
of images. Choi et al. used Self quotient image(SQI) with
the Gaussian filtering (DOG) difference for the recognition
task. Cunjian Chen et al. [20] used Pyramid Scale Invariant
Feature Transform (PSIFT) for matching the images in thermal
and visible domains. These non-deep learning based methods’
primary aim is to reduce the domain gap for learning features.

Among deep learning approaches,Vishal M. Patel et al. used
polarimetric thermal faces and generative adversarial networks
[21] for high-quality visible faces synthesis. The Polarimetric
Thermal Database [22] is used in [21] for Face Recognition,
which contains polarimetric images with more facial features
than actual thermal images. The database consists of only
grey channel images, not visible color images. For the same
database, Iranmaneshet et al. proposed a Deep Cross Polari-
metric Thermal-to-visible face recognition [23] for thermal
face recognition. The authors used two CNN and contrastive
loss functions to recognize faces from polarimetric and visible
domains. Generative Adversarial Networks (GAN) appeared
as an unsupervised learning framework for generating the
new samples within a given dataset distribution. Different
authors proposed different versions of GANs to deal with

different problems associated with image generation, trans-
lation, and new sample generation. Image-to-image transla-
tion methods using GAN proposed by various researchers,
which helps translate the images from one domain to an-
other [24],[9],[10],[25],[26],[27],[28]. The ConditionalGAN
[29] can be seen as the baseline, which generates new samples
with some embedding conditions. The ConditionalGAN gener-
ator network can generate samples based on some prior given
conditions as class labels. In 2016, first unsupervised image
translation network using GAN was proposed by Ming-Yu Liu
and Oncel Tuzel, named CoGAN (Coupled Generative Adver-
sarial Network) [30], capable of learning the joint distribution
from the marginal distribution of two different domains.

The pix2pix was based on ConditionalGAN and CycleGAN
which was quite similar to CoGAN in inter-domain feature
learning. The CycleGAN was a state-of-the-art model for
the unpaired image to image translations. Its generator was
capable of generating more realistic samples than any other
methods dealing with unpaired data. The pix2pix used the
markovian PatchGAN [8] discriminator network, and it dis-
played promising results for the paired image transformation.
The pix2pix restricted for paired image transformation using
the same set of images in different domains. pix2pix used
the PatchGAN discriminator for labeling the generated image
patches. The paired image dataset collection is expensive
and suffers from long procedural processes. To remove such
problems associated with pix2pix, CycleGAN proposed, which
can transform the inter-domain images without having paired
datasets. CycleGAN converts the source domain images into
the target domain images of the same semantic information.
Further network converts them back to the source domain
images. Which helps to decreasing the divergence of the
learning space and increasing the quality of generated images.
On the other side, Yi et al. proposed DualGAN [10] similar
to CycleGAN for the image-to-image translation, which varies
from CycleGAN in terms of the loss functions. The DualGAN
exercises reconstruction loss, whereas the CycleGAN practices
the Cycle-consistency loss. In most of the incidents, the Cycle-
GAN outperforms the DualGAN. Thus, we use the CycleGAN
framework in the proposed model.

In a recent development, Self-Attention GAN is proposed
[28], which is also known as an intra-attention network ca-
pable of boosting the CNN performance because the atten-
tion network focuses more on the essential features of the
images. Self-Attention GAN learns the long-range multi-level
dependencies by attending the response at a specific position
of images. The attention-based networks help to eliminate
intense training of deep neural networks compared to CNN
models [28] [31] [32]. Recently, the attention-based networks
are also proposed by Mejjati et al. [26] and Tang et al. [33]
for image-to-image translation using GANs. Both of these
methods used attention guided generator for the foreground
image generation and preserved the background information
using inverse mapping of generator output and concatenated
them in final synthesizing. There is few more attention-based
GANs for image-to-image translation, including Multi-channel
Attention GAN [34] and Deep-Attention GAN [35]. Attribute
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guided GAN [36] is proposed for sketch generation. Attention-
based two-stream CNNs [37], [32] are proposed for spoofing
detection in faces.

III. PROPOSED TVA-GAN MODEL

n this section, we present the proposed Thermal to Visible
transformation Attention Guided Generative Adversarial Net-
work (TVA-GAN) for Thermal to Visible face synthesis. The
proposed TVA-GAN architecture is illustrated in Fig. 3. We
use the paired dataset Anj=1 = (Xj , Yj)

n
j=1, x ∈ X and y ∈ Y ,

where xj and yj are the pairs of thermal and corresponding
visible images. We use CycleGAN [9] framework with U-
Net [38] based architecture. The generator network consists
of an encoder and a decoder. The encoder is based on the
Recurrent-Inception modules and the decoder is based on the
attention mechanisms. The proposed TVA-GAN translates the
images from source domain (x) to target domain (y) and target
domain (y) to source domain (x) in cyclic manner. We use two
Attention Guided Generator Networks, i.e., Gxy to translate
images from domain x to domain y (x → y) and Gyx to
generate the image in domain x from domain y (y → x).
The generator network used in the proposed TVA-GAN has
an inbuilt attention mechanism .

The proposed TVA-GAN method trained end to end using
the various types of loss functions. For better convergence,
we combined multiple losses to add different curvatures in
the optimization. The followings are the losses used in this
paper: Adversarial loss, Cycle loss, Synthesized loss, Cycle
synthesized loss, Feature reconstruction loss (i.e., perceptual
loss)
Attention Block: We use attention gates [39] as Attention
block in our proposed network to capture sizeable receptive
field and semantic contextual information. While applying
multi-stage CNN, the attention gate reduces the feature re-
sponses for irrelevant background regions. There is no restric-
tion for cropping an ROI (region of interest) between the net-
work layers. Attention gate output is obtained from element-
wise multiplication between input feature maps denoted as
zkand qattk respectively.

zk is the feature map of kth layer in CNN network. zkj ∈ RFk

where Fk represents the number of feature maps in kth

layer. Attention gate helps to focus on subset of a specific
region of target structure. The gating vector denoted by gj ,
helps to analysing spatial regions by providing contextual and
activation information. Where gj ∈ RFg used for determining
the focus region of pixel j. In the attention block ReLU
presented by σ1.

σ1(z
k
j ) = max(0, zkj , c)

We use additive attention, where the attention map calcu-
lated between previous up-sampling layer and corresponding
down-sampling layer of encoder block in network. Hence
both layers attention map added and perform operation for
getting qkatt. Both the vectors after channel wise convolution
of 1 summed element wise because it shows better results

than multiplicative attention [40](element wise multiplication
increases the network complexity).

qkatt = σ2(ϕ
T (σ1(W

T
z z

k
j +WT

g gj + bg)) + bϕ)

ẑkj = (qkatt ∗ zk))

where σ2(zj,c) = 1
1+exp(−zj,c) represents the Sigmoid

activation function where j and c denotes the spatial and
channel dimensions. Wz ∈ RFkxFint, Wg ∈ RFgxFint and
ϕ ∈ RFintx1 represent the linear transformation. Fint denotes
the no of output channel for each 1 × 1 convolution, and
bϕ ∈ R and bg ∈ RFint represent the bias term. In brief, two
input feature maps passed through the 1× 1× 1 channel-wise
convolution after that combined through adding the outputs
and pass by ReLU activation. Therefore second channel-wise
convolution was performed using 1×1×1 kernels and passed
through the Sigmoid layer to obtain the mask and concatenate
the attention mask with up-sampled feature maps. Attention
Block shown in Fig. 1.
Note: The linear transformations are computed by 1 × 1 × 1
channel-wise convolutions. Attention block described in Table
II
Recurrent Inception Block For better learning of the
contextual information, we used recurrent block with t = 2
occurrences. In the proposed RCIN, the recurrent block results
in more network depth with fewer parameters and learning
by weight sharing. For learning the globally as well locally,
we used the inception network with the recurrent network.
Inception also helps to make networks computationally
cheaper in terms of parameters. While using two recurrent
blocks together, we found a large no of computational
parameters besides this. We used a novel recurrent inception
module that reduces parameters and learns both locally and
globally due to large and small filter sizes (3 × 3, 5 × 5
and 1 × 1) . We pass each layer through ReLU layer(except
the max-pooling layer), as shown in Fig.1. To overcome
the problem of vanishing gradients. The ReLU used in
architecture advantages with faster and more efficient learning
due to no error while back-propagating the gradients in the
network with fewer computational parameters than softmax.
To make the network smaller, we fixed the no of output filters
for 5× 5 most immense kernel size in inception block kernel
size; the no of output filters fixed to 16 instead of deriving
from input parameters, because filters derived from input
parameters results in more number filter layers introduced
in the network and increases the network complexity. The
recurrent inception block architecture described in Table I.

Adversarial Loss: Adversarial loss measures the error for
generator and discriminator networks. The generator network
generates the fake image specimens. The discriminator net-
work produces labels for the generated image samples as
fake/real, depending upon how each generated image data
distribution matches the corresponding real image data dis-
tribution. The vanilla GAN uses negative log-likelihood loss
[41], which leads to instability in training. To overcome
the instability problem the proposed TVA-GAN model uses
LSGAN [42].
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Fig. 1: A network block of Recurrent Inception Block (RCIN). Attention mechanism for network architecture is attached in attention block.

The GAN adversarial loss for X → Y transformation is
described as below where Gxy denotes the generator function
for transforming the images domain x to domain y. While DY

is discriminator function for domain Y .

LGAN (Gxy, DY ) =MinGxyMaxDY
=

Ey∼pdata(y)
[(DY (y)− 1))2] + Ex∼pdata(x)

[(DY (Gxy(x))− 1)2]

where x ∈ X and y ∈ Y . Similarly, GAN adversarial loss
computed for Y → X transformation (LGAN (Gyx, DX)) .
Where Gyx denotes the generator function for transforming
the images domain y to domain x. While DX is discriminator
function for domain X .

LGAN (Gyx, DX) =MinGyx
MaxDX

=

Ex∼pdata(x)
[(DX(x)− 1))2] + Ey∼pdata(y)

[(DX(Gyx(y))− 1)2]

Cycle Loss: We use cycle-consistency loss (cycle loss)
[9] in the objective function of the proposed method. It is
computed using the L1 distance between the real image and
the cyclic reconstructed image in both forward and backward
transformations. The forward cycle loss is defined as,

LCycF = ||x−Gyx(Gxy(x))||1

Similarly, the backward cycle loss is computed as,

LCycB = ||y −Gxy(Gyx(y))||1

where x ∈ X and y ∈ Y .

Cycle-Synthesized Loss: The cycle-synthesized loss [43]
is used in the proposed model to make training better. We
calculate the cycle-synthesized loss as L1 loss between the cy-
cled/reconstructed image and the synthesized image in cross-
domains. The cycle-synthesized losses are computed as,

LCsl1 = ||Gxy(Gyx(y)−Gxy(x)||1
LCsl2 = ||Gyx(Gxy(x)−Gyx(y)||1

where Gyx(y) and Gxy(x) are the synthesized images and
Gyx(Gxy(x) and Gxy(Gyx(y) are the cycled images.

Synthesized Loss: Synthesized loss is calculated between
the generated image and the input image without using the de-
tachment of computation graph, which helps to back-propagate
the network loss. For A ∈ X and B ∈ Y the synthesized losses
in domains A and B are defined as,

LSlA = ||x−Gyx(y)||1
LSlB = ||y −Gxy(x)||1.

Feature Reconstruction Loss: We estimate the loss for
related feature representation between the target image and the
generated image. The same is also performed for the target
and the corresponding reconstructed image. We use mean
square error to compute the distance between the extracted
features, where feature extraction performed using the pre-
trained VGG-19 network used in the perceptual loss. For any
trained network ψ, let ψk(y) represents the activation feature
map of dimension Wk × Hk × Ck corresponding to the kth
convolution layer. Where C represents a number of channel,
W width of input image and H height of input image, ψ
is the pre-trained VGG-19 model. While processing image y
through pre-trained network’s ( ψ) kth layer we get the feature
map ψk(y).

lψ,kfeat(ŷ, y) =
1

WkHkCk
||ψk(ŷ)− ψk(y)||22

where y and ŷ are the original and the generated images,
respectively. Using the above function, we compute the fol-
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TABLE I: Recurrent Inception Block

Recurrent Inception Block (input ch = in ch, output channels )

Layers kernel size stride Padding channels
in,out

C1 = Conv2d 1 1 0 in ch,in ch
Conv2d + BatchNorm +
ReLU 3 1 1 in ch,in ch

Conv2d Inception(1 1) 1 1 - in ch,in ch/4
ReLU

Conv2d Inception(2 1) 1 1 - in ch,in ch
ReLU

Conv2d Inception(2 2) 3 1 1 in ch,in ch/4
ReLU

Conv2d Inception(3 1) 1 1 - in ch,16
ReLU

Conv2d Inception(3 2) 5 1 2 16,in ch/4
ReLU

Maxpool2d Inception(4 1) 3 1 1 –
Conv2d Inception(4 2) 1 1 - in ch,in ch/4

ReLU
C = Conat(1 1),(2 2),(3 2),(4 2)

(C1 + C) ,output channels = input channels

TABLE II: Attention Block

W g block, input= in
Layers kernel size stride channels in,out
Conv2d + BatchNorm 1 1 in,in/2

W z block, input= in
Layers kernel size stride channels in,out
Conv2d + BatchNorm 1 1 in,in/2

A = ReLU(output(W z) + output(W g))
ϕ block, input= in/2

Layers kernel size stride channels in,out
Conv2d + BatchNorm 1 1 in,in/in

Sigmoid
Out = ϕ(A) * input((W z))

lowing feature reconstruction losses where x ∈ X and y ∈ Y :

Lfakereal (A) = lψ,kfeat(x,Gyx(x))

Lfakereal (B) = lψ,kfeat(y,Gxy(y))

Lreconreal (A) = lψ,kfeat(x,Gxy(Gyx(x)))

Lreconreal (B) = lψ,kfeat(y,Gyx(Gxy(y)))

Lreconfake (A) = lψ,kfeat(Gxy(y), Gxy(Gyx(x)))

Lreconfake (B) = lψ,kfeat(Gyx(x), Gyx(Gxy(y)))

Objective Function: The final objective function for the
proposed TVA-GAN is given as follows:

L(Gxy, Gyx, DX , DY ) = LGAN + LCyc+
LCsl + LSl + LFR

where

LGAN = (LGAN (Gxy, DY ) + LGAN (Gyx, DX))

LCyc = λCyc(LCycF + LCycB )
LCsl = λCsl(LCsl1 + LCsl2)
LSl = λSl(LSlA + LSlB )
LFR = λfeat(Lfakereal (A) + L

fake
real (B) + Lreconreal (A)+

Lreconreal (B) + Lreconfake (A) + Lreconfake (B))

where λ is the weight hyperparameters for different type of
losses.

TABLE III: Generator Network Architecture

Layers kernel size stride Padding channels
in,out

Encoding Block
R1 = Recurrent Inception Block ( in channels =3, out channels =64)

AvgPool2d 2 2 - -
R2 = Recurrent Inception Block (in channels =64, out channels =128)

AvgPool2d 2 2 - -
R3 = Recurrent Inception Block (in channels =128, out channels =256)

AvgPool2d 2 2 - -
R4 = Recurrent Inception Block (in channels =256, out channels =512)

AvgPool2d 2 2 - -
R5 = Recurrent Inception Block (in channels =512, out channels =1024)

Decoding +Concatenation
U5 = Upsample(scale factor =
2.0) + Conv2d + BatchNorm +
ReLU

3 1 1 1024,512

A4 =Attention block (U5,R4)
C5 = Concat(A4,U5)

Recurrent Inception Block( C5 )
U4 = Upsample(scale factor =
2.0) + Conv2d + BatchNorm +
ReLU

3 1 1 512,256

A3 =Attention block (U4,R3)
C4 = Concat(A3,U4)

Recurrent Inception Block (C4)
U3 = Upsample(scale factor =
2.0) + Conv2d + BatchNorm +
ReLU

3 1 1 256,128

A2 =Attention block (U3,R2)
C3 = Concat(A2,U3)

Recurrent Inception Block( C3 )
U2 = Upsample(scale factor =
2.0) + Conv2d + BatchNorm +
ReLU

3 1 1 128,64

A1 =Attention block (U2,R1)
C2 = Concat(A1,U2)

Recurrent Inception Block( C2 )
Conv2d 1 1 0 64 ,3

tanh

TABLE IV: Discriminator Network Architecture

Layers Padding Stride Output
Conv2d + LeakyReLU 1 2 (64, 128, 128)
Conv2d + LeakyReLU +
Instance Norm 1 2 (128, 64, 64)

Conv2d + LeakyReLU +
Instance Norm 1 2 (256, 32, 32)

Conv2d + LeakyReLU +
Instance Norm 1 2 (512, 16, 16)

Conv2d + LeakyReLU +
Instance Norm 1 2 (512, 8, 8)

Conv2d + LeakyReLU +
Instance Norm 1 1 (512, 7, 7)

Conv2d 1 1 ( 1, 6, 6)

IV. EXPERIMENTAL SETUP

A. Network Architecture

For training the network we use newly proposed recurrent
inception block with attention networks. The integration of
recurrent inception block with attention networks makes it
better for learning in image-to-image translation task. We
use CycleGAN network as the base model for translation
task. The proposed method can generate more realistic and
accurate translation task while synthesising the images. The
proposed method contains two Generator networks (i.e., Gxy ,
and Gyx) and two Discriminator networks (i.e., DY and
DX ) for both domains, respectively. The generator has inbuilt
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Fig. 2: Proposed TVA-GAN network architecture where RCIN denotes recurrent inception block.

attention mechanisms. Attention network was proposed by
Goodfellow et al. for handling the long-range dependencies
in the network [28]. It also helps to the proposed TVA-GAN
to handle the background information without introducing any
new network. We follow the architecture having an integrated
attention module to take care of long-range dependencies.

Generator Network: We use the recurrent-inception
attention-based network architecture in this paper in the
generator network. The encoder of generator network in-
cludes recurrent-inception block as examined in Table I. The
recurrent-inception helps to improve the network performance
and the learning of optimal local sparse structure. The attention
block consists of the Attention-Gate [39] architecture outlined
in Table II. The attention block is used in the decoder only
after every up-sampling layer, followed by the Convolutional
layer combined with batch normalization and ReLU activation
function. The attention-block finds the scalar attention value
for each pixel vector by additive attention learned through
linear transformation using 1×1×1 channel wise convolutions.
The generator architecture summary is presented in Table III.

Discriminator Network: In the discriminator network ar-
chitecture, we use the PatchGAN discriminator proposed in
pix2pix, known as Markovian Patch-GAN discriminator with
five-layer architecture. We feed the discriminator network with
256 × 256 images generated by the generator network. Dis-
criminator’s 1st layer is a convolution layer with LeakyReLU
activation function. After that, each convolution layer is fol-
lowed by the instance-normalization and LeakyReLU activa-
tion function. We use 4 × 4 kernel in each Convolutional
layer with stride 2 and padding 1. Last layer of architecture
contains only convolution layer. The network architecture of
discriminator network is summarized in Table IV.

B. Baseline Methods

The proposed TVA-GAN for Thermal-Visible synthesis is
compared with current baseline methods of image-to-image
translation by following its original settings.

1) pix2pix [24]: pix2pix is used for paired image dataset
translates the images from one domain to another using the

U-net generator network with the PatchGAN discriminator
network. It works based on conditional data input. Original
settings used for evaluation of network performance. 1

2) CycleGAN [9]: CycleGAN is proposed for the unpaired
image-to-image translation method by using cycle-consistency
loss. It transforms the source domain image into the target
domain image and then reconstructs the target domain image
to the source domain image. The cycle-consistency loss is
calculated between the source image and reconstructed image.

3) DualGAN [10]: DualGAN also refers to nearly the same
methodology as CycleGAN, but uses reconstruction loss rather
than cycle-consistency loss. Also, it does not require the paired
data in the image translation task. DualGAN, with its original
setting, is used for performance evaluation. 2

4) PCSGAN [25]: PCSGAN also refers to nearly the same
methodology as CycleGAN, but uses cycle perceptual loss
with synthesized perceptual loss rather than cycle-consistency
loss. It uses the paired data in the image translation task.

5) AGGAN [26]: An attention-guided model (AGGAN),
proposed by Mejjati et al., extracts the attention map to
find the foreground and background of images. The attention
mechanism discovers the region of translation in the opposite
domain by finding the attention map. 3

6) AttentionGAN [27]: AttentionGAN practices the same
mechanism introduced in CycleGAN with an inbuilt attention
mechanism to find an attention mask with content mask to
transform the images from one domain to another. 4

C. Datasets Used

We test our model for two thermal-visible datasets, namely
WHU-IIP and Tufts Face Thermal2RGB; both datasets contain
the thermal and real visible face pairs. We use the WHU-IIP
[44] and Tufts Face Thermal2RGB [45] datasets for thermal to
visible face synthesis using the proposed TVA-GAN method

1https://github.com/junyanz/pytorch-CycleGAN-and-Pix2pix
2https://github.com/duxingren14/DualGAN
3https://github.com/AlamiMejjati/Unsupervised-Attention-guided-Image-

to-Image-Translation
4https://github.com/Ha0Tang/AttentionGAN
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Fig. 3: Proposed TVA-GAN Architecture.

Fig. 4: WHU-IIP dataset samples of face images in thermal domain (top) and visible
domain (bottom)

and existing GAN based methods. For WHU-IIP for thermal to
real visual transformation, 552 training image pairs, and 240
testing image pairs are considered in the experiments. We use
403 images for training and 156 images for testing in paired
manner for Tufts Face Thermal2RGB dataset. Tufts Face
thermal2RGB dataset contains more diverse data than WHU-
IIP to judge the generalization capability of the proposed
model. It includes images of people having various races with
different facial attributes, including some people who have
sunglasses and spectacles.

D. Parameter Settings

For all the datasets used for training and testing, the images
are resized to the dimensions as 256 × 256 × 3 (where 3

Fig. 5: Tufts Face Thermal2RGB dataset samples of face images in thermal domain (top)
and visible domain (bottom)

denotes the no. of channels). Similar to CycleGAN, pool size
is set to 50. We use diffGrad optimizer [46] for the proposed
TVA-GAN because previously proposed optimizers [47], [48]
suffer from adjustment of learning-rate update. For the pix2pix
method, we use the batch normalization based on the original
implementation. For the CycleGAN and DualGAN, we use
the batch normalization method as proposed in the original
network for comparison with our results. We use lsgan loss
[42] as used in CycleGAN for training stability of the proposed
model through out the training process. The loss weight
hyperparameters used in the final objective function are listed
in Table VII. We use the diffGrad optimizer with a learning
rate of 0.0002 and momentum terms β1 = 0.5 and β2 = 0.999.
The linear decay is used to reduce the optimizer’s learning rate
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TABLE V: The quantitative results comparison over WHU-IIP dataset of the proposed
TVA-GAN model with recent state-of-the-art GAN models. Note that the higher value is
better for SSIM and PSNR, whereas lower value is better for LPIPS and VGG-FaceLoss.

Method SSIM LPIPS PSNR VGG-FaceLoss
pix2Pix 0.7709 0.087 29.52 0.6176
CycleGAN 0.7573 0.084 29.50 0.6271
DualGAN 0.7623 0.080 29.42 0.5887
PCSGAN 0.8163 0.063 30.08 0.5160
AGGAN 0.7423 0.085 29.02 0.6411
AttentionGAN 0.6368 0.115 28.79 0.8021
TVA-GAN(ours) 0.8444 0.052 29.96 0.4756

TABLE VI: The quantitative results comparison over Tufts FaceThermal2RGB dataset
of the proposed TVA-GAN model with recent state-of-the-art GAN models. Note that
the higher value is better for SSIM and PSNR, whereas lower value is better for LPIPS
and VGG-FaceLoss.

Method SSIM LPIPS PSNR VGG-FaceLoss
pix2Pix 0.5027 0.231 28.36 0.5980
CycleGAN 0.5805 0.182 28.62 0.7832
DualGAN 0.5652 0.219 28.77 0.7684
PCSGAN 0.6244 0.127 31.02 0.5569
AGGAN 0.5876 0.188 28.76 0.8227
AttentionGAN 0.5534 0.212 28.54 0.8092
TVA-GAN(ours) 0.6924 0.048 31.52 0.3321

till 0. We update the learning rate after every 50 epochs. The
non-attention-based methods are trained for 200 epochs. The
attention-based methods, like AGGAN and AttentionGAN, are
trained for 100 and 60 epochs, respectively, as per the source
paper code. The proposed TVA-GAN model is trained for
200 epochs. The proposed method converges in fewer epochs
(i.e., 100) for WHU-IIP dataset while requires 200 epochs
for complex Tufts Face Thermal2RGB dataset. We train the
proposed method for 200 epochs for both datasets.

E. Evaluation Metrics

For the quantitative analysis of our results as compared to
the state-of-the-art methods, we use SSIM [49], LPIPS[50]
, PSNR [49] and VGG-FaceLoss evaluation metrics. The
Structural Similarity Index (SSIM) is used to measure the
structural similarity between the generated and real visible face
images. SSIM shows better human-level visual perception.
Higher SSIM means close structural similarity between the
generated image and the actual visible face image. Peak
Signal-to-Noise Ratio (PSNR) is computed to measure the
quality of generated images. Learned Perceptual Image Patch
Similarity (LPIPS) helps to find the patch level similarity as
we use the PatchGAN discriminator. This evaluation helps to
understand the quality of generated images using the proposed
method. We also compute VGG-FaceLoss to ensure feature-
level similarity. It uses a pre-trained VGGFace to extract the
features from a synthesized face image and actual visible
face image and computes the L1 distance between them.
We also use Visual Information Fidelity (VIF) [51] to study
the proposed method using different losses. VIF is used to
compare the visual information among the reference image and
generated image. The VIF helps to distinguish the generated
images from the reference images as human visual system
does. So, VIF helps to understand how accurate transformation
occurs while our proposed method transforms the thermal
images into visible images.

TABLE VII: Training parameter values used for different losses.

Notation Value
λCyc 10
λfeat 1
λSl 15
λCsl 1 for Tufts, 0 for WHU-IIP

TABLE VIII: Losses notations used in the proposed TVA-GAN model.

Loss Notification
Adversarial Loss AL

Cycle Loss Cyc
Synthesized Loss Sl

Cycle-Synthesized Loss Csl
Feature Reconstruction Loss FR

TABLE IX: The quantitative results comparison of the proposed TVA-GAN model using
various Losses for WHU-IIP dataset. The higher value is better except for LPIPS.

Method SSIM VIF PSNR LPIPS
AL 0.5245 0.7817 28.37 0.196

AL+Cyc 0.7664 0.8298 29.30 0.083
AL+Cyc+Sl 0.8290 0.8341 29.92 0.058

AL+Cyc+Sl+FR 0.8444 0.8343 29.96 0.052
AL+Cyc+Sl+FR+Csl 0.8444 0.8343 29.96 0.052

TABLE X: The quantitative results comparison of the proposed TVA-GAN model using
various Losses for Tufts Face Thermal2RGB dataset. The higher value is better except
for LPIPS.

Method SSIM VIF PSNR LPIPS
AL 0.4963 0.7829 29.10 0.198

AL+Cyc 0.4867 0.7769 28.87 0.219
AL+Cyc+Sl 0.6813 0.8056 31.46 0.070

AL+Cyc+Sl+FR 0.6905 0.8044 31.35 0.050
AL+Cyc+Sl+FR+Csl 0.6924 0.8083 31.52 0.048

V. EXPERIMENTAL RESULTS AND OBSERVATIONS

A. Quantitative Result Analysis

The proposed TVA-GAN generates more realistic and
natural-looking images while transforming the thermal domain
into the visual domain. TVA-GAN shows more promising
results than the state-of-the-art attention and non-attention-
based GAN models.

The proposed method compared with recent state-
of-the-art attention-based method AGGAN[26] and
AttentionGAN[27], as well as non-attention-based method as
pix2pix[24],CycleGAN[9], DualGAN[10], PCSGAN[25].

For thermal to visual synthesis, the quantitative results of
TVA-GAN concerning various state-of-the-art methods are
reported in Table V for the WHU-IIP dataset and Table VI
for the Tufts Face Thermal2RGB dataset. We found that TVA-
GAN performs better than all state-of-art methods in terms of
the SSIM, LPIPS, and VGG-FaceLoss for both WHU-IIP and
Tufts Face Thermal2RGB datasets. It’s performance is slightly
low in terms of PSNR compared to PCSGAN for the WHU-
IIP dataset.

• The gain in term of % for SSIM score using WHU-
IIP dataset, as reported in Table V, is {9.55%, 11.50%,
10.77%, 3.44% 13.75%, 32.60%} higher than non-
attention-based methods such as pix2pix, CycleGAN,
DualGAN, PCSGAN and attention-based methods such
as AGGAN and AttentionGAN, respectively.
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Fig. 6: Qualitative comparison for Thermal to Visible domain transformation using Tufts Face Thermal2RGB dataset. From left to right: Thermal images, corresponding Ground
Truth images, images generated using pix2pix, CycleGAN, DualGAN, PCSGAN, AGGAN, AttentionGAN and TVA-GAN models. The TVA-GAN generates more realistic and fair
images.

Fig. 7: Qualitative comparison for transformation of Thermal to Visible using WHU-IIP face dataset. From left to right: Thermal images, corresponding Ground Truth images,
images generated using pix2pix, CycleGAN, DualGAN, PCSGAN, AGGAN, AttentionGAN and TVA-GAN models. The TVA-GAN generates more realistic and fair images.

• The gain in term of % for PSNR score using WHU-IIP
dataset, as reported in Table V, is {1.49%, 1.56%, 1.84%,
−0.39%, 3.24%, 4.06%} higher than non-attention-based
methods such as pix2pix, CycleGAN, DualGAN, PCS-
GAN and attention-based methods such as AGGAN and
AttentionGAN, respectively.

• The gain in term of % for SSIM score using Tufts dataset,
as reported in Table VI, is {37.74%, 19.28%, 22.51%,
10.89% 17.84%, 25.12%} higher than non-attention-
based methods such as pix2pix, CycleGAN, DualGAN,
PCSGAN and attention-based methods such as AGGAN
and AttentionGAN, respectively.

• The gain in term of % for PSNR score using Tufts
Face Thermal2RGB dataset, as reported in Table VI,
is {11.14%, 10.13%, 9.56% , 1.61% 9.60% , 10.44%}
higher than non-attention-based methods such as pix2pix,
CycleGAN, DualGAN, PCSGAN and attention-based
methods such as AGGAN and AttentionGAN, respec-
tively.On the other hand, the proposed TVA-GAN shows lower score

for LPIPS and VGG-FaceLoss for both WHU-IIP and Tufts
Face Thermal2RGB datasets.

• The proposed TVA-GAN shows reduction for LPIPS
in terms of %, as reported in Table V, for WHU-IIP
dataset by {40.23%, 38.01%, 35.00%, 17.46% 38.82%,
54.78%} than pix2pix, CycleGAN, DualGAN, PCSGAN,

Fig. 8: Qualitative comparison for thermal to visible transformation using WHU-IIP
dataset. From left to right: Ground Truth, AL, AL+Cyc, AL+Cyc+Sl, AL+Cyc+Sl+FR,
AL+Cyc+Sl+FR+Csl. The TVA-GAN using all the losses generates more realistic and
fair images.

Fig. 9: Qualitative comparison for thermal to visible transformation using Tufts Face
Thermal2RGB dataset. From left to right: Ground Truth, AL, AL+Cyc, AL+Cyc+Sl,
AL+Cyc+Sl+FR, AL+Cyc+Sl+FR+Csl. The TVA-GAN using all the losses generates
more realistic and fair images.

AGGAN, and AttentionGAN, respectively.
• The proposed TVA-GAN shows reduction for LPIPS in

terms of %, as reported in Table VI, for Tufts Face Ther-



TVA-GAN 10

Fig. 10: ROC Curves for Face Verification using DeepFace with cosine-similarity as distance metric over WHU-IIP and Tufts Face Thermal2RGB datasets for different GAN models,
including pix2pix, CycleGAN, DualGAN, PCSGAN, AGGAN, AttentionGAN and TVA-GAN.

mal2RGB dataset by {79.22%, 73.63%, 78.08%, 62.20%
74.47%, 77.36%} than pix2pix, CycleGAN, DualGAN,
PCSGAN, AGGAN, and AttentionGAN, respectively.

• The proposed TVA-GAN shows reduction for VGG-
FaceLoss in terms of %, as reported in Table V, for
WHU-IIP dataset by {22.99%, 24.16%, 19.21% , 7.83%
25.82% , 40.71%} than pix2pix, CycleGAN, DualGAN,
PCSGAN, AGGAN, and AttentionGAN, respectively.

• The proposed TVA-GAN shows reduction for VGG-
FaceLoss in terms of %, as reported in Table VI, for
Tufts Face Thermal2RGB dataset by {44.46%, 57.60%,
56.78% , 40.37% 59.63% , 58.96%} than pix2pix, Cy-
cleGAN, DualGAN, PCSGAN, AGGAN, and Attention-
GAN, respectively.

B. Qualitative Result Analysis

The qualitative result analysis between the generated images
and ground truth images using the proposed TVA-GAN and
different existing GAN models is shown in Fig. 6 and 7.
The non-attention-based methods pix2pix, CycleGAN, Dual-
GAN, PCSGAN, and attention-based methods AGGAN and
AttentionGAN results are illustrated in Fig. 6 and 7 for
Tufts Face Thermal2RGB and WHU-IIP datasets, respectively.
It is visible in Fig. 6 that TVA-GAN can produce better
results for more diverse datasets than the existing state-of-
the-art methods. A similar observation is also made in Fig.
7 that TVA-GAN results are convincing for less diversify-
ing dataset WHU-IIP as compared to both attention-based
and non attention-based methods. Compared to the existing
methods.TVA-GAN performs better than non-attention-based
methods like pix2pix, CycleGAN, DualGAN, and PCSGAN
have missing features due to missing attention. They do not
accurately learn local as global level feature details as shown
in self-attention gan [26]; on the other hand, proposed method
AGGAN and AttentionGAN learning foreground and back-
ground using masking and invert masking for their method
not accurately performed for fewer feature details. However,
our method using recurrent inception with attention block per-
forms better due to better segmentation using attention while
translating the images.TVA-GAN is translating foreground
and background information simultaneously using recurrent
inception by increasing network depth and learning global
and local features with fewer parameters. Generated images
using TVA-GAN are more structure-preserving and close to
the ground truth than results produced by other methods.

C. Impact of different losses used in TVA-GAN.

For the proposed TVA-GAN, we evaluate the impact of
different losses used for training. We perform the ablation
study over the Adversarial loss, Cycle loss, Cycle Synthesized
loss, Synthesized loss, and Feature reconstruction losses. We
can see the Qualitative comparison of various losses used
in proposed method for WHU-IIP datset in Fig. 8 and for
Tufts Face Thermal2RGB dataset in Fig. 9. These results are
summarized as follows:

• The proposed TVA-GAN performs better than the both
attention-based and non-attention-based models for ther-
mal to visible face synthesis.

• The proposed TVA-GAN can generate more genuine
visual representations using thermal face images and
results in more precise details and fewer artifacts in the
generated images.

• The model fails to distinguish between different person
when used with only Adversarial loss on WHU-IIP
dataset, and Adversarial loss with Cycle loss on Tufts
Face Thermal2RGB datasets. While during training, it
performs well. Hence, these two losses are not enough
for generalization over the different subjects. Moreover,
it is evident from the high quality generated images after
combining the Adversarial loss, Cycle loss, Synthesized
loss, Cycle synthesized loss and Feature reconstruction
loss.

For WHU-IIP dataset, the proposed TVA-GAN leads to better
SSIM, VIF and PSNR in terms of %, using combined adver-
sarial loss,cycle loss, synthesized loss, feature reconstruction
loss and combined adversarial loss,cycle loss, synthesized
loss, feature reconstruction loss with Cycle synthesized loss
combinations. We perceived % increment of 60.99%, 6.73%,
5.60% for SSIM, VIF and PSNR, respectively, and % re-
duction of 73.47% for LPIPS compared to only adversarial
loss as reported in Table IX. With compared to combination
of adversarial loss and cycle loss, TVA-GAN achieves the
increment of 10.18%, 0.54%, 2.25% for SSIM, VIF and PSNR
using combination of adversarial loss, cycle loss, synthesized
loss and , while shows 37.35% of reduction for LPIPS as
shown in Table IX Compared to combination of adversarial
loss, cycle loss and synthesized loss, TVA-GAN gains 1.86%,
0.02%, 0.13% for SSIM, VIF and PSNR while reports a
reduction of 10.34% for LPIPS by using the combination
of adversarial loss, cycle loss, synthesized loss and feature
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reconstruction loss as depicted in Table IX.

For Tufts Face Thermal2RGB, with combination of adver-
sarial loss, cycle loss, cycle synthesized loss, feature recon-
struction loss and synthesized loss, the proposed TVA-GAN
shows improvement of 39.51%, 3.24%, 8.31% for SSIM,
VIF and PSNR while shows 5.75% reduction in LPIPS as
compared to the only adversarial loss as shown in Table
X. With combination of adversarial loss, cycle loss, cycle
synthesized loss, feature reconstruction loss and synthesized
loss, the proposed TVA-GAN shows improvement over com-
bination of adversarial and cycle loss with the gain of 42.26%,
4.04%, 9.17% for SSIM, VIF and PSNR while shows 8.08%
reduction for LPIPS as reported in Table X. For Tufts Face
Thermal2RGB dataset, the proposed method with all the losses
also shows gain over combination of adversarial, cycle and
synthesized loss by 1.63%, 0.33%, 0.19% for SSIM, VIF and
PSNR while shows 1.42% reduction in LPIPS. By combining
cycle synthesized loss with feature reconstruction loss, cycle
loss, synthesized loss and adversarial loss, we gain 0.28%,
0.48%, 0.54% for SSIM, VIF and PSNR while shows 4.00%
reduction in LPIPS for Tufts Face Thermal2RGB dataset.

D. Face verification Results for proposed TVA-GAN

For better understanding the quality of generated faces,
we evaluate the generated faces using the face verification
framework in this subsection. We plot the receiver operat-
ing characteristic (ROC) curves in Fig. 10 corresponding to
the generated face samples using the proposed TVA-GAN
with different GAN methods over the WHU-IIP and Tufts
Face Thermal2RGB face datasets. We use the DeepFace [52]
framework with pre-trained deep face models to calculate
the distance between the generated face sample and ground
truth image. We use the cosine-similarity [53] as a metric
for distance calculation and use the distance as the score
for the generated image samples. We use the ground truth
with the corresponding generated image for the positive pairs,
and for negative pairs. We use the ground-truth image with
any randomly chosen generated sample from another subject.
We calculate the cosine-similarity score for the positive and
negative pairs and use it as a score for the ROC plot. The
proposed TVA-GAN shows the gain in Fig. 10 for Face-
Verification using WHU-IIP and Tufts Face Thermal2RGB
datasets. For WHU-IIP face dataset, the proposed TVA-GAN
shows gain of 1.177%, 9.330%, 4.182%, 5.040%, 10.259%,
15.152% compared to pix2pix, CycleGAN, DualGAN, PCS-
GAN, AGGAN, and Attention-GAN. For Tufts Face Ther-
mal2RGB dataset, the proposed method depicts improvement
of 39.726%, 12.899%, 44.742%, 28.136%, 19.786%, 24.071%
compared to pix2pix, CycleGAN, Dual-GAN, PCS-GAN,
AGGAN and AttentionGAN.

VI. CONCLUSION

This paper proposes a new attention-guided generative ad-
versarial network for thermal to visual face synthesis (TVA-
GAN). The proposed model generates more realistic face
images than the state-of-art methods. We design the network

by including multiple losses to tackle the various problems
related to image synthesis like blur, artifact generation, and
semantic distortions. The losses include Adversarial loss,
Cycle loss, Cycle-synthesized loss, Feature reconstruction loss
and Synthesized loss.Our proposed generator network learns
both local and global features accurately while transforming
thermal to the visual domain . It differs in terms of only
translation the foreground information as proposed in AG-
GAN and AttentionGAN. It translates both the information
foreground and background simultaneously without separating
them. We used recurrent inception block with attention block.
The proposed recurrent inception block learns the global and
local features effectively, translating the images in thermal to
visual domains. Recurrent inception block handles salient parts
and contextual information both locally and globally by using
large kernels and small kernels with more depth and fewer
parameters because of the recurrent layer. While decoding
occurs, attention block takes care of large receptive fields and
learns more semantic contextual in formations. Attention block
handles multi-stage CNN localization by crushing the feature
responses in unrelated background regions progressively. The
proposed model TVA-GAN is tested for the thermal to visual
face synthesis problem using WHU-IIP and Tufts Face Ther-
mal2RGB datasets. It defeats the existing state-of-the-art non-
Attention-based GAN models such as pix2pix, CycleGAN,
DualGAN, PCSGAN, as well as attention-based GAN models
such as AGGAN and AttentionGAN. It produces more realistic
faces, closer to the target image having fewer artifacts with
identity preservation.
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