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Abstract

We propose and theoretically investigate integrated photonic filters based on coupled Sagnac loop reflectors (SLRs) formed by a

self-coupled wire waveguide. By tailoring coherent mode interference in the device, three different filter functions are achieved,

including Fano-like resonances, wavelength interleaving, and varied resonance mode splitting. For each function, the impact

of device structural parameters is analyzed to facilitate optimized performance. Our results theoretically verify the proposed

device as a compact multi-functional integrated photonic filter for flexible spectral shaping.
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Abstract— We propose and theoretically investigate integrated 

photonic filters based on coupled Sagnac loop reflectors (SLRs) 

formed by a self-coupled wire waveguide. By tailoring coherent 

mode interference in the device, three different filter functions 

are achieved, including Fano-like resonances, wavelength 

interleaving, and varied resonance mode splitting. For each 

function, the impact of device structural parameters is analyzed 

to facilitate optimized performance. Our results theoretically 

verify the proposed device as a compact multi-functional 

integrated photonic filter for flexible spectral shaping. 

 
Index Terms—Integrated photonic resonators, Sagnac loop 

reflectors, Fano resonance, interleavers, mode splitting. 

I. 
 INTRODUCTION 

ITH a compact footprint, flexible topology, and high 

scalability, integrated photonic resonators (IPRs) have 

enabled diverse functional optical devices such as filters, 

modulators, sensors, switches, and logic gates [1, 2]. As 

compared with IPRs based on subwavelength gratings [3] and 

photonic crystal structures [4] that have submicron cavity 

lengths, IPRs formed by directional-coupled wire waveguides 

with longer cavity lengths (typically > 10 μm) have smaller 

free spectral ranges (FSRs) that match with the spectral grids 

of the state-of-the-art wavelength division multiplexing 

(WDM) optical communication systems, thus rendering them 

more widely applicable to these systems. Moreover, the 

directional-coupled wire waveguides with longer coupling 

regions and simpler designs also yield a higher tolerance to 

fabrication imperfections.  

Generally, there are two types of basic building blocks for 

IPRs formed by directional-coupled wire waveguides. The 

first is a ring resonator, and the second is a Sagnac loop 

reflector (SLR). In contrast to ring resonators that involve only 

unidirectional light propagation, the SLRs allow bidirectional 

light propagation as well as mutual coupling between the light 

propagating in opposite directions, thus yielding a more 

versatile coherent mode interference and spectral response. In 

addition, a standing-wave (SW) resonator formed by cascaded 

SLRs has a cavity length almost half that of a travelling-wave 
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(TW) resonator based on a ring resonator with the same FSR, 

which allows for a more compact device footprint.  

In our previous work, we investigated integrated photonic 

filters based on cascaded SLRs [5, 6] and coupled SLRs [7, 8]. 

Here, we advance this field by introducing the novel approach 

of using coupled SLRs formed by a self-coupled wire 

waveguide. This allows us to achieve versatile spectral 

responses with a simpler design and a higher fabrication 

tolerance. We tailor the coherent mode interference to achieve 

three different filter functions, including Fano-like resonances, 

wavelength interleaving, and varied resonance mode splitting. 

The requirements for practical applications are considered in 

our design. Excellent performance parameters are achieved for 

each filter function, analysis of the impact of the structural 

parameters and fabrication tolerance is also provided.  

II. DEVICE STRUCTURE 

Fig. 1 illustrates a schematic configuration of the proposed 

structure, consisting of three SLRs formed by a single self-

coupled wire waveguide. The device structural parameters are 

defined in Table I.  To simplify the discussion, we assume that 

LSLR1 = LSLR2 = LSLR3 = LSLR and L1 = L2 = L. The resonator is 

equivalent to three cascaded SLRs (which is an infinite-

impulse-response (IIR) filter) when t2 = 1 and a SLR with an 

interferometric coupler [9] (which is a finite-impulse-response 

(FIR) filter) when t1 = t3 = 1. When ti (i = 1–3) ≠ 1, this device 

is a hybrid filter consisting of both IIR and FIR filter elements, 

which allows for versatile coherent mode interference and 

ultimately a diverse range of spectral responses.  

We use the scattering matrix method [5, 7] to calculate the 

spectral response of the device.  In our calculation, we assume 
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Fig. 1. Schematic configuration of the device configuration consisting of three 

SLRs (SLR1, SLR2, and SLR3). The definitions of ti (i = 1–4), ki (i = 1–4), LSLRi 

(i = 1–3) and Li (i = 1, 2) are provided in Table I.  
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a waveguide group index of ng = 4.3350 for transverse electric 

(TE) mode and a propagation loss of α = 55 m-1 (i.e., 2.4 

dB/cm) based on our previously fabricated silicon-on-insulator 

(SOI) devices [5, 6]. The device is designed based on, but not 

restricted to, the SOI platform.  

 

III. FANO-LIKE RESONANCES 

 Fano resonances that feature an asymmetric spectral 

lineshape are fundamental physical phenomena that have 

underpinned many applications such as optical switching, data 

storage, sensing, and topological optics [10-12]. In this 

section, the spectral response of the device in Fig. 1 is tailored 

to realize optical analogues of Fano resonances with high 

slope rates (SRs) and   low insertion loss (IL). The power 

transmission and reflection  spectra with input from Port 1 is 

depicted in Fig. 2(a-i). The   device structural parameters are 

LSLR = L = 100 µm, t1 = t3 = 0.82, t2 = 0.92, and t4 = 1. Clearly, 

the output from Port 2 shows periodical Fano-like resonances 

with an asymmetric resonant lineshape in each period. The 

high uniformity of the filter shape across multiple periods, or 

channels, is highly desirable for WDM systems. A zoom-in 

view of Fig. 2(a-i) is shown in Fig. 2(a-ii), together with 

another curve showing the corresponding result for another 

device with the same structural parameters except for a 

different t2 = 1. As can be seen, when t2 = 1, there is no Fano 

resonance, distinguishing between the device in Fig. 1 and the 

three cascaded SLRs in Ref. [5]. The Fano resonances in Fig. 

2(a-ii) show a high extinction ratio (ER) of 30.2 dB and a high 

SR (defined as the ratio of the ER to the wavelength difference 

between the resonance peak and notch) of 747.64 dB/nm. 

Table II compares the performance of the Fano-like 

resonances generated by the coupled SLRs in our previous 

work [7, 8] and the device in Fig. 1. As compared with 

previous devices, the device reported here has a much lower 

insertion loss of 1.1 dB, along with a slightly improved SR. 

We note that a low IL of 1.1 dB is outstanding among the 

reported Fano-resonance devices on the SOI platform [13, 14], 

TABLE I 

DEFINITIONS OF DEVICE STRUCTURAL PARAMETERS 

Waveguides Length 
Transmission 

factor a 

Phase 

shift b 

Connecting waveguides 

between SLRs (i = 1, 2) 
Li ai φi 

Sagnac loop in SLRi 

(i = 1, 2, 3) 
LSLRi asi φsi 

Directional couplers Field transmission 

coefficient c 

Field cross-coupling 

coefficient c 

Coupler in SLRs 

(i = 1, 3, 4) 
ti κi 

Coupler between SLR1 

and SLR2 
t2 κ2 

a ai = exp(-αLi / 2), asi = exp(-αLSLRi / 2), α is the power propagation loss factor. 
b φi = 2πngLi / λ, φsi = 2πngLSLRi / λ, ng is the group index and λ  is the 

wavelength. 

c tsi
2 + κsi

2 = 1 and tbi
2 + κbi

2 = 1 for lossless coupling are assumed for all the 

directional couplers. 

 

 

 

 

 

Fig. 2. (a-i) Power transmission and reflection spectra with input from Port 1 

when LSLR = L= 100 µm, t1 = t3 = 0.82, t2 = 0.92, and t4 = 1. T: Transmission 

spectrum at Port 2. R: reflection spectrum at Port 1. (a-ii) Power transmission 

spectra at Port 2 for t2 = 0.92 and t2 = 1. In (a-ii), the structural parameters are 

kept the same as those in (a-i) except for t2. (b)–(e) (i) Power transmission 

spectra and (ii) the corresponding IL and SR for different ti (i = 1–4) and 

variation of feedback loop length ∆LFL, respectively. In (b)‒(e), the structural 

parameters are kept the same as those in (a-i) except for the varied 

parameters. 

 

 

TABLE II 

PERFORMANCE COMPARISON OF FANO-LIKE RESONANCES 

GENERATED BY DIFFERENT SLR-BASED DEVICES 

Device structure 
IL 

(dB) 

ER 

(dB) 

SR 

(dB/nm) 

FSR 

(GHz) 
Ref. 

Two parallel  

WC-SLRs a 
6.3 13.9 389 692.02 [7] 

Three zig-zag  

WC-SLRs b 
3.7 63.4 721.28 230.68 [8] 

Device in Fig. 1  1.1 30.2 747.64 173 
This 

work 

a WC-SLRs: waveguide coupled SLRs. 
b For comparison, the length of the SLRs (LSLRi, i = 1–3) and the connecting 

waveguide (Li, i = 1–4) is slightly changed from 115 µm in [8] to 100 µm. 

 

 



 

3 

 

3 

which renders the device here more attractive for practical 

applications in optical communication systems.  

In Figs. 2(b)–(e), we investigate the impact of the device 

structural parameters including ti (i = 1–4) and length 

variations of the feedback loop (∆LFL, LFL = 2L + LSLR), 

respectively. In each figure, we changed only one structural 

parameter, keeping the others the same as those in Fig. 2(a-i). 

Figs. 2(b-i) and (b-ii) compares the power transmission spectra 

and corresponding IL and SR for various t1 or t3, respectively. 

The SR decreases with ti (i = 1, 3), while the IL first decreases 

with ti (i = 1, 3) and then remains almost unchanged. The 

spectral response and corresponding IL and SR for different t2 

are shown in Figs. 2(c-i) and (c-ii), respectively. The SR 

decreases with t2, while the IL shows an opposite trend, 

reflecting that both of the two parameters can be improved by 

enhancing the coupling strength between SLR1 and SLR2. As 

shown in Fig. 2(d), both IL and SR remain almost unchanged 

with varied t4. In Figs. 2(e-i) and (e-ii), we compare the 

corresponding results for various ΔLFL. As ΔLFL increases, the 

filter shape remains unchanged while the resonance redshifts, 

indicating that the resonance wavelengths can be tuned by 

introducing thermo-optic micro-heaters [14] or carrier-  

injection electrodes [15] along the feedback loop to tune the 

phase shift. 

IV. WAVELENGTH DE-INTERLEAVING  

Optical interleavers and de-interleavers are core elements 

for signal multiplexing and demultiplexing in WDM optical 

communication systems [16, 17]. In this section, we engineer 

the spectral response of the device in Fig. 1 to achieve 

wavelength de-interleaving function. Fig. 3(a) shows the 

power transmission and reflection spectra with input from Port 

1. The device structural parameters are LSLR = L= 100 µm, t1 = 

0.992, t2 = t3 = 0.95, and t4 = 1. The input signal is separated 

into two spectrally interleaved signals, with one group 

transmitting to Port 2 and the other reflecting back at Port 1. 

The IL, ER, and 3-dB bandwidth for the passband at Port 2 are 

0.36 dB, 12.7 dB, and 83.65 GHz, respectively. The IL, ER, 

and 3-dB bandwidth for the passband at Port 1 are 0.33 dB, 12 

dB, and 91.9 GHz, respectively.  

We also investigate the impact of varied ti (i = 1–4), ΔLFL, 

and ∆LSLRi (i = 1, 2) in Figs. 3(b)–(h), respectively. For 

simplification, we only show the spectral response at Port 2. In 

Fig. 3(b), as t1 increases, the ER of the passband decreases 

while the top flatness improves, reflecting the trade-off 

between them. In Figs. 3(c)–(e), the bandwidth of the 

passband increases with t2, t3, t4, respectively, while the ER 

shows an opposite trend. In Figs. 3(f)–(h), as ΔLFL or ∆LSLRi (i 

= 1, 2) increases, the filter shape remains unchanged while the 

resonance redshifts, indicating the feasibility of achieving 

tunable de-interleavers with this approach. Since the resonant 

cavity of the device is formed by a single self-coupled wire 

waveguide, random length fabrication errors in each part will 

not induce any asymmetry in the filter shape. This yields a 

higher fabrication tolerance as compared with the coupled 

SLRs in Refs. [7, 8], which is particularly attractive for optical 

interleavers that require a flat-top symmetric filter shape. Note 

that the de-interleaving function is designed for the telecom C 

band. According to our previous fabricated devices [17], the 

slight variation in ti (i = 1–4) arising from the dispersion of 

silicon would not significantly deteriorate the periodical 

response across this wavelength range.  

V. VARIED RESONANCE MODE SPLITTING 

Resonance mode splitting in IPRs induced by coherent 

mode interference can yield a range of highly useful spectral 

responses, including electromagnetically induced transparency 

(EIT), electromagnetically induced absorption (EIA), and  

Autler–Towns splitting, which have been used for applications 

such as optical buffering, signal multicasting, analog signal 

computing, and sensing [9, 18, 19]. In this section, we tailor 

the spectral response of the device in Fig. 1 to achieve varied 

resonance mode splitting with diverse spectral response. 

Figs. 4(a) and (b) shows the power transmission and 

reflection spectra for various t4, respectively. The input is from 

Port 1 and the structural parameters are LSLR = L= 100 µm, t1 = 

t3 = 0.825, and t2 = 0.99. As can be seen, by increasing the 

 

 

 

 

Fig. 3. (a) Power transmission and reflection spectra with input from Port 1 

when LSLR = L= 100 µm, t1 = 0.992, t2 = t3 = 0.95, and t4 = 1. T: Transmission 

spectrum at Port 2. R: reflection spectrum at Port 1. (b)–(h) Power 

transmission spectra for different ti (i = 1–4), ∆LFL, and ∆LSLRi (i = 1, 2), 

respectively. In (b)‒(h), the structural parameters are kept the same as those 

in (a) except for the varied parameters. 
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coupling strength of the directional coupler in SLR3 (i.e., 

reducing t4), the single resonance is gradually split into two 

resonances with an increased spectral range between them. 

This is a typical phenomenon for resonance mode splitting 

similar to those in Ref. [9]. The energy coupling between the 

light propagating in opposite directions can be changed by 

varying the reflectivity of SLR3, thus resulting in different 

mode splitting degrees. Figs. 4(c) and (d) show the power 

transmission spectrum and group delay response of a 

Butterworth filter and a Bessel filter formed by resonance 

mode splitting, respectively. The structural parameters are the 

same as those in Fig. 4(a) except for a different t4. As shown 

in Fig. 4(e), the Butterworth filter shape gradually transits to a 

Chebyshev Type I filter shape by further decreasing t1 or t3. In 

Fig. 4(f), we compare the spectral response for various t2. It 

can be seen that more significant resonance mode splitting can 

be obtained by enhancing the coupling strength between SLR1 

and SLR2 (i.e., reducing the t2). In particular, when t2 = 1 

(which corresponds to three cascaded SLRs), the resonance is 

still not split, this indicates that the device reported here shows 

a significantly enhanced resonance mode splitting as 

compared with the three cascaded SLRs in Ref. [5].  

Finally, this work could have applications to nonlinear 

devices [20-30] as well as to microwave photonic chips [31- 

63] and integrated quantum optics [64- ] where advanced 

optical filter shapes are extremely useful.  

 

VI. CONCLUSIONS 

We theoretically investigate integrated photonic filters 

based on coupled SLRs formed by a self-coupled wire 

waveguide. Three different filter functions have been realized, 

including Fano-like resonances, wavelength interleaving, and 

varied resonance mode splitting. The compact footprint, 

versatile spectral responses, and high fabrication tolerance 

make this approach highly promising for flexible spectral 

shaping in a diverse range of applications.  

Competing interests: The authors declare no competing 
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