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Abstract

On-field sensor-based soccer player tracking solutions are emerging and provide new insights into the dynamics of the player

during training or a match. Yet, not all player positions are equally privileged. Goalkeepers’ training and performance assess-

ment were for a long time ignored. Understanding what is ”the side of the post where most high dives were performed” provides

valuable input for both the trainer and the athlete to improve perfor- mance or avoid injuries. In the current study, we focus

on a practical methodology to extract insights from goalkeeper kinematics to inform such analytics. We demonstrate that

information from a single motion sensor can be successfully used for learning patterns in goalkeeper’s motion and provide an

explainable goalkeeper kine- matics assessment. We employed raw and quaternions data and we evaluated a series of machine

learning algorithms that discriminate dive types (i.e. binary classification) and dives from other types of specific motions (i.e.

multi-class classification) directly from the data. Our results demonstrate that XGBoost outperforms other approaches in terms

of performance when considering both raw and quaternions, essentially benefiting from both types of data. Additionally, each

prediction of the model is accompanied by an explanation of how each sensed motion component contributes to describing a

specific goalkeeper’s action captured by the model. The explainable predictions along with the efficient deployment of XGboost

were decisive in our applied study. We evaluated our methodology on a first batch of experiments using online available data

from 7 goalkeepers during 30 minutes-long training sessions.
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Abstract— On-field sensor-based soccer player tracking solutions
are emerging and provide new insights into the dynamics of the
player during training or a match. Yet, not all player positions are
equally privileged. Goalkeepers’ training and performance assess-
ment were for a long time ignored. Understanding what is ”the
side of the post where most high dives were performed” provides
valuable input for both the trainer and the athlete to improve perfor-
mance or avoid injuries. In the current study, we focus on a practical
methodology to extract insights from goalkeeper kinematics to
inform such analytics. We demonstrate that information from a
single motion sensor can be successfully used for learning patterns
in goalkeeper’s motion and provide an explainable goalkeeper kine-
matics assessment. We employed raw and quaternions data and we evaluated a series of machine learning algorithms
that discriminate dive types (i.e. binary classification) and dives from other types of specific motions (i.e. multi-class
classification) directly from the data. Our results demonstrate that XGBoost outperforms other approaches in terms of
performance when considering both raw and quaternions, essentially benefiting from both types of data. Additionally,
each prediction of the model is accompanied by an explanation of how each sensed motion component contributes to
describing a specific goalkeeper’s action captured by the model. The explainable predictions along with the efficient
deployment of XGboost were decisive in our applied study. We evaluated our methodology on a first batch of experiments
using online available data from 7 goalkeepers during 30 minutes-long training sessions.

Index Terms— Soccer Goalkeeper, Embedded Sensors, Machine Learning, Motion Classification.

I. INTRODUCTION

Arguably, the goalkeeper is the most important position on
the soccer field. With one brilliant save a goalkeeper can win
a game or become the ”persona non grata” with an ill-timed
dive. Agility, speed, and fitness are required for the nature
of the position [1]. For decades, goalkeepers were expected
to train alone or were just simply incorporated into routine
practice sessions, with very little consideration being paid to
the unique needs of the goalkeepers.

Goalkeepers are clearly different from players on the field
and must be trained accordingly [2]–[4]. The first step towards
effective training is accurate motion assessment. Such an
assessment has value when it provides a quantifiable measure
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Münchner Straße 30, 82031 Grünwald, Germany (e-mail: cris-
tian.prodaniuc@goalplay.de).

Thomas Grauschopf is with the Technische Hochschule
Ingolstadt, Esplanade 10, 85049, Ingolstadt, Germany (e-mail:
thomas.grauschopf@thi.de).

Cristian Axenie is with the Audi Konfuzius-Institut Ingolstadt Lab
at the Technische Hochschule Ingolstadt, Esplanade 10, 85049,
Ingolstadt, Germany. (e-mail: cristian.axenie@audi-konfuzius-institut-
ingolstadt.de).

of how each motion component contributes to explaining a
goalkeeper’s kinematics during his motion [5], [6], for instance
anticipate dive direction from the kinematics of a particular
body segments [7]. The extracted insights can be used in
designing injury avoiding strategies [6] or improve saving per-
formance [8]–[10] by building a goalkeeper’s biomechanical
profile [11].

A. Sensor-based kinematics assessment

Typically, a kinematic assessment is performed in a con-
trolled lab environment [6], [11]–[13], but there are also initial
deployments on the field [8], [14], [15]. Opposite to the
lab assessment, which involves a large amount of sensors
(e.g. cameras with body-worn tracking markers [16], large
number of body-worn inertial sensors [17]–[19]), controlled
experiments, and precise calibration, on-field deployments use
only a limited number of inertial sensors [18], [20]. Such
sensors capture the fast changes in the motion of the goal-
keeper in a realistic scenario, but are poised by inherent noise
[4], [21] and inter-player diving variability [22], [23]. The
sensor-based motion assessment captures information about
the athlete and his context using various motion-generated
signals [24], such as, muscles properties [25] and center of



2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2021

gravity [10] to describe performance [1], [23]. Such sensory
data is typically composed to evaluate the diving ability, as
derived from ground reaction force data, and, for instance,
anthropometry [13]. Finally, in a study comparatively examin-
ing fast hand movements and orientations, [26] introduced an
informative evaluation of various machine learning (i.e RBF
SVM, 2D - CNN, and LSTM) when using raw data and Euler
angles. Despite the good evaluation, the study was performed
in constrained conditions using self-collected sensory data
samples, highly biased and incapable to capture intra-player
variability.

B. Data processing

Most sensor-based soccer motion recognition applications
developed so far are described as series of sequential compu-
tations, known as activity recognition chains. These chains
are responsible for extracting information from sensor sig-
nals, such as peak detection, segmentation, and use it for
classification [27]–[29]. Multiple such methods to segment
sensor signals, extract features and to select, rank, and classify
features have been studied [28], [30]–[32], but each one was
limited to a certain aspect of motion.

Despite the broad range of sensing equipment and data
processing techniques [24] little focus has been given to
goalkeepers’ kinematics extraction [33]. Most of the existing
solutions target tracking and on-field stats, including kicks,
sprints, travelled distance, and max speed [20], [34]. Such on-
field approaches use a limited number of sensors and either
focus on modeling the impact and kick detection [35] or
advanced algorithms for classification of sequential move-
ments in training [36]. Recently, the community has turned
its attention to the so-called end-to-end pipelines for motion
recognition [37]–[40]. Such methods, use advanced machine
learning algorithms to extract insights from wearable sensors
data in order to learn body kinematics [38], [39] or kinematics
correlation to other bio-signals [41].

C. Motivation of the study

As the state-of-the-art shows, soccer goalkeepers are a
category typically neglected in kinematics assessment studies.
This is due to the fact that there is always a trade-off to be
made between: 1) the accuracy of lab assessment [6], [12]
and the unreliability and variability of the on-field assessment
[14], [15]; 2) the number and type of sensors used for the
assessment [16], [18]; 3) the measured kinematic quantities
[1], [10], [25], [42]; 4) the type of data features used in the
analysis [28], [29] and their capability to capture a complete
motion profile [11], [36]; 5) the complexity and parametriza-
tion of the data processing algorithms [39], [40] versus their
explainability; and, finally, 6) the amount of resources invested
in goalkeeper’s training.

At the top of the solution hierarchy, machine learning meth-
ods exploit directly the probabilistic structure and peculiarities
of raw data [14], [38], [40], [42], thus, alleviating the need to
model data and, eventually, hand-craft heuristics which will
only be limited in applicability [13], [25]. Our motivation is

to use machine learning to understand goalkeeper’s kinemat-
ics in order to materialize complex analytics. For instance,
understanding what is ”the side of the post where most dives
were performed” provide valuable input both the trainer and
the athlete to improve performance or avoid injuries. Such a
dive type histogram analysis describes the ”semantics” of the
physical burden of the joints and muscles of the diving sides
of the goalkeeper [6]. For instance, goalkeepers performing a
rolling motion at dive initiation reduce their hip loading. Such
biomechanics insights can contribute to the establishment of
injury criteria and avoidance measures [43].

D. Objectives of the study

Our study addresses the trade-offs and constraints that the
problem of extracting accurate goalkeeper kinematics poses. It
demonstrates the advantages that data-driven machine learning
approaches bring, even from a small number of sensors.
The experimental data was collected from sensory modules
installed in the goalkeeper gloves under two forms: raw data
(i.e. 3D acceleration, angular velocity, magnetic field intensity)
and quaternions. The objective of our study is threefold:

• to demonstrate that a single motion sensor data is suffi-
cient to accurately classify goalkeeper motions;

• to demonstrate that machine learning algorithms have the
potential to explain how each sensed motion component
contributes to describing a specific goalkeeper action;

• to propose an end-to-end approach for kinematics as-
sessment with high potential for real-world deployment,
offering:

– cheap and unobtrusive, limited sensing equipment,
– accurate and explainable decision making based

solely on limited sensory data,
– the potential for providing personalized feedback

This system is meant and practically deployed to perform an
assessment of the training session which is typically designed
by a trainer. Note that, the trainer prepares the exercise
plan and the system provides a quantitative and qualitative
assessment of the training outcome.

II. MATERIALS AND METHODS

In the current section, we introduce the experimental setup,
data acquisition, and the data processing methods we em-
ployed in our study.

A. Hardware

In all our experiments, we used data from 7 goalkeepers
using a sensing device embedded in a pair of Goalplay1

goalkeeper gloves (Figure 1). The data acquisition system
was a MicroHub development kit2. The modular platform for
wearable applications included a 9-axis Inertial Measurement
Unit (IMU) (3D accelerometer, 3D gyroscope, and a 3D
magnetometer), a communication module (i.e. Bluetooth Low
Energy (BLE)), and a memory storage (i.e. a 2GB SD card).

1https://www.goalplay.com/en
2http://www.interactive-wear.com/r-and-d
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The embedded accelerometer outputs acceleration in units of
gravity g within ±2 g and ±16 g. The gyroscope outputs
angular velocity in degrees per second (dps) within ±250 dps
and ±2000 dps. The magnetometer outputs magnetic field
intensity values (uH) proportional with the absolute angle
values (deg) - offset to magnetic north. All the sensors in
the glove module were parametrized for appropriate sensitivity
for the task, i.e. ±2 g acceleration range and ±250 dps
gyroscope range. To avoid communication problems during

Fig. 1. Sensor equipped goalkeeper gloves.

the lengthy exercise sessions, data from the embedded sensors
was acquired with a 16-bit resolution at a frequency of 100
Hz and stored on the embedded SD card with a capacity of
2 GB. In order to estimate angles from raw accelerometer
we elaborated the mathematics of the reference frame rota-
tions and used geometrical reflections to extract the nonlinear
relations depending on the rotated gravitational acceleration
(i.e. arctan of ratio between X,Y and Z-axis components
of acceleration). The gyroscope on-board the gloves module
measured angular velocities, so we numerically integrated the
raw data using a simple sum approximation (explicit Euler
method with step width dt). To obtain the magnetometer
readings mapping from raw magnetic field intensity to angles,
we described the rotations between the object frame (the
gloves) and the reference frame to estimate the rotated earth
magnetic field with respect to the gloves reference frame and
geometrical reflections (i.e. arctan of ratio between X and
Y -axis components of magnetic field.)

B. Data collection

Aside the raw sensory data from the accelerometer (i.e. ac-
celeration on x, y, z axes and longitudinal acceleration), gyro-
scope (i.e. angular velocity on x, y, z axes), and magnetometer
(i.e. magnetic field intensity on x, y, z axes), the embedded
sensor provides also quaternions. The choice to represent such
a compound motion through raw and quaternions data is meant
capture the typical ”signatures” of the broad range of motions
and explosive changes in goalkeeper’s actions, typically visible
in raw data patterns. Quaternions, compared to Euler angles
(i.e. roll, pitch, and yaw) are simpler to compose and avoid
the gimbal lock (i.e. problems with measuring orientation
when the pitch angle approaches +/- 90 degrees). Moreover,

compared to rotation matrices, quaternions offer a more com-
pact and numerically stable representation. But, as we know
quaternions have limitations. Compared to affine transforma-
tion matrices, quaternions only contain a rotation, and no
translation and scaling. This makes it more difficult to check
whether two quaternions represent the same rotation by simply
checking their components for equality. This is where the
raw data can be used to disambiguate the motion components
involved in a certain dive. As one of the goals of the study is
to provide an end-to-end approach for kinematics assessment,
we evaluated the use of raw data only, quaternions only, and
the combination of raw and quaternions data, respectively.
The reason is to understand what are the most informative
representation cues for precise and explainable goalkeeper’s
motion profile (see Results section).

The goalkeepers data was temporally segmented by experts
in order to identify (over pre-defined time windows) the
possible exercises in the stream of motion data from the
sensory module. In order to perform the segmentation the
video recording and glove sensory data was aligned. Sub-
sequently, temporal segments (i.e. templates) were extracted
offline describing a certain exercise. This template was then
compared (with a parametrized variance) with the incoming
stream.

System calibration was performed against the ground truth
camera data. Unit calibration of the sensors inside the glove
module was performed by comparing the data against the
recorded videos for each of the goalkeepers for predefined
initial positions or events (i.e. hand clapping, ball bouncing -
given the data segmentation we performed). Value calibration
was performed by comparing the raw output of the sensors
with the analytical formulation of derived quantities (see
Hardware). We additionally performed a leave-one-out cross-
validation and demonstrated that the system doesn’t require to
be calibrated to each goalkeeper separately (see Table III and
Figure 5).

The datasets contain recorded data from 7 male, right-
handed, 10 to 17 years old, goalkeeper trainees with 1 to 7
years of experience, and were 1.5 to 2.01 meters tall. Before
each 30 minute-long session, each goalkeeper warmed up,
stretched, and then started the exercise execution. The datasets
are publicly available [44] on the Zenodo platform3.

C. Data annotation
As ground truth for the experiments, synchronized video

recordings of the training sessions were captured. The
Goalplay team annotated every repetition of the training exer-
cises (i.e. dives, catches, throws) in both video and matching
embedded glove sensor data, as shown Figure 2. The segmen-
tation process was applied on this labelled dataset. Addition-
ally, besides the exercises, other motions of the goalkeepers
performed during the training, such as back passes, sprints,
hand claps, and ball bouncing, were annotated. This was done
to ensure a proper (i.e. expert) segmentation of the motion
data. In order to synchronize the data from the glove sensor
and the video capture, the goalkeepers clapped three times in

3https://zenodo.org/record/4629325
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the beginning, after each set of exercises, and at the end of the
training session. The annotations, shown in Table I, were done
by multiple Goalplay experts and were reviewed by one of the
authors to ensure consistency. In total, the datasets contained,
for each of the 7 goalkeepers, around 2100 labeled motion
instances, out of which 1100 were actual training exercises
and 1000 instances of other motion, such as passes and hand
claps, respectively. The problem we consider in this study
faces a clear data imbalance. The valid exercises, extracted
using the segmentation, account for 35% of the overall data.
We tackled this problem in our experiments, as described in
the Experiments section.

D. End-to-end Machine Learning

Machine learning algorithms are useful tools for tackling the
automatic extraction of features from large sets of data and,
more precisely, the extraction of unique features characterising
different classes of similar features, typically found in motion
kinematics [42], [45], [46] and motion classification [14], [47].
When considering motion understanding and kinematics ex-
traction from limited (inertial) sensing, only a few approaches
stand out [37]–[39], and only a very small number apply to
soccer goalkeeping [14], [42].

Being guided by practical reasons and given the nature of
the problem and the data, the approach we proposed doesn’t
promote the use of Deep Learning. Such approaches are based
on affine projections of input signals with outlier removals
in their activation layers (i.e. basically behaving as regions
clippers). In principle, the separation function gets adapted to
a larger region in input space. Based on this observation, such
approaches do not really find a solution but rather compare
the current input with previous observations, so that the actual
recognition job was done by the GoalPlay team segmenting the
data. Our contribution revolves around the idea of combining
raw and quaternions data to augment the motion components
describing the multiple ”class templates”. Given the supervised
nature of the problem, traditional Machine Learning models
were chosen to Deep Learning. In particular, considering a
Long-Short-Term-Memory (LSTM) would have been advan-
tageous when the dataset would not have the expert labelling
and temporal segmentation available. Basically, by learning
sequences in the raw glove sensors timeseries, the LSTM could
capture and better preserve the ”long-range dependencies” in
the multiple raw sensory covariates [48]. Another possible
approach, the 1D Convolutional Neural Networks (1D CNN)
learns to extract features from the sequences of sensory
observations and maps these features to different goalkeeper
types [49]. The benefit of using CNNs for motion classification
from raw data would have been prominent when no domain
expertise to manually engineer input features was available.

In our study, we developed an end-to-end approach to
extract goalkeeper kinematics from a single embedded sensors
module (i.e MicroHub, see Hardware section) based on a Tree
Ensemble Method, namely the Extreme Gradient Boosting
(XGBoost) [50]. XGBoost is a highly effective and widely
used tree boosting method. In XGBoost the multiple learners,
the trees, are built sequentially such that each subsequent tree

aims to reduce the errors of the previous tree during training.
Each tree in the ensemble learns from its predecessors and
updates the prediction mismatch. Hence, the tree that grows
next in the sequence will learn from an updated version of the
errors. Each of these weak learners (i.e. high bias and variance)
contributes to the prediction, enabling XGBoost to produce
a strong learner (i.e. low bias and variance) by effectively
combining these weak learners.

Our choice of the XGBoost ensemble model is motivated
by the following aspects:

• invariance to scaling of inputs, so features normalization
is secondary, allowing for native use of raw (inertial) data;

• learning higher-order interactions between raw data (or
features), without expensive and bias-prone feature engi-
neering;

• employing regression trees, which perform well for both
classification and regression at scale;

• using an explainable learning structure due to its tree
structure;

• deployable for inference in the embedded glove system
[51]

In our implementation, in order to parametrize the XGBoost
ensemble, we ran a grid search for minimizing the Receiver
Operating Characteristic / Area Under Curve (ROC / AUC)
together with a 10-fold stratified cross-validation on 25% test
and 75% training dataset split. In our validation approach, we
used stratified k-fold cross-validation to balance the dataset
by ensuring that each class represents approximately in equal
proportion in all the sample and, hence, reduce the variance
of the estimates. Additionally, we use Leave-One-Out Cross-
Validation (LOOCV) to demonstrate that the system doesn’t
require to be calibrated to each goalkeeper separately (see
Results). The best performing XGBoost ensemble configu-
ration, used in all the experiments, employed: 50 trees, 0.5
decreasing learning rate to avoid overfitting, 3 as maximum
depth of a tree, a logistic function optimization objective, and
L2 regularization term on weights to make the model more
conservative. For the performance evaluation, we considered
the traditional metrics: Accuracy, Precision, Recall, and F1
score, respectively. Additionally, in order to interpret the
impact of having a certain value for a given raw data feature
in comparison to the prediction the model would make if that
feature took some baseline value, we used SHAP (SHapley
Additive exPlanations) [52]. More precisely, we employed a
variant of SHAP, TreeSHAP, for tree-based machine learning
models [53]. Basically, the TreeSHAP explainer uses the con-
ditional expectation to capture the influence on the prediction
function of a feature also when the feature is correlated with
another feature that has an influence on the prediction.

E. Experiments
In order to explore the capabilities of our end-to-end learn-

ing system, we employed an online dataset containing a series
of experiments that exploit the limited sensing capabilities of
a single motion sensor to classify and explain a goalkeeper’s
motion. In our experiments, we collected data from 7 young
goalkeepers during their training sessions with a professional
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Exercise Labels Repetitions

Dive diveLowRight, diveHighRight, shortDiveRight, diveLowLeft, diveHighLeft, shortDiveLeft 5
Catch catchHand, catchBody, catchGround 10

Dive Stand diveStandLowRight, diveStandHighRight, diveStandLowLeft, diveStandHighLeft 5
Throw throwHigh, throwLow 10

Jump Catch jumpCatchStand, jumpCatchRun 8
Other motions pass, shortSprint, longSprint, jogging, joggingJumping, kickBody, kickGround, bounce, clap, ballPickUp, armRotation 65% of session

TABLE I
GOALKEEPER EXERCISES AND LABELS SUMMARY. EACH LABEL DESCRIBES A CERTAIN TIME WINDOW OF INERTIAL DATA AND ITS MATCHING

NUMBER OF FRAMES ACQUIRED WITH THE CAMERA THAT DESCRIBE A CERTAIN MOTION. A SAMPLE OF EXERCISES IS DEPICTED IN FIGURE 3.

Fig. 2. Sample goalkeeper motion and available sensory data.

Fig. 3. Sample exercises: dives and catches.

goalkeeper trainer from Goalplay. During the average 33 min-
utes session, the 7 goalkeepers performed different exercises
including variations of dives, throws, and catches, as shown
in Table I. Each type of exercise assessment was relative to
the post. For instance, there were 4 types of dives, 2 heights
(i.e. low and high) for each side of the post. The trainer
adjusted the angle and intensity of the balls sent to the post.
After each shoot, goalkeepers passed the ball back to the
trainer and signaled ready for the next repetition (i.e. for data
synchronization purposes). The data acquired during the series
of exercises described in Table I were batched in a per session,
per goalkeeper dataset and was subsequently fed to the end-
to-end learning system. The analysis code to reproduce the
figures in the paper is available on GITLAB4. We started our
analysis by exploring a simple task, discriminating goalkeeper
motion using a binary classification model (i.e. dive or no
dive), independent of the side or the level (i.e low left,
high right). In the second part, we evaluated the model on
a multi-class setup, where the system received data with
labels for all types of motion the goalkeeper performed, as
shown in Table I. Important to mention is the fact that in
such a scenario the distribution of data examples across the
classes is skewed. Basically, a typical exercise session (see
Table I), contains predominantly less dives as other exercises
or motion types. This describes a typical class imbalance
problem which poses a challenge for predictive modelling. In
our approach, we designed the system without the assumption
of an equal number of examples for each class (i.e. we have
26% dives in an exercise session). This results in the model
having a better predictive performance, specifically for the
minority class, without being more sensitive to classification
errors for the minority class (i.e. dives) than the majority
class (i.e. other motions). To cope with the imbalance, we
used Adaptive synthetic sampling approach for imbalanced
learning (ADASYN) [54], an extension of SMOTE, for creat-
ing more examples in the vicinity of the boundary between
the two classes than in the interior of the minority class,
for a 35% ratio minority-majority after resampling. In both
binary and multi-class setups, we fed the system subsequently
with: raw data only (R), quaternions data only (Q), and both
raw and quaternions data (R&Q), respectively, as shown in
Table II and Table III. In order to evaluate the performance

4https://gitlab.com/akii-microlab/goalkeeper-motion-understanding-
framework/
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of the system, we used typical classification metrics, namely
Accuracy, Precision, Recall, and F1-Score, respectively. The
experiments and the performance evaluation had the purpose
to demonstrate that a single motion sensor data is sufficient
to accurately classify goalkeeper motions. Additionally, in
order to demonstrate that machine learning algorithms have
the potential to explain how each sensed motion component
contributes to describing a specific goalkeeper action, we
evaluated the feature importance in each data and classification
configuration. Finally, all experiments were complemented
by a Shapley additive explanations analysis. This analysis
provided an overview on how each feature contributes to the
final prediction, along with samples of individual predictions
in order to emphasize the explainable decision making of our
system based solely on raw data.

III. RESULTS

In the current section, we introduce our results and touch
several relevant points for the assessment of the goalkeeper
kinematics of our end-to-end learning system.

Feature importance
In order to tune our model, we looked at the top 3 most

important features for each of the experimental scenarios. The
results of our analysis are given in Table 3. The F score in the
feature importance computation of our system represents the
fractional contribution of each feature to the model based on
the total gain of this feature’s splits in the model’s regression
trees (i.e. in our case we have 50 tree estimators with up to a
depth of 3 and around 720 splits per level). Basically the role
of the splits is to minimize the squared error greedily in order
to fit to the gradient of the loss function. Finally, a higher
score depicts a more important predictive feature, obtained by
calculating the average gain across all splits where a feature
was used.

Performance evaluation
The purpose of the performance evaluation was to identify

the best training data configuration for which the end-to-end
learning platform yields best performance in the two tasks (i.e.
binary (dive) discrimination and multi-class classification).

In order to better motivate the choice of the ensemble model,
we compared the performance of our system against four
typically used machine learning models, namely: Artificial
Neural Networks (ANN), Support Vector Machines (SVM),
and Quadratic Discriminant Analysis (QDA), respectively.
All the models were trained for both binary and multi-class
setups on all the possible data types (i.e. raw data only (R),
quaternions data only (Q), and the combination of raw and
quaternions data (R&Q)) and evaluated using k-Fold (k=10)
stratified cross validation and LOOCV. The basic parametriza-
tion of the comparative models is as following:

• ANN: 2 layers, 100 neurons each, optimizing the log-
loss function using stochastic gradient descent (ADAM),
batch size of 200, 0.0001 L2 penalty regularization;

• SVM: 1.0 squared L2 penalty regularization, Radial Basis
Function (RBF) kernel with sub-unit features coefficient

γ, returns the one-vs-rest decision function;5

• QDA: fitting class conditional densities (i.e. Gaussian) to
the data and using Bayes’ rule with per-class covariance
estimates regularization.

Our approach detected over 93% of most exercise types and fil-
tered out most of the irrelevant motions. Only 140 instances of
irrelevant motion were wrongly detected as relevant exercises,
which is a small fraction (14%) of the total amount of instances
of irrelevant motion we annotated (1000) and an even smaller
fraction of every irrelevant motion goalkeepers performed
during the training session, which we did not annotate (e.g.,
walking, running, picking up balls from the ground, receiving
balls passed at them without any specific technique).

As one can see in Table III, the system yields best perfor-
mance when using the combination of raw and quaternions
data. The second best performance is obtained when the
system uses the raw data alone, whereas the scenario in which
the system uses only the quaternions data yields an average
performance. On one side, this happens due to the fact that
the raw data captures the low-level kinematic parameters of
goalkeeper’s motion (i.e. accelerations, lateral accelerations,
angular velocities). On the other side, the quaternions data
is the transformation result of the low-level data into 3D
motion bearing higher level semantics. This provides a gain
in the global understanding of the motion, but doesn’t capture
the fast changes in kinematic parameters. Yet, the semantics
of the quaternions data in combination with the raw data
enable the system to accurately discriminate the dives and to
correctly segment the other types of motion (i.e. multi-class
classification task).

Important to note that in our study, accuracy is considered
in the LOOCV as a performance metric facing imbalanced
classification. In our performance evaluation we used updated
metrics for imbalanced classification. Here, precision quan-
tifies the number of positive class predictions that actually
belong to the positive class. Recall quantifies the number of
positive class predictions made out of all positive examples
in the dataset. The Macro F1-Score provides a single score
that balances both precision and recall in one number. In
order to support the evaluation of the system for the two
tasks, we present the confusion matrices for all the data
configurations (i.e. raw data only (R), quaternions data only
(Q), and the combination of raw and quaternions (R&Q)) for
dive discrimination in Table III. This provides more insight
in the performance of our system on the set of test data for
which the true values are known (see Figure 4).

We complement the evaluation of the different approaches
(i.e. XGBoost, MILP, SVM, and QDA) with a significance
testing following the next procedure:

• Read relevant data from experiment results for each of
the four approaches.

• Compute relevant traffic aggregation metrics (i.e. K-fold
Cross-Validation: Precision, Recall, Macro F1-Score; and

5The key practical reason to chose this kernel type is that the penalty for
the RBF network depends on the centers of the RBF network (and hence on
the sample of data used) whereas for the RBF kernel, the induced feature
space is the same regardless of the sample of data, so the penalty is a penalty
on the function of the model, rather than on its parameterisation.
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Binary discrimination Multi-class classification

Rank 1 Rank 2 Rank 3 Rank 1 Rank 2 Rank 3

Data

R ax my lay lay laz my
Q q2 q4 q3 q2 q4 q3

R&Q q4 q2 mz laz ay lax

TABLE II
FEATURE IMPORTANCE RANKING IN THE SYSTEM FOR EACH OF THE DATA TYPES FED TO THE SYSTEM: RAW DATA ONLY (R), QUATERNIONS DATA

ONLY (Q), AND THE COMBINATION OF RAW AND QUATERNIONS DATA COMBINED (R&Q).

Binary discrimination Multi-class classification

Precision Recall Macro F1-Score Accuracy Precision Recall Macro F1-Score Accuracy

Model/Data

XGboost

R 0.87 0.85 0.88 0.91 0.90 0.91 0.90 0.94
Q 0.74 0.70 0.77 0.93 0.83 0.86 0.84 0.90

R&Q 0.97 0.94 0.94 0.97 0.93 0.94 0.95 0.97

ANN

R 0.85 0.84 0.86 0.92 0.79 0.85 0.85 0.90
Q 0.69 0.54 0.67 0.94 0.74 0.83 0.78 0.87

R&Q 0.88 0.76 0.87 0.95 0.84 0.87 0.87 0.92

SVM

R 0.81 0.67 0.78 0.91 0.74 0.84 0.79 0.85
Q 0.69 0.43 0.59 0.93 0.69 0.83 0.78 0.86

R&Q 0.86 0.84 0.89 0.92 0.78 0.84 0.80 0.94

QDA

R 0.75 0.56 0.69 0.89 0.83 0.80 0.87 0.88
Q 0.53 0.27 0.39 0.78 0.71 0.82 0.79 0.85

R&Q 0.80 0.70 0.80 0.88 0.86 0.79 0.88 0.90

TABLE III
PERFORMANCE EVALUATION OF THE SYSTEM (K-FOLD CROSS VALIDATION WITH K = 10 (METRICS: PRECISION, RECALL, F1-SCORE) AND

LEAVE-ONE-OUT CROSS-VALIDATION (LOOCV) FOR ACCURACY METRIC) FOR MULTIPLE MODELS AND EACH OF THE DATA TYPES FED TO THE

SYSTEM: RAW DATA ONLY (R), QUATERNIONS DATA ONLY (Q), AND COMBINATION OF RAW AND QUATERNIONS DATA (R&Q). BEST PERFORMANCE

IN 3/4 METRICS MARKED IN BOLD. (NOTE: FOR MULTI-CLASS CLASSIFIER WE USED THE WEIGHTED AVERAGE OF EACH METRIC ACROSS ALL 27
CLASSES, SEE TABLE I).

Fig. 4. Confusion matrices for the (binary) dive discrimination for each of the data types fed to the system: raw data only (R), quaternions data only
(Q), and the combination of raw and quaternions data (R&Q).
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LOOCV Accuracy).
• Rank experiments depending on performance.
• Perform statistical tests (i.e. a combination of omnibus

ANOVA and posthoc pairwise T-test with a significance
p = 0.05) and adjust ranking depending on significance.

• Evaluate best algorithms depending on ranking for sub-
sets of relevant metrics (i.e. the metrics with significant
difference).

The results of the significance analysis are depicted in Fig-
ure 5, where baseline is just a simple Gaussian Naive Bayes
classifier.

Explainability Analysis
Interpretability is the degree to which a human can under-

stand the cause of a machine learning decision. Moreover, an
explanation relates the feature values of an instance to the
model prediction in a humanly understandable way. In this
section, we complement our performance evaluation of our
end-to-end system with an analysis of the actual explanations
of the predictions. SHAP uses the conditional expectation to
estimate effects of the features in the final prediction, capturing
also cases when a feature is correlated with another feature that
actually has a stronger influence on the prediction.

For the explainability analysis, due to space constraints,
we only look at the dive (binary) discrimination scenario in
which our system was trained on the combination of raw and
quaternions data. In all the other cases, the analysis follows
the same principle and the supporting code is available for the
interested reader on GITLAB6. The first aspect of the analysis
looks at the combination of feature importance with feature
effects on the prediction. Each point on the summary plot in
Figure 6 is the impact of a feature and an instance (i.e. the
feature itself). The position on the y-axis is determined by the
feature and on the x-axis by the impact on the model prediction
(i.e. Shapley value). The color in the left panel represents
the value of the feature from low to high. Overlapping points
provide a sense of the distribution of the Shapley values per
feature. The features are ordered according to their importance,
as shown in the right panel. Figure 6 provides insightful
information about goalkeeper’s kinematics. For instance, from
the left panel, one can see that low magnetic field intensity
on the z axis (i.e. mz is proportional with the absolute angle
w.r.t z axis) has a strong contribution in the left/right dive
discrimination. Moreover, high values of the first quaternion
component (q1) and magnetic field on y axis (my) determine
a low discrimination capability. From the right panel one can
see that the combination of quaternion components (q1, q2, q3,
q4) have a visible cumulative impact by changing the predicted
dive type probability on average by 18 percentage points (i.e.
q1 + q2 + q3 + q4 = 0.035 + 0.025 + 0.06 + 0.06).

Finally, we analyse how the model arrives at its decision
by using a SHAP force plot. Basically, we decomposed a
prediction into the sum of effects of each feature value. An
example is depicted in Figure 7. Here we consider a random
sample in the testing dataset of a certain goalkeeper and
show how the model computed the predicted probability of

6https://gitlab.com/akii-microlab/goalkeeper-motion-understanding-
framework

a dive. Important to note that the depicted effects describe the
behavior of the model and are not necessarily causal in the
real world.

IV. DISCUSSION

Our study investigates the extraction of accurate and ex-
plainable goalkeeper kinematics from a single motion sensor.
Throughout our experiments we demonstrate the advantages
of data-driven machine learning approaches in exploiting
raw data for end-to-end motion understanding. We carry our
discussion in the framework set by four recent and relevant
studies. We focus on: the type of machine learning algorithm
used, the sensory setup (e.g. type, number, and placement
of sensors), and the explainability of the predictions, respec-
tively. The choice of a machine learning algorithm is not
always straightforward, requiring a good understanding of
the domain the data comes from, the data peculiarities, and
the actual task to solve. The flexibility of powerful learning
algorithms can be sometimes hindered by not selecting the
most informative sensory data for the task. In a first relevant
study, reconstructing the full human body pose in real-time
from 6 body-worn inertial sensors, [37] used recurrent deep
neural networks to learn temporal pose priors, hence avoiding
nonlinear optimization. The model proved to be robust for
normal displacements and orientation, but failed in cases
where the body is moving parallel to the floor (i.e. diving) as it
did not fully exploit the acceleration information. Moreover,
the system was sensitive to sensor number, placement, and
noise characteristics. Our work used a single inertial sensor for
a semantically simple task, goalkeeper dive discrimination and
motion type segmentation (see Table I), which didn’t require
full-body pose, rather the identification of ”signatures” of
different types of motions as depicted in Figure 2. To achieve
this, we used the XGBoost ensemble method which, due to
its additive tree learning strategy, offers custom optimization
objectives of weak learners, hence avoiding expensive non-
linear optimization. Our system is not sensitive to fast and
noisy motions providing precise dive discrimination or motion
segmentation by combining the raw and quaternions data, as
shown in Table III.

Goalkeeper kinematics carry special features in terms of
the timing of motions, explosive reactions, whole body mo-
tion, and a clear imbalance in the type of motions (i.e. the
percentage of dives w.r.t. ball catches, ball throws, passes,
and sprinting, respectively - see Figure 4. Using a series of
online local dynamic models derived from the CMU mo-
tion database7 and trained on various motions (e.g. swings,
punches), the work of [38] reconstructed human motion from 6
inertial sensors in a maximum a posteriori framework. Despite
its flexibility in exploiting the acceleration information, the
system was bound to lab experiments and only limited to
motions that assume a vertical trunk position of the body
(e.g. golf swing, boxing punch). The system needed additional
calibration (performed with additional ultrasonic sensors) and
need an offline optimization step (i.e. Levenberg-Marquadt) for

7http://mocap.cs.cmu.edu/
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Fig. 5. Statistical ranking of the different approaches we evaluated.

Fig. 6. SHAP explanation for the (binary) dive discrimination for the
combination of raw and quaternions data (R&Q).

a marginal improvement over baseline (i.e. an efficient Online
PCA), despite the large number of sensors.

In a study that combined camera data with inertial sensing
in a Hierarchical Multivariate Hidden Markov Model, the
system of [39] learned the structure of motion sequences
from a single inertial sensor. The inertial sensor placement
(i.e. ankle) only allowed for lower-body segmentation, which
was then propagated through the Markov model to close
the whole kinematics chain. Despite the well chosen model

to extract full body kinematics, the system used extensive
feature engineering. Avoiding the full body kinematic chain
and feature engineering, our work considered learning the
sensory signatures of dives and other types of specific goal-
keeper motions from informative raw data. The repertoire
of motions in the [39] study was limited and conservative,
without lateral accelerations and explosive jumps, making the
system usable only in limited cases requiring reconstruction of
simple motions. This limitation was imposed by the choice of
the complex Hierarchical Multivariate Hidden Markov Model.
We alleviate these constraints by using XGBoost that allowed
the system to learn higher-order interactions between raw data,
without expensive and bias-prone feature engineering, even
from a single sensor.

Finally, in a goalkeeper dedicated solution, [14] developed
a single sensor motion classification system. Similar to our
work, the study only used a sensor mounted in the goalkeeper
gloves. Opting for extensive data engineering, the authors
developed complex ”hand-crafted” features from raw data (i.e.
various statistics and heuristics), subsequently ranked them,
and fed them to a series of traditional machine learning algo-
rithms (e.g. Support Vector Machines, Neural Networks). The
study was mainly descriptive, evaluating how each algorithm
performed on the pre-processed data, offering limited insights
in the actual kinematics. The study didn’t explain how the
predictions map to actual insights in goalkeeper biomechanics,
giving only a future outlook on the potential applicability
of the system. In our study, we employed regression trees
(i.e. XGBoost), which perform well for both classification and
regression at scale and use an explainable learning approach.
Such an approach can explain higher-order interactions be-
tween raw data streams, as shown in Figure 6. Additionally,
each system prediction could account for the contribution
each of the sensory data has in the final output, as shown in
Figure 7. Such insights can be subsequently used to materialize
complex analytics, for instance ”the side of the post where
most dives were performed” given the values of each sensory
quantity (i.g. high contribution of mz, q2, my (i.e. y and
z magnetometer values and second quaternion component)
and low contribution of q4, laz and mx (i.e. forth quaternion
component, z axis lateral acceleration and x axis magnetometer
reading) characterising a dive - depicted in Figure 7).

Finally, the proposed end-to-end learning system is appli-
cable to different types and number of sensors. Regardless
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Fig. 7. Explanation of the model decision making for the (binary) dive classification for the combination of raw and quaternions data (R&Q).

of their placement, it can learn the interactions between
available sensory quantities and the motion signatures they
capture. This allows our system to exploit the motion regu-
larities as perceived from all the different motion sensors (i.e.
accelerometer, gyroscope, magnetometer) and synergistically
combine them without bias-prone feature engineering. From
the technical point of view of the implementation, the choice
of XGBoost as machine learning algorithm is motivated by
the need to deploy the system as standalone data acquisition
and processing system. The machine learning algorithm can
be used for inference in resource-limited devices such as the
Goalplay embedded glove system using dedicated tools [51].

V. CONCLUSIONS

Despite the availability of both sensing hardware and pro-
cessing algorithms, sport applications are still lacking acces-
sible solutions which can operate on the field. Either confined
to controlled lab environments or expensive on-field sensing
infrastructures, the kinematic assessment of the athletes is
still an open problem. In our study, we tackle this problem
and introduce a methodology to process information from a
single motion sensor module to successfully extract accurate
and explainable motion understanding in the case of soccer
goalkeepers. In order to exploit the richness and unique param-
eters of soccer goalkeepers motion, we employed a machine
learning algorithm which was able to discriminate dives or
other types of specific motions directly from raw sensory data.
We further evaluate multiple algorithms through statistical
significance tests to be able to find an optimal configuration.
Using real-world data from 7 goalkeepers, we trained our
end-to-end machine learning system to classify motion and at
the same time explain how each sensed motion component
contributes to describing a specific goalkeeper action. The
potential for real-world deployment is high. The system offers
a cheap and unobtrusive system for accurate and explainable
decision making based solely on raw data with the potential
for providing personalized assessment. This system is meant
to perform an assessment of the training session which is
typically designed by a trainer. Basically, the trainer makes
the exercise plan and the system provides a quantitative and
qualitative assessment of the training outcome.
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Dieën, “Kinematic and kinetic analysis of the goalkeeper’s diving save
in football,” Journal of sports sciences, vol. 37, no. 3, pp. 313–321,
2019.

[43] K.-U. Schmitt, M. Nusser, and P. Boesiger, “Hip injuries in professional
and amateur soccer goalkeepers,” Sportverletzung Sportschaden: Or-
gan der Gesellschaft fur Orthopadisch-Traumatologische Sportmedizin,
vol. 22, no. 3, pp. 159–163, 2008.

[44] C. Prodaniuc, “Goalplay wearable data,” Mar. 2021. [Online]. Available:
https://doi.org/10.5281/zenodo.4629325

[45] A. Arac, “Machine learning for 3d kinematic analysis of movements
in neurorehabilitation,” Current Neurology and Neuroscience Reports,
vol. 20, no. 8, pp. 1–6, 2020.

[46] R. Villegas, J. Yang, D. Ceylan, and H. Lee, “Neural kinematic networks
for unsupervised motion retargetting,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
8639–8648.

[47] J. Figueiredo, S. P. Carvalho, D. Gonçalve, J. C. Moreno, and C. P.
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