
P
os
te
d
on

30
A
p
r
20
20

—
C
C
-B

Y
-N

C
-S
A

4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
44
9
81
90
.v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Admission Control for 5G Network Slicing based on (Deep)

Reinforcement Learning

William Fernando Villota Jácome 1, Oscar Mauricio Caicedo Rendon 2, and Nelson Luis
Saldanha da Fonseca 2

1University of Campinas
2Affiliation not available

October 30, 2023

Abstract

Network Slicing is a promising technology for providing customized logical and virtualized networks for the industry’s vertical

segments.This paper proposes SARA and DSARA for the performance of admission control and resource allocation for network

slice requests of eMBB, URLLC, and MIoT type in the 5G core network. SARA introduced a Q-learning based algorithm

and DSARA a DQN-based algorithm to select the most profitable requests from a set that arrived in given time windows.

These algorithms are model-free, meaning they do not make assumptions about the substrate network as do optimization based

approaches.

1

Admission Control for 5G Network Slicing based
on (Deep) Reinforcement Learning

William F. Villota-Jacome∗, Oscar Mauricio Caicedo Rendon†, and Nelson L. S. da Fonseca∗
∗Institute of Computing, University of Campinas, Brazil

†Telematics Engineering Group, Universidad del Cauca, Colombia

Abstract—Network Slicing is a promising technology for
providing customized logical and virtualized networks for the
industry’s vertical segments. Distinct use cases in 5G networks,
such as enhanced Mobile Broadband, Ultra-Reliable Low Latency
Communications, and Massive Internet of Things, have their
Quality of Service requirements, which must be supported. In
line with that, this paper proposes an approach encompassing
mechanisms for Admission Control and Resource Allocation.
The Admission Control mechanism introduces two solutions, one
based on Reinforcement Learning (called SARA) and the other
based on Deep Reinforcement Learning (named DSARA), to
learn the admission policy that optimizes the profit of Network
Slice Providers. SARA and DSARA consider the 5G use cases
defined by the International Telecommunications Union. The
Resource Allocation mechanism tries to balance the load on the
network nodes as well as minimize the network resource uti-
lization. Results show that both SARA and DSARA outperform
existing mechanisms to manage network slicing in 5G networks.

Index Terms—5G, Network Slicing, Admission Control, Re-
source Allocation, Reinforcement Learning, Deep Reinforcement
Learning

I. INTRODUCTION

5G networks support a myriad of services accessible on-
demand for numerous customers and devices [1] The

International Telecommunications Union (ITU) defined sev-
eral different use case categories having different Quality of
Service (QoS) requirements [2]. Network Slicing is crucial
for 5G to support diverse QoS requirements since it provides
flexibility, modularity, and programmability to manage cus-
tomized and isolated logical networks, known as slices (NSL)
[3]. The employment of Software-Defined Networking (SDN)
and Network Functions Virtualization (NFV) technologies
allows NSLs customization and compliance with Service Level
Agreements (SLAs) [4].

Network Slice Providers (NSPs) receive NSL requests
(NSLRs) to implement NSLs of distinct types such as En-
hanced Mobile Broadband (eMBB), Ultra-Reliable Low La-
tency Communication (URLLC), and Massive IoT (MIoT),
each with its own QoS requirements. NSPs need to implement

This work was supported by CAPES, CNPq, and the Sao Paulo Research
Foundation (FAPESP) under grant #19/03268-0 and 2015/24494-8, as well
as the Universidad del Cauca. W. Villota-Jacome, and N. da Fonseca are
with the Institute of Computing, University of Campinas, Brazil. e-mail:
wfernando@lrc.ic.unicamp.br, nfonseca@ic.unicamp.br. O. Caicedo is with
the Department of Telematics, Universidad del Cauca, Popayán, Colombia.
e-mail: omcaicedo@unicauca.edu.co.

an Admission Control (AC) mechanism to decide on the accep-
tance of NSLRs, considering the support of QoS requirements
as well as the availability of physical resources. Moreover, a
Resource Allocation (RA) mechanism should guarantee the
resources needed by an NSL. In virtualized 5G networks,
physical resources are allocated to Virtual Network Functions
(VNFs) and virtual links. The acceptance of NSLRs depends
on the criteria used by NSPs, such as maximization of profit
as well as minimization of network utilization [5].

Several papers have addressed AC by employing different
theoretical frameworks such as Queuing Theory [6], Big Data
[7], Heuristics [8]–[11], Reinforcement Learning (RL) [3],
[12], and Deep RL (DRL) [13]. These papers propose making
admission decisions considering individual NSLRs, which can
lead to sub-optimal decisions since more profitable requests ar-
riving in the short term can be rejected due to the unavailability
of recently allocated resources [14] Moreover, most of these
proposals neither consider the QoS requirements of different
service types (use cases) nor the allocation of resources in the
5G core network. In addition, various other solutions based on
heuristics [15], [16], Queuing Theory [17], Complex Network
Theory [18], Linear Programming [19], Alternating Direction
Method of Multipliers [20], Artificial Neural Networks [21],
and DRL [22]–[25] have considered only RA and neglected
AC, although this prevents the achievement of NSP goals.
On the other hand, jointly performing AC and RA in an
intelligent way can considerably improve the achievement of
target objectives.

This paper proposes a novel approach for AC and RA for
network slicing in 5G core networks. The AC mechanism
introduces two solutions: network Slice requests Admission
and Resource Allocation (SARA), based on RL, and Deep
SARA (DSARA), based on DRL. These solutions employ Q-
learning and Deep Q-Learning (DQN) algorithms to explore,
exploit, and learn for prioritizing NSLRs collected in given
time windows. Using RL and DRL, the history of slice
acceptance decisions is considered rather than just accounting
for the most recent parameter values. Unlike other solutions,
SARA and DSARA consider the 5G use cases defined by ITU
(eMBB, URLLC, and MIoT), process NSLRs in time windows
to favor profit maximization, and differentiate network core
nodes from edge nodes to support latency requirements of
use cases. SARA and DSARA are compared with two other
heuristics: the Always Admit Requests algorithm (AAR) and
the Node Ranking algorithm (NR), which are overperformed
by SARA and DSARA.

1

The remainder of this paper is organized as follows. Section
II presents related work. Section III introduces the architecture
of the proposed approach. Sections IV and V describe RL-
based AC and DRL-based AC, respectively. Section VI de-
scribes the proposed mechanism for RA. Section VII presents
an evaluation of SARA/DSARA. Section VIII concludes the
paper and makes suggestions for future work.

II. RELATED WORK

This section reviews related work on AC and RA in 5G.

A. Admission Control in 5G Network Slicing

Several investigations have addressed the AC problem in
5G. Han et al. [6] propose a utility-driven and multi-service
based solution for network slicing based on Queuing Theory
to maximize network utility. This solution considers different
queues for two types of requests and accounts for impatient
customers. Raza et al. [7] propose an AC mechanism using Big
Data Analytics for traffic prediction to increase the profit of
infrastructure providers. This mechanism admits slice requests
only when no service degradation is expected. Jiang et al.
[8] introduce a heuristic-based AC mechanism to maximize
user Quality of Experience. This mechanism determines the
acceptance of slice requests based on the minimum and
maximum data rates and available resources in the Radio
Access Network (RAN). Furthermore, it dynamically changes
the allocation of radio resources to different NSLs according
to the traffic load. Salvat et al. [10] introduce an end-to-end
slicing heuristic solution that performs AC and RA of radio,
edge, and cloud resources for increasing the provider profit.
This approach does not learn how to improve the profit nor
consider the 5G use cases defined by the ITU.

Sciancalepore et al. [9] introduce a 5G slice broker for
radio resources that includes three modules: forecasting, AC,
and scheduling. The forecasting module predicts the network
traffic to dimension NSLs. The AC module selects the NSLs
by employing a heuristic algorithm based on a knapsack
problem. The scheduling module serves the tenant traffic of the
granted radio NSLs. The broker uses RL to provide feedback
to the forecasting module for resizing the slices, but RL is not
used to make admission decisions on slice acceptance. Challa
et al. [11] propose an AC model based on a knapsack problem
formulation to optimize resource monetization. Bega et al. [12]
introduce an analytical model based on Semi-Markov Decision
Process, and a Q-learning based algorithm to perform AC for
individual slicing requests. Raza et al. [3] propose an AC
mechanism based on RL for maximizing provider profit; this
solution considers a 5G flexible RAN and prioritizes requests
with different latency requirements and expected revenues.
The proposed approach employs a Q-learning agent used to
decide on slice acceptance in order to maximize revenue. Bega
et al. [13] have proposed a DRL-based algorithm that performs
AC for individual RAN slicing requests aimed at maximizing
the monetization of the infrastructure provider.

The mechanisms in the aforecited papers [3], [6]–[13] make
admission decisions for individual requests as they arrive,
preventing the selection of a set of NSLRs that can potentially

optimize a given objective in a specific time window. Further-
more, these papers do not differentiate requests according to
standardized 5G use cases, neglecting the diversity of QoS
requirements of 5G service types. Moreover, most of the
proposed mechanisms focus on allocating radio resources [26],
[27] and disregarding the allocation of 5G core network nodes
(Table I). Differently, SARA and DSARA focus on core and
edge nodes and consider the typical standardized 5G use cases
to jointly perform AC and RA.

B. Resource Allocation in 5G Network Slicing

Several investigations have addressed the RA problem in
5G. Zhang et al. [15] have introduced a heuristic for placing
VNFs in the core network for optimizing the acceptance
ratio, the execution time, and throughput. When throughput
degradation occurs, the heuristic changes the placement of
the VNFs. Li et al. [16] have proposed a two-stage heuristic
algorithm for slice provisioning that improves the revenue-
to-cost ratio. The first stage performs node provisioning by
considering the local and global resource capacities as well
as the topological attributes of the physical nodes; the second
stage performs link provisioning by using a k-shortest path
algorithm. Agarwal et al. [17] propose MaxZ, a solution for
VNF placement, resource assignment, and traffic routing based
on Queuing Theory to reduce service delay. MaxZ decouples
the decision of VNF placement (i.e., the physical hosts on
which VNFs run) from CPU assignment (i.e., how the VNFs
share the computational capabilities). This solution makes
placement and assignment decisions for each VNF.

Guan et al. [18] present a mapping algorithm for 5G
network slices based on Complex Network Theory to analyze
the topological characteristics of the network. The mapping
process has two steps: VNF placement and VNF chaining.
VNF placement selects the physical nodes to host VNFs
by ranking them according to their topological properties
(i.e., degree and betweenness centrality), while VNF chaining
chooses the physical paths by using a k-shortest path algorithm
for the VNFs placed on the nodes. D’Oro et al. [19] have
proposed a slicing framework to instantiate heterogeneous
services by using Integer Linear Programming; this framework
aims at optimizing CPU utilization at the network edge. Huang
et al. [20] present an RA algorithm based on the Alternating
Direction Method of Multipliers to reduce the latency experi-
enced by the User Equipment in networks composed of Base
Stations and Fog nodes.

De Cola et al. [21] carries out RA for eMBB slices in
5G-satellite networks by using Artificial Neural Networks
to optimize QoS. Li et al. [22] propose an algorithm for
network slicing in 5G RAN to optimize the spectrum efficiency
and QoE. The algorithm uses DRL to learn how to allocate
bandwidth to users considering fluctuations in the demand for
services. Liu et al. [23] introduce a resource orchestration sys-
tem that uses DRL to orchestrate networking and computing
resources, aiming at optimizing utilization. This approach does
not follow the ITU use cases for 5G. Sun et al. [24] propose
an RA algorithm for vehicular networks based on DRL to
provide QoS inefficiently in which the DRL-agent adjusts the

2

TABLE I Related Work

Paper Technique Focus Time Fifth Generation Performance Metrics
AC RA Window Use Cases Edge nodes Core nodes

[3] RL (Q-Learning) X X Provider profit
[6] Queuing theory X X Utility rate, admission rate, request waiting time
[7] Big Data Analytics X X Provider profit
[8] Heuristic algorithm X X X QoE, resource utilization
[9] Heuristic algorithm X X System resource utilization

[10] Heuristic algorithm X X X X Provider revenue
[11] Knapsack problem X X Monetization ratio
[12] RL (Q-Learning) X X Provider revenue
[13] DRL (DQN) X X Provider revenue
[15] Heuristic algorithm X X X Acceptance ratio and Execution time
[16] Heuristic algorithm X X Acceptance ratio, provider revenue
[17] Queuing Theory X X Running time
[18] Complex Network Theory X X X X Resource efficiency, acceptance ratio, execution time
[19] Integer Programming X X CPU Utilization
[20] Alternating Direction

Method of Multipliers
X X Latency

[21] Artificial Neural Networks X X X X Latency
[22] DRL (DQN) X X Spectrum efficiency and QoE
[23] DRL (DQN) X X X Resource Utilization
[24] DRL (DQN) X X Resource Utilization and Satisfaction ratio
[25] DRL (DDPG) X X X X Provider revenue

SARA/DSARA Q-learning and DQN X X X X X X Provider profit, resource utilization, acceptance ratio

allocated resources for a slice as a function of the demand.
Zhang et al. [25] perform slicing in data center networks by
using a DRL-agent. The DRL-agent maximizes the revenue
from provisioned slices while avoiding overutilized resources.

The aforecited papers [15]–[25] focus on mapping NSLs.
They map the arriving NSLRs but without controlling ad-
mission. Performing AC and RA jointly in 5G core net-
work slicing is critical to optimize resource utilization and
maximize the NSP profit. RL and DRL are efficient tools
for solving decision-making problems modeled as Markov
Decision Processes. Moreover, the Network Slicing process
involves repetitive decisions and produces a large quantity of
data that can be used to train RL/DRL-algorithms [22], [28].
SARA and DSARA are based on model-free RL and DRL,
respectively, meaning that they do not make assumptions about
the environment (i.e., substrate network) but rather learn while
exploring it without prior knowledge. SARA and DSARA
learn continuously about the environment. To the best of our
knowledge, no other paper has proposed a solution based on
RL and DRL that jointly performs AC and RA, differentiates
core and edge nodes, and considers the typical standardized
5G use cases (Table I). Zhang et al. [25] perform slicing in
data center networks by using a DRL-agent. The DRL-agent
maximizes the revenue from provisioned slices while avoiding
overutilized resources.

III. ARCHITECTURE FOR ADMISSION CONTROL BASED ON
(DEEP) REINFORCEMENT LEARNING

This section describes the architecture of the proposed
approach, which is illustrated in Figure 1.

A. 5G Core Network Substrate
The substrate considered in this paper follows the European

Telecommunications Standards Institute recommendation in

Fig. 1 RL/DRL-based Architecture for Admission Control

[29], which defines an NFV Infrastructure being able to span
several locations where Points of Presence (NFVI-PoPs) are
operated. The network between these locations is part of the
NFV Infrastructure and should be considered as well. NFVI-
POPs are nodes that offer processing capacity, they are either
high capacity data centers (core nodes) or small data centers
close to end users (edge nodes).

Core nodes are appropriate for the 5G Control Plane since
this plane involves VNFs demanding high processing and
bandwidth capacities [30] [31]. Edge nodes are adequate for
the 5G User Plane since this involves VNFs which need to
be located close to the end-users [32], [33]. Moreover, edge
nodes in a Fog-RAN can involve remote radio heads and a
centralized pool of virtual baseband units [34] [35].

VNFs composing an NSL can be placed on either edge
nodes or core nodes. The eMBB use case requires the activa-
tion of a wide range of VNFs and their distribution across core

3

Fig. 2 NSL graphs

and edge nodes. URLLC instantiations require VNFs deployed
at the edge to support latency requirements. MIoT slices can
have their VNFs on core nodes since there are no strict latency
requirements for this use case [32].

We model the 5G core network substrate as a labeled and
weighted undirected graph: SN = {N,L}, where N stands
for the set of nodes, N = {n1, n2...nm}, and L stands for the
set of links, L = {(n1, n2), (n1, n3)...(nl, nm)}. Each node
ni ∈ N has a processing capacity represented by CPU(ni).
The bandwidth of a link (ni, nj) is given by BW (ni, nj).

B. 5G Network Slice Requests

An NSLR is described by nslr = {s type, To, G}. The
s type defines, according to the ITU [2], the 5G use case
eMBB, URLLC, or MIoT. To defines the requested operational
time (duration of a slice). G = {F, V } is a labeled and
weighted undirected graph representing an NSL, where F is
the set of VNFs, and V is the set of virtual links connecting
them. The labels on the nodes give the amount and type of
resources demanded by a VNF. The weight on each edge gives
the bandwidth requested by the virtual link. The processing
capacity required is denoted by cpu(vnfi) and the node type
a VNF requests by type(vnfi). Similarly, bw(vnfi, vnfj) is
the bandwidth demanded by the virtual link (vnfi, vnfj).

Figure 2 depicts graphs for the three types of use cases
most common in 5G. The NSL graphs follow the 5G Control
Plane (CP) and User Plane (UP) Separation (CUPS) concept
for flexible deployment, independent evolution, and scalability
[36]. Each graph includes essential CP VNFs (Access and Mo-
bility Management Function, AMF) and Session Management
Function, SMF) and UP VNFs (User Plane Function, UPF)
[36]. The URLLC graph considers backups for AMF, SMF,
and UPF that should be instantiated at different nodes close
to the end-user since URLLC must offer high reliability and
low latency [32]. The eMBB and MIoT graphs do not include
backups for SMF or UPF as these service types do not have
ultra-high reliability requirements. The MIoT graph has more
AMFs than the other types, as it must provide access to several
types of device [37]. The eMBB G has fewer AMFs than the
MIoT graph since the former attends fewer devices than the
latter.

C. Modules

The architecture of the proposed approach includes four
modules: the Monitoring Module, the Admission Control Mod-
ule (ACM), the Resource Allocation Module (RAM), and the

Lifecycle Module. The approach processes the arriving NSLRs
in batches collected in time windows. The Monitoring Module
collects information about resource availability in the network
substrate (nodes and links) and, periodically, delivers this
information to the ACM and RAM. Information is structured
as states and rewards (see Section IV).

The ACM performs the admission of NSLRs. It employs an
Agent and a Prioritizer. The Agent determines a normalized
weight value to each type of 5G use case. The Prioritizer uses
these values to sort the NSLRs to establish the order in which
resources should be allocated. These weight values lead to the
maximum profit, i.e., the Agent selects an action that, if taken,
maximizes the profit. The Agent learns to select actions that
will increase profit by considering the information on states
and rewards from interaction with the environment. A state
represents the available resources after the Agent executes
an action, and a reward gives the profit generated by taking
that action. The approach includes two agents for carrying out
ACM. The first, based on RL, is detailed in Section IV; the
second, based on DRL, is presented in-depth in Section V.

The Prioritizer enqueues NSLRs in batches of a minimum
size, obeying the proportion given by their weight values
and arrival time. For instance, if weight values are 1.0, 0.5,
and 0.5 for the eMBB, URLLC and MIoT, respectively, then
batches with 2, 1, and 1 NSLRs of type eMBB, URLLC
and MIoT are enqueued. NSLRs per class are enqueued in
chronological order. If all the NSLRs of a particular type have
been enqueued, the weight values of the other use cases are
employed to determine the number of NSLRs in subsequent
batches. In the example described, if there are 10 NSLRs per
use case in the queue, there will be a sequence of 5 batches
with 2, 1, and 1 NSLRs of type eMBB, URLLC, and MIoT,
followed by 5 batches composed by one NSLR of URLLC,
and one of MIoT.

After assembling the priority queue, each NSLR is de-
queued, and a request for allocation of resources is sent to the
RAM. If resources are successfully allocated, then the NSLR
is accepted. Otherwise, it is rejected. Dequeing an NSLR and
attempting to allocate resources to it is repeated until the
priority queue is empty.

The RAM allocates resource on nodes for the VNFs
composing an NSLR (node mapping), and then, allocates
bandwidth in selected links (link mapping) for connecting the
allocated nodes. Decisions on node mapping consider not only
whether a node has resources available to support the demand
but also whether the latency and reliability requirements of
the NSLR type can be supported. RAM maps CP VNFs onto
core nodes. UP VNFs of URLLC are mapped onto edge nodes
to satisfy strict latency requirements, while UP VNFs of the
other use cases are mapped, preferably, onto core nodes [37].
In order to meet reliability requirements, a primary VNF and
its backup are never placed on the same node [32].

The Link Mapping procedure maps virtual links on the
shortest paths in the substrate that satisfy the required band-
width for the virtual link. If the Node Mapping and Link
Mapping procedures are successfully concluded, RAM sends
a notification of successful allocation (mapped notification) to
ACM. Otherwise, a non-mapped notification is sent.

4

Upon accepting an NSLR, the Lifecycle module instantiates
its VNFs and virtual links, thus, realizing an NSL. When the
lifetime of the NSL expires, resources are deallocated.

IV. ADMISSION CONTROL BASED ON REINFORCEMENT
LEARNING

The approach proposed here is called SARA when the ACM
employs an Agent that runs a Q-learning based AC algo-
rithm. Q-learning is an off-policy, model-free, and temporal-
difference RL algorithm [38]. A Q-learning agent selects an
action (at) when on a state (st), performs an action, receives a
reward (Rt), and goes to the next state (st+1). Q-learning uses
a lookup table (Q-table) to store the quality value (Q-value)
of an action in a state, as follows:

Qt+1(st, at)← Qt(st, at) + α · [Rt + γ ·maxQ(st+1, a)−Qt(st, at)]
(1)

In Equation 1, α is the learning rate with values between 0
and 1, it defines the Q-values kept by the RL-agent. If α = 1,
the RL-agent discards the old Q-values; if α = 0, the most
recently learned Q-value is discarded (i.e., the RL-agent learns
nothing new). γ is the discount factor used to balance the
immediate reward and the maximum expected future reward.
Its value is in the interval [0, 1]. If the discount factor is 1, the
RL-agent gives value to the expected future reward.

In the following subsections, a definition is provided for the
state space, the action space, the exploration and exploitation
method, and the reward function, thus specifying the Q-
learning-based AC algorithm.

A. State Space

A state represents the available resources in the substrate
of the 5G core network. The State Space S is the set of all
states the RL-agent can experience. A state s ∈ S is defined
by the tuple {cpu(E), cpu(C), bw(L)}, where cpu(E) and
cpu(C) are the available processing capacity in the set of
edge (E) and core nodes (C), respectively, and bw(L) is the
available bandwidth in the set of links (L). For instance, the
state {80, 50, 60} indicates that 80% and 50% of the total
capacity for processing is available in E and C, respectively,
while 60% of the total bandwidth is available in L.

B. Action Space

For each step, the RL-agent selects the weights for
each type of use case. The set of actions the RL-agent
can take is denoted by A. An action a is denoted by
a = {pctembb, pcturllc, pctmiot}, where pctembb, pcturllc, and
pctmiot are the weights for each type of use case. The RL-
agent chooses the action a which returns the maximum profit.

C. Reward

The reward value expresses the monetary profit obtained
by taking an action on a state. The action taken implies
the acceptance of NSLRs of different types and consumes
resources having distinct costs. Typically, resources at core
nodes are abundant and cheaper than those at edge nodes.

The RL-agent maximizes the NSP profit while optimizing
resource utilization. A reward value considers the profit gen-
erated after the RL-agent takes an action. The profit obtained
by the acceptance of an NSL, p(nsl) is the amount of money
earned by the NSP for selling the NSL minus the operational
cost of processing and bandwidth resources; p(nsl), and it is
given by:

p(nsli) = (revi − csti)× To (2)

csti =

m∑
j=0

cpu(vnfj)× fcpuj +

n∑
j=0

bw(vj)× fbw × h (3)

where:
rev - is the income that an NSP receives for instantiating
nsli
cst - the cost of running nsli on the substrate
To - is the nsli operational time
m - gives the number of VNFs in nsli
n - gives the number of virtual links in nsli
cpu(vnfj) - is the cpu demand of vnfj in nsli
bw(vj) - is the bandwidth demand of virtual link vj in
nsli
fcpuj is the processing cost of vnfj , which depends on
the node type
fbw is the bandwidth cost
h is the number of hops composing the path where
virtual link vj is allocated

The reward, R, is given by:

R =

∑k
i=0 p(nsli)

maxP (SN, T)
(4)

where maxP (SN, T) is the maximum profit that the NSP
could receive when using all the resources in the substrate
(SN) in a certain period (T)

D. Exploration and Exploitation Method

The RL-agent uses the epsilon-greedy method (Equation 5)
to explore or exploit an action in each step [39]. To choose an
action, the RL-agent generates a random number rn ∈ [0, 1]. If
rn > ε, the RL-agent selects the action with the maximum Q-
value (i.e., exploit a past optimal action). Otherwise, it chooses
a random action (i.e., explore a new action).

a =

{
max

a
Qt(st, a), if rn > ε

randomaction, otherwise
(5)

E. RL-based Admission Control Algorithm

Algorithm 1 presents the Q-learning based solution em-
ployed by SARA to perform AC. The aim is to admit the most
profitable set of NSLRs. Time is discretized. The algorithm
receives as input the NSLRs arriving in a given time window,
RS = {nslr1,nslrn}, and produces as output the weight
values for each type of use case.

5

Data employed by the algorithm include the Action Space
(A), the State Space (S), the parameters learning rate (α), the
discount factor (γ), the exploration-exploitation factor (ε), and
the number of learning episodes (n), comprised of a sequence
of m-steps with each step consisting of a state, an action, and
a reward received.

Algorithm 1: RL-based AC Algorithm
Data : Learning parameters (Table II)
Input : Sets of NSLRs (RS) collected during the time window
Result: Admitted NSLRs that generate the maximum profit

1 Initialize Q : Q(S,A) = 0, ∀s ∈ S, ∀a ∈ A
2 for episode← 1 to n do
3 The agent observes the initial state si // when 100% of

substrate resources are available;
4 while next state st+1 is not the final state do
5 The agent chooses at using ε-greedy exploration method (Equation

5) // Selection of a random or an optimal
action that increases the profit;

6 The agent invokes the Prioritizer to sort the NSLRs PR into a
priority queue;

7 for each nslr ∈ PR do
8 The agent invokes RAM that runs Algorithm 3 to map nslr;
9 if nslr is mapped then

10 The agent admits nslr and sends information to
Lifecycle;

11 end
12 else
13 The agent rejects nslr;
14 end
15 end
16 The agent observes the reward Rt that is calculated by using

Equation 4;
17 The agent observes the new state st+1 // The current

resource availability;
18 The Q-table is updated according to Equation 1;
19 The current state is updated st ← st+1;
20 end
21 end

Algorithm 1 creates a Q-table (Line 1) with dimension
|S| · |A|. Initially, the entries of the Q-table are set to zero.
The Q-table is a lookup table where the RL-agent updates
the Q-values for each state-action pair. The algorithm has an
outer loop (Line 2) that goes through n-episodes and an inner
loop that goes through m-steps (Line 4). In the inner loop, the
RL-agent uses the ε-greedy method to select either a random
action or an optimal action at. The optimal action allows the
RL-agent to exploit learned knowledge. Since Q-values depend
on past rewards (i.e., normalized profit), the RL-agent learns to
choose actions that increase the profit. The optimum solution,
at, is passed to the Prioritizer (Line 6) which will sort all the
NSLRs received in a priority queue according to their arrival
time and the weight value of their type of service. NSLRs
are dequeued and a request is sent to RAM. If resources are
allocated, the NSLR is mapped (Line 8) onto the substrate,
i.e. it is considered admitted. Information on the acceptance
of an NSLR is passed to the Lifecycle module (Line 10).
Then, the RL-agent receives the reward for performing at
and observes the new state st+1 (i.e., new processing and
bandwidth capacities available in the substrate after executing
at). The RL-agent updates the Q-table. The state st+1 becomes
the current state st, and the RL-agent starts a new iteration.

Fig. 3 DRL-based ACM

V. ADMISSION CONTROL BASED ON DEEP
REINFORCEMENT LEARNING

The approach proposed here is called DSARA when the
ACM module employs an Agent which runs a DRL-based
algorithm. DRL involves Deep Learning and RL [22]. Deep
Learning uses Artificial Neural Networks (NNs) to allow
RL to manage problems with large state and action spaces
by generalizing knowledge [40]–[42], while RL allows DRL
to maximize long-term performance by interacting with the
environment.

DQN is a DRL algorithm that uses an NN to estimate
the Q-value of each action in a particular state. The agent
takes the action at with the best estimated Q-value, receives
a reward Rt for the action taken and observes the new
state st+1 [38]. As Figure 3 shows, DSARA runs an AC
algorithm based on an enhanced DQN [43] composed of
Replay Memory, Evaluation NN, and Target NN to learn the
optimal admission action for each learning step as well as
achieve learning stability. Classic DQN uses a single NN
to estimate Q-values and Target Q-values, which leads to a
high correlation in their estimations [43]. DSARA stores the
experiences (st, at, st+1, Rt) into the Replay Memory to later
use a mini-batch to train the Evaluation NN. The Evaluation
NN estimates the Q-values (Q(st, at)), while the Target NN
estimates the Target Q-values (Equation 7). The target Q-
values serve as labels for the calculation of the loss when
training the Evaluation NN. DSARA updates the Target NN
periodically with the Evaluation NN weights since the latter
is iteratively trained [41].

Next, we define the state space, action space, reward,
exploration and exploitation method, and NNs that specify our
DQN-based AC algorithm.

A. State Space, Action Space, and Reward

DSARA employs the same reward function and structure
of actions used by SARA. The DSARA State Space S is the
set of all states the DRL-agent can experience. A state s ∈ S
is defined by: {cpu(E), cpu(C), bw(L), ne, nu, nm}. cpu(E),
cpu(C), and bw(L) represent, as in SARA, the available

6

resources in the substrate of the 5G core network; ne, nu, and
nm indicate the number of NSLs running eMBB, URLLC,
and MIoT, respectively.

B. Exploration and Exploitation Method

DSARA uses an epsilon-greedy method with decaying ε to
move from a more explorative policy to a more exploitative
one. The DRL-agent initially explores with decays ε by using
Equation 6; where, εmax is the maximum probability of
exploration, used at the start of the training, nstepst is the
number of steps the agent has experienced, and dr is the decay
rate, a constant to reduce ε linearly over time. The DRL-agent
then generates a random number rn ∈ [0, 1]. Finally, the DRL-
agent uses Equation 5 to select the action to be executed.

εt = εmax − (nstepst × dr) (6)

C. Neural Networks

Q+(st, at) = Rt + γ ·maxQ(st+1, a) (7)

The Evaluation NN and Target NN have an input neuron
per variable in the state tuple s, a single hidden layer since
it is sufficient to approximate a target function, as shown in
[42], and an output neuron per action in the Action Space A.
Each neuron in the output layer estimates the Q-value, Qi,
associated with an action ai ∈ A.

DSARA uses the gradient descent and backpropagation
approach to reduce the loss in Q-value estimations by adjusting
weights and biases in each layer of the Evaluation NN. The
loss (also called error or cost, Equation 8) is the difference
between the Q-value estimated by the Evaluation NN and the
Target Q-value obtained by the Target NN. DSARA fixes the
Target NN temporarily and updates it periodically with the
trained parameters of the Evaluation NN for learning stability
reasons [41] [43].

Loss = (Q+(st, at)−Q(st, at))
2 (8)

D. DRL-based Admission Control Algorithm

Algorithm 2 presents the DQN-based solution employed
by DSARA to perform AC. The aim is to admit the most
profitable NSLRs. Time is discretized. The algorithm input
is a set of NSLRs (RS) arriving in a given time window.
The output are the admitted NSLRs that maximize the profit.
The data employed by this algorithm include the number of
neurons in the hidden layer, the discount factor (γ), the decay
rate (dr), maximum exploration (εmax), training start (k),
mini-batch size (sz), Target NN update (C), Action Space
(A), State Space (S), and the number of episodes (n).

Algorithm 2 starts by initializing the Evaluation NN, Target
NN, and Replay Memory (Line 1). The algorithm has an outer
loop (Line 2) that goes through n episodes and an inner loop
(Line 4) that goes through m steps. In the inner loop (Lines
4 to 23), the DRL-agent updates its exploration probability
ε by using Equation 6 (Line 5). Then, the DRL-agent uses
the exploration method (Equation 5) to select either a random

Algorithm 2: DRL-based AC Algorithm
Data : Learning parameters (Table II)
Input : Sets of NSLRs (RS) collected during time windows
Result: Admitted NSLRs that generates the maximum profit

1 Initialize: Evaluation NN Q with weights θ, Target NN Q̂ with weights θ̂,
and Replay Memory D

2 for episode← 1 to n do
3 The agent observes the initial state si;
4 while next state st+1 is not final state do
5 Update exploration probability ε by using Equation 6;
6 The agent selects action at according to Equation 5;
7 The agent invokes the Prioritizer to sort the NSLRs into a priority

queue PR;
8 for each nslr ∈ PR do
9 The agent invokes RAM that runs Algorithm 3 to map nslr;

10 if nslr is mapped then
11 The agent admits nslr and sends it to Lifecycle;
12 end
13 else
14 The agent rejects nslr;
15 end
16 end
17 The agent receives reward Rt (Equation 4) and observes the new

state st+1;
18 Store experience et = (st, at, st+1, Rt) into D;
19 Sample random mini-batch of experiences from D;
20 Calculate Q+(st, at) = Rt + γ ·maxQ+(st+1, a), if state is

final state, Q+(st, at) = Rt ;
21 Minimize loss function (Equation 8) by gradient descent and

updates the weights θ of the Evaluation NN Q;
22 Update the current state st ← st+1;
23 end
24 Every C episodes, the agent copies weights and biases from Evaluation

NN to Target NN (Q̂ = Q)
25 end

action or an optimal action at for the current state st (Line
6). at contains the weight of each use case that the Prioritizer
uses to sort the arrived NSLRs into a priority queue (Line 7).
In Lines 8 to 16, NSLRs are dequeued and a request is sent
to RAM. If an NSLR is successfully mapped, it is admitted
and a notification is sent to the Lifecycle module (Line 11).

In Line 17, the DRL-agent receives the reward Rt from the
environment and observes a new state st+1. The experience
et = (st, at, st+1, Rt) is stored into the Replay Memory D
(Line 18). Lines 19 to 21 are executed only after storing k ex-
periences. The DRL-agent randomly takes a set of experiences
(mini-batch) from D to train the Evaluation NN (Line 19);
this enables the DRL-agent to learn from a reduced number
of interactions with the environment. By taking the fields st,
Rt and st+1 from the experiences, the DRL-agent estimates
Q(st, at) by using the Evaluation NN and calculates with the
Target NN (see Equation 7) the target Q+(st, at) (Line 20).
The DRL-agent uses gradient descent and backpropagation for
adjusting the weights and biases of the Evaluation NN in order
to reduce the loss (Line 21, Equation 8); a low loss means
that the estimations of the DRL-agent are accurate. The new
state becomes the current state, and the DRL-agent begins a
new iteration (Line 22). Note that for stability in learning, the
Target NN parameters (i.e., weights and biases) stay fixed and
only every C episodes the DRL-agent replaces them with the
parameters of the Evaluation NN.

VI. RESOURCE ALLOCATION

The RAM aims at allocating resources to NSLRs by map-
ping (embedding) M : G = {F, V } → SN ′ = {N ′, L′},

7

where N ′ ∈ N and L′ ∈ L. The latency, bandwidth, process-
ing and reliability requirements must all be met. Algorithm
3 describes the RA used by SARA and DSARA, which is
carried out in two steps: node mapping and link mapping. The
input of Algorithm 3 is a nslr = {s type, To, G} provided
by the ACM. The output is a notification on either successful
or unsuccessful allocation of resources. Information about the
allocation of resources for an accepted nslr is passed on to
the Lifecycle module.

Algorithm 3: RA Algorithm
Input : An NSLR, substrate resource availability
Result: Mapped NSLR

1 for each substrate node n ∈ N do
2 Calculate embedding potential (Equation 9);
3 end
4 Rank the substrate nodes N according to the embedding potential value in

descending order

5 for each vnf ∈ F do
6 for each node n in the ranked list do
7 if match(type(n), type(vnf), s type) == True and

isAllowed(n, vnf) == True and CPU(n)
cpu(vnf)

≥ 1 then
8 Map vnf onto n;
9 Break;

10 end
11 end
12 if vnf is not mapped then
13 Return non-mapped notification;
14 end
15 end
16 for each virtual link v ∈ V do
17 Obtain source src and destination dst from v;
18 Compute all simple paths from src to dst;
19 Sort the simple paths into the list of CandidatePaths regarding the

number of hops // The first path in the list has the
lowest number of hops;

20 for each path CP in CandidatePaths do
21 if each link l ∈ CP satisfies BW (l)

bw(v)
≥ 1 then

22 Map v onto CP ;
23 Break;
24 end
25 end
26 if v is not mapped then
27 Return non-mapped notification;
28 end
29 end
30 Return mapped NSLR;

A. Node Mapping
The Node Mapping step, Lines 1 to 15, aims at mapping the

VNFs of an NSLR onto nodes in the substrate network (F →
N ′), while respecting the processing, latency and reliability
requirements. Each node in F represents a VNF and its label
gives the processing requirement (cpu(vnf)). The use case
type (s type) is used to choose the type of node in SN .

VNFs are mapped according to their type(vnf) (CP or
UP) and the use case (s type) to which it belongs. A VNF
belonging to the CP is always mapped onto a core node. VNFs
belonging to the UP are mapped as a function of the use case
as follows. For URLLC, VNFs are mapped onto edge nodes
to satisfy the strict latency requirements. For MIoT, UP VNFs
are always mapped onto core nodes since this use case is
not latency-sensitive. For eMBB, UP VNFs are preferentially
mapped onto core nodes, although, they can be mapped onto
edge nodes when core nodes are unavailable.

To perform node mapping, substrate nodes, n ∈ SN , are
ordered according to their embedding potential value, EP ,

(Lines 1 to 3). The EP metric reflects the capacity of a
substrate node to embed a VNF on the basis of its avail-
able processing capacity CPU(ni) and available bandwidth
BW (lj) [44] [16]. The RAM sorts the substrate nodes in
decreasing order of EP value.

EP (ni) = cpu(ni)×
∑

l∈adj(ni)

bw(lj) (9)

In Lines 5 to 15, an attempt is made to map the VNF
vnf ∈ F onto the substrate nodes, n. Three conditions
need to be satisfied for a successful mapping (Line 7): i)
the node type (type(n)) needs to match with the use case
of the NSLR (s type) and the VNF type (type(vnf)), ii) a
backup of a VNF should not be placed on the same node as
the primary VNF, and iii) the available processing capacity is
higher than the processing requirement (CPU(n)

cpu(vnf) ≥ 1). If all
the conditions are satisfied, the vnf is mapped onto n, and
the node resources are allocated. Otherwise, RAM visits the
next node in the ranked list to verify if the mapping conditions
hold. If RAM cannot map at least one VNF, it returns a non-
mapped notification for nslr to the ACM and deallocates all
the nodes that have been allocated to the NSLR. In case all
the VNFs are successfully mapped, RAM continues, and the
Link Mapping step is carried out.

B. Link Mapping

The Link Mapping procedure attempts to map virtual links
onto substrate links, V → L′, consuming the least possible
amount of bandwidth. Paths in the substrate with available
bandwidth satisfying the bandwidth required and with the
fewest hops are sought to minimize the network bandwidth
utilization.

In Lines 16 to 29, RAM carries out the Link Mapping
procedure. For each virtual link, v ∈ V , an attempt is made
to map it onto a substrate path. The RAM module uses the
depth-first search, considering the source src and destination
dst nodes (Line 18), to compute all the simple paths (loop-
free paths) between src and dst. In Line 19, the RAM sorts
the simple paths, in descending order of their number of hops
and put them in the CandidatePaths queue. Subsequently,
the RAM takes from CandidatePaths the first path CP (i.e.,
the shortest path in terms of number of hops). RAM verifies if
the bandwidth availability for all the links along CP satisfies
the NSLR bandwidth requirement BW (l)

bw(v) ≥ 1. If all links meet
this condition, RAM maps v onto the links of CP ; otherwise,
RAM considers the next shortest path. If RAM cannot map at
least one virtual link, it returns a non-mapped notification to
ACM, and nodes are deallocated. Otherwise, Node Mapping
and Link Mapping finish successfully, and the RAM sends a
mapped notification to ACM.

VII. PERFORMANCE EVALUATION

This section describes the evaluation of SARA and DSARA.
First, the metrics used for assessing their performance are
introduced. Then, the detailing of the setup for the experi-
ments are presented, and finally, the results obtained in the
experiments are discussed.

8

A. Metrics

The metrics employed in the evaluation are the profit,
resource utilization, and acceptance ratio. The profit P is
calculated according to Equation 2. The resource utilization
is given by:

U =

∑
j cpu(nslj)

CPU(SN)
+

∑
j bw(nslj)

BW (SN)

2
(10)

where:
CPU(SN) - is the total processing capacity in SN ,∑
j cpu(nslj) - is the processing resource utilized by all

NSLRs instantiated in SN ,
BW (SN) is the total network bandwidth,∑
j bw(nslj) is the bandwidth utilized by all NSLRs

instantiated.
The acceptance ratio is the ratio between the number of

admitted NSLRs (reqa) and the number of NSLRs (reqt)
requested.

AR =
reqa
reqt

(11)

B. Experiment Setup

The architectural modules were developed using Python 3.
We also developed a Python-based discrete event simulator to
test SARA and DSARA, which was executed on an Ubuntu
16.04 LTS desktop with Intel Core i5-4570 CPU and 15.5 GB
RAM. The simulator uses the NetworkX library [45] to create
and manipulate the graphs of NSLRs and the substrate network
topology. For the RL-agent, α was set to 0.9, γ to 0.9, ε to
0.1, and the number of state-action pairs in 104 (10 actions
and 103 states). For the DRL-agent, we set γ to 0.9, εmax to
1, dr to 1/1000, training start to 300 steps, mini-batch size to
15 samples, the Target NN to update every 150 steps, and the
number of state-action pairs to 3 × 107 (30 actions and 106

states). Both the Evaluation NN and Target NN were set with
6 neurons in the input layer (i.e., one input neuron per variable
in the state tuple s), a single hidden layer, and 30 neurons in
the output layer (i.e., one neuron per action in the DSARA
Action Space A). Each neuron in the output layer estimates
the Q-value Qi associated with action ai ∈ A.

Experiments were conducted with different topologies (16,
32, and 64-nodes) generated by using the Barabasi-Alberth
algorithm [46]. In this paper, results are given for a 16-node
network topology composed of 4 core nodes and 12 edge
nodes, with a 300 and 100 processing units capacities, respec-
tively. All substrate links had a capacity of 100 bandwidth
units. The results for this topology complied with results for
the other topologies employed in the evaluation. The computa-
tional demand of the VNFs was 5 processing units. The virtual
links in the eMBB, URLLC, and MIoT graphs require 3, 2,
and 1 bandwidth units, respectively. The operational time of
NSLRs followed an exponential distribution with a mean of
twelve time units. The arrivals processes for the three types of
NSLRs respected the Poisson process and had the same arrival
rate value.

The total arrival rate was varied from 1 to 100 requests per
time unit to assess the performance of SARA and DSARA
under different load conditions. The duration of the window
was 2 time units. Thirty three repetitions were conducted to
obtain results with 95% confidence level. Table II summarizes
the setup of the experiments.

Simulation
Parameter Value
Substrate 16, 32, 64-node topologies

Capacity of nodes (cpu units) core: 300, edge: 100
Capacity of links (bw units) 100

Mean operational time (time units) 12

Total load (requests per time unit) from 1 to 100

Time window (time units) 2

SARA
Learning rate (α) 0.9

Discount factor (γ) 0.9

Exploration factor (ε) 0.1

DSARA
NNs 6, 1 hidden layer of 150 neurons, 30

Discount factor (γ) 0.9

Maximum Exploration (εmax) 1

Decay rate (dr) 1/1000

Training start (k) 300 steps
Mini-batch size (sz) 15 samples

Target NN update (C) every 150 steps (10 episodes)

TABLE II Experiment Setup

The performance of SARA and DSARA were compared to
those of two heuristics; AAR and NR. NR ranked the substrate
nodes according to the embedding potential defined in [44]
[16], while the ARR did not differentiate nodes for allocation.
These heuristics admitted NSLRs as they arrive if there was
available capacity to do so. Unlike SARA, these heuristics did
not use any strategy to achieved target goals.

C. Results and Analysis

Figure 4a depicts the profit as a function of time for an
arrival rate of 20 requests per time unit. The profit obtained
by SARA and DSARA increased from episodes 1 to 12 and
from episodes 1 to 55, respectively, when they converged.
Overall, DSARA profit is 3%, 10%, and 14.3% greater than
those obtained by SARA, the NR, and the AAR, respectively.
These profit values from DSARA are due to the employment
of a DQN-algorithm that quickly learns the most profitable
combination of NSLRs. DSARA obtained higher profit values
than SARA because the RL-agent deals with 104 state-action
pairs while the DQN-agent only copes with 3 × 107 state-
action pairs; more states and actions allow DSARA to select
actions that lead to the highest profit.

Figure 4b shows the profit as a function of the total arrival
rate. Under low loads (e.g., 1 request per time unit), SARA
and DSARA obtained lower profit values than those resulting
from the other two heuristics. If the arrival rate is too low,
the number of arrivals of NSLRs is not sufficient to provide
useful information to the RL-agent and to the DRL-agent. On
the other hand, for arrival rates equal to or greater than 7
requests per time unit, DSARA obtained the highest profit.
For example, for 25 requests per time unit, DSARA profit was
3.2%, 9.7%, and 13.2% greater than those obtained by SARA,

9

0 50 100 150 200 250 300
Episodes

0.50

0.55

0.60

0.65

Pr
ofi

t

DSARA
SARA
NR
AAR

(a) Profit

1 3 5 7 10 15 20 25 30 40 60 80100
Arrival Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ofi

t

AAR
NR
SARA
DSARA

(b) Profit vs Arrival Rate (c) Profit per NSLR Type

Fig. 4 Profit Results

0 50 100 150 200 250 300
Episodes

0.26

0.28

0.30

0.32

0.34

0.36

Ac
ce
pt
an

ce
 R
at
io

DSARA
SARA
NR
AAR

(a) Acceptance Ratio

1 3 5 7 10 15 20 25 30 40 60 80100
Arrival Rate

0.0

0.2

0.4

0.6

0.8

1.0
Ac

ce
pt
an

ce
 R
at
io

AAR
NR
SARA
DSARA

(b) Acceptance Ratio vs Arrival Rate (c) Acceptance per NSLR Type

Fig. 5 Acceptance Ratio Results

0 50 100 150 200 250 300
Episodes

0.45

0.50

0.55

0.60

Re
so
ur
ce

 U
tili

za
tio

n

DSARA
SARA
NR
AAR

(a) Resource Utilization (b) Utilization per Node Type

0 20 40 60 80 100
Arrival Rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ex
ec
ut
ion

 Ti
me

DSARA AC
SARA AC
RA

(c) Execution Time vs Arrival Rate

Fig. 6 Resource Utilization and Execution Time

NR, and AAR, respectively. DSARA outperforms SARA, NR,
and AAR for medium to high loads because the DRL-agent
learns to admit the proper proportion of NSLR type to increase
the profit.

Figure 4c presents the contribution of each type of admitted
NSLR to the total profit obtained by SARA and DSARA
for a load of 20 requests per time unit. The contribution of
URLLC NSLRs to the total profit increased from episodes 1
to 12 and from episodes 1 to 55, when SARA and DSARA
obtained the maximum profit. Conversely, the profit of NSLRs
of eMBB and MIoT decreased slightly from episodes 1 to 12
and from 1 to 55, when SARA and DSARA converged. SARA
and DSARA learned to identify the NSLRs that generated the
highest profit value.

Figure 5a shows the acceptance ratio as a function of
time. Overall, DSARA reached the highest acceptance ratio.
Before converging, DSARA produced acceptance ratios higher
than those achieved by AAR and NR and slightly higher

than those obtained by SARA. After converging, DSARA
produced acceptance ratios 2%, 8%, and 12% higher than
those achieved by SARA, NR, and AAR, respectively. Despite
the low acceptance ratio values, Figure 4a shows that they did
not impact negatively on the profit.

Figure 5b depicts the acceptance ratio as a function of the
arrival rate. The four algorithms produced low acceptance ra-
tios when the arrival rate was high due to the limited resources
in the substrate. DSARA obtained values of acceptance ratio
similar to those achieved by SARA. These values are slightly
higher than those given by NR and AAR for 7 requests per
time unit. The reason for such a small difference is that
the primary goal of SARA and DSARA is to increase the
profit and not the acceptance ratio. Several factors influence
the profit: the quantity of NSLRs accepted, its operational
time, and the cost of the resources consumed. If SARA and
DSARA accept requests requiring many resources and with
long operational times, the substrate will be busy for a long

10

time, which prevents the acceptance of new NSLRs.
Figure 5c presents the acceptance ratio per use case. For

URLLC NSLR, the acceptance ratio of SARA and DSARA
increased from the first episode to the convergence point,
at which the maximum value was achieved. After that, the
number of admitted eMBB and MIoT NSLR decreased over
time because the RL-agent and the DRL-agent learned that
these types of requests were less profitable (mainly the MIoT
requests). Figures 5c and 4c corroborate the fact that SARA
and DSARA accept a higher proportion of NSLRs of the
URLLC type than did the other types of service.

Figure 6a presents the network resource utilization as a
function of time for an arrival rate of 20 requests per time unit.
The values produced by NR and AAR did not evolve because
these heuristics make decisions without learning from the
environment. Conversely, the utilization produced by SARA
and DSARA increased rapidly from episodes 1 to 12 and
from episodes 1 and 55, when they converged, respectively.
After converging, DSARA obtained the maximum resource
utilization, which was 12%, 9%, and 5% higher than that
achieved by AAR, NR, and SARA, respectively.

Figure 6b depicts the resource utilization resulted from the
use of SARA and DSARA in core nodes, edge nodes, and
links. The utilization of edge nodes of SARA and DSARA
increased from episodes 1 to 12 and from episodes 1 to 55,
when they converged, respectively. The RL-agent and DRL-
agent learned to prioritize the NSLRs of the URLLC type
which used more edge resources than core resources. resulting
in increased profit, as shown in Figure 4a.

Figure 6c depicts the execution time of the algorithms AC
and RA for different arrival rates. The execution time of RL-
based and DRL-based AC algorithms were not significantly
affected by the load increment. DSARA-AC execution time
was higher than that obtained by SARA-AC because the DQN-
based algorithm must train two NNs. Figure 6c shows only
one line for RA, since SARA and DSARA use the same
allocation algorithm. The results show that the RA execution
time increased with the load; since a higher load means a
greater number of NSLRs arriving for processing in the RA
phase.

Fig. 7 Profit for different loads and topologies

Figure 7 depicts the profits obtained by DSARA, SARA,
NR, and AAR for three different topologies as a function
of arrival rates. Overall, the profits obtained by SARA and
DSARA were greater than those achieved by NR and AR.

The profit from SARA was greater than that achieved by AAR
and NR from 7, 15, and 25 requests for the 16, 32, and 64-
node topologies, respectively. These results are due to the fact
that in large substrate networks, the RL-agent and DRL-agent
needed to process many requests to achieve rewards to learn.
For instance, in the 16-node topology, a load of 7 requests
per time unit was sufficient for the agent to increase the
profit, while in the 64-node topology, a load of 25 requests
per time unit was needed. The profit obtained by DSARA
was greater than that achieved by SARA under 10, 20, and
30 requests per time unit for 16, 32, and 64-node topologies,
respectively. DSARA profits were a maximum of 3.2%, 3%,
and 3.6% higher than those for SARA on the 16, 32, and 64-
node topologies. These gains may seem to be low; however,
they can represent a significant monetary difference.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has proposed SARA and DSARA for the per-
formance of admission control and resource allocation for
NSLRs of eMBB, URLLC, and MIoT in the 5G core network.
SARA introduced a Q-learning based algorithm and DSARA
a DQN-based algorithm to select the most profitable NSLRs
from a set of NSLRs that arrived in given time windows.
These algorithms are model-free, meaning they do not make
assumptions about the substrate network as do optimization-
based approaches. DSARA achieved up to 3.6%, 7.9%, and
11.7% greater profit than that resulting from the use of SARA,
NR, and AAR, respectively. These results corroborate the fact
that SARA and DSARA are worth adopting by NSPs for
managing networking slicing.

In future work, we will enrich the AC mechanism with the
DRL latest enhancements and the RA mechanism with more
sophisticated strategies like the proposed in [47]. We also plan
to provide AC and adaptive RA for end-to-end slices involving
both the 5G radio access and core network.

REFERENCES

[1] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
slicing and softwarization: A survey on principles, enabling technolo-
gies, and solutions,” IEEE Comm. Surveys and Tutorials, vol. 20, no. 3,
pp. 2429–2453, 2018.

[2] K. Husenovic, I. Bedi, S. Maddens, I. Bozsoki, D. Daryabwite, N. Sund-
berg, M. Maniewicz et al., “Setting the scene for 5g: Opportunities &
challenges,” International Telecommunications Union, vol. 56, 2018.

[3] M. R. Raza, C. Natalino, P. Öhlen, L. Wosinska, and P. Monti, “Rein-
forcement learning for slicing in a 5g flexible ran,” Journal of Lightwave
Technology, 2019.

[4] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz,
J. Lorca, and J. Folgueira, “Network slicing for 5g with sdn/nfv:
Concepts, architectures, and challenges,” IEEE COMMAG, vol. 55,
no. 5, pp. 80–87, May 2017.

[5] J. F. Borin and N. L. S. da Fonseca, “Admission control for wimax
networks,” Wireless Comm. and Mobile Computing, vol. 14, no. 14, pp.
1409–1419, 2014.

[6] B. Han, V. Sciancalepore, X. Costa-Pérez, D. Feng, and H. D. Schot-
ten, “Multiservice-based network slicing orchestration with impatient
tenants,” IEEE Trans. on Wireless Communications, pp. 1–1, 2020.

[7] M. R. Raza, A. Rostami, L. Wosinska, and P. Monti, “A slice admission
policy based on big data analytics for multi-tenant 5g networks,” Journal
of Lightwave Technology, vol. 37, no. 7, pp. 1690–1697, 2019.

[8] M. Jiang, M. Condoluci, and T. Mahmoodi, “Network slicing manage-
ment & prioritization in 5g mobile systems,” in EW Conference. Oulu,
Finland: VDE, 2016, pp. 1–6.

11

[9] V. Sciancalepore, X. Costa-Perez, and A. Banchs, “Rl-nsb: Reinforce-
ment learning-based 5g network slice broker,” IEEE/ACM Trans. on
Networking, vol. 27, no. 4, pp. 1543–1557, 2019.

[10] J. X. Salvat, L. Zanzi, A. Garcia-Saavedra, V. Sciancalepore, and
X. Costa-Perez, “Overbooking network slices through yield-driven end-
to-end orchestration,” in ACM CoNEXT, 2018, pp. 353–365.

[11] R. Challa, V. V. Zalyubovskiy, S. M. Raza, H. Choo, and A. De,
“Network slice admission model: Tradeoff between monetization and
rejections,” IEEE Systems Journal, vol. 14, no. 1, pp. 657–660, 2019.

[12] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, K. Samdanis, and
X. Costa-Perez, “Optimising 5g infrastructure markets: The business of
network slicing,” in IEEE INFOCOM, Atlanta, GA, USA, 2017, pp. 1–9.

[13] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, and X. Costa-
Pérez, “A machine learning approach to 5g infrastructure market opti-
mization,” IEEE Trans. on Mob. Comp., vol. 19, no. 3, pp. 498–512,
2020.

[14] N. L. S. D. Fonseca and R. D. A. Façanha, “The look-ahead-maximize-
batch batching policy,” IEEE Trans. Multimedia, vol. 4, no. 1, pp. 114–
120, 2002.

[15] Q. Zhang, F. Liu, and C. Zeng, “Adaptive interference-aware vnf place-
ment for service-customized 5g network slices,” in IEEE INFOCOM,
2019, pp. 2449–2457.

[16] X. Li, C. Guo, J. Xu, L. Gupta, and R. Jain, “Towards efficiently
provisioning 5g core network slice based on resource and topology
attributes,” Applied Sciences, vol. 9, no. 20, p. 4361, 2019.

[17] S. Agarwal, F. Malandrino, C. F. Chiasserini, and S. De, “Vnf placement
and resource allocation for the support of vertical services in 5g
networks,” IEEE/ACM Trans. on Networking, vol. 27, no. 1, pp. 433–
446, 2019.

[18] W. Guan, X. Wen, L. Wang, Z. Lu, and Y. Shen, “A service-oriented
deployment policy of end-to-end network slicing based on complex
network theory,” IEEE Access, vol. 6, pp. 19 691–19 701, 2018.

[19] S. D’Oro, L. Bonati, F. Restuccia, M. Polese, M. Zorzi, and T. Melodia,
“Sl-edge: Network slicing at the edge,” in ACM Mobihoc, 2020, pp.
1–10.

[20] A. Huang, Y. Li, Y. Xiao, X. Ge, S. Sun, and H.-C. Chao, “Distributed
resource allocation for network slicing of bandwidth and computational
resource,” in IEEE ICC, 2020, pp. 1–6.

[21] T. De Cola and I. Bisio, “Qos optimisation of embb services in converged
5g-satellite networks,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 10, pp. 12 098–12 110, 2020.

[22] R. Li, Z. Zhao, Q. Sun, I. Chih-Lin, C. Yang, X. Chen, M. Zhao, and
H. Zhang, “Deep reinforcement learning for resource management in
network slicing,” IEEE Access, vol. 6, pp. 74 429–74 441, 2018.

[23] Q. Liu, T. Han, and E. Moges, “Edgeslice: Slicing wireless edge
computing network with decentralized deep reinforcement learning,”
arXiv preprint arXiv:2003.12911, 2020.

[24] G. Sun, G. O. Boateng, D. Ayepah-Mensah, G. Liu, and J. Wei,
“Autonomous resource slicing for virtualized vehicular networks with
d2d communications based on deep reinforcement learning,” IEEE
Systems Journal, vol. 14, no. 4, pp. 4694–4705, 2020.

[25] X. Zhang, B. Li, J. Peng, X. Pan, and Z. Zhu, “You calculate and i
provision: A drl-assisted service framework to realize distributed and
tenant-driven virtual network slicing,” Journal of Lightwave Technology,
vol. 39, no. 1, pp. 4–16, 2021.

[26] A. Aijaz, “hap − slicer: A radio resource slicing framework for 5g
networks with haptic communications,” IEEE Systems Journal, vol. 12,
no. 3, pp. 2285–2296, 2017.

[27] G. Sun, K. Xiong, G. O. Boateng, D. Ayepah-Mensah, G. Liu, and
W. Jiang, “Autonomous resource provisioning and resource customiza-
tion for mixed traffics in virtualized radio access network,” IEEE Systems
Journal, vol. 13, no. 3, pp. 2454–2465, 2019.

[28] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource man-
agement with deep reinforcement learning,” in ACM Workshop on Hot
Topics in Networks, Atlanta, GA, USA, 2016, pp. 50–56.

[29] N. Etsi, “Etsi gs nfv 002 v1. 1.1 network functions virtualization (nfv),”
Architecture and Framework: ONF, 2013.

[30] F. Giust, G. Verin, K. Antevski, J. Chou, Y. Fang, W. Featherstone,
F. Fontes, D. Frydman, A. Li, A. Manzalini et al., “Mec deployments
in 4g and evolution towards 5g,” ETSI White Paper, vol. 24, pp. 1–24,
2018.

[31] B. Görkemli, S. Tatlıcıoğlu, A. M. Tekalp, S. Civanlar, and E. Lokman,
“Dynamic control plane for sdn at scale,” IEEE JSAC, vol. 36, no. 12,
pp. 2688–2701, 2018.

[32] B. Chatras, U. S. Tsang Kwong, and N. Bihannic, “Nfv enabling network
slicing for 5g,” in ICIN, Paris, France, March 2017, pp. 219–225.

[33] A. Abouaomar, S. Cherkaoui, A. Kobbane, and O. A. Dambri, “A
resources representation for resource allocation in fog computing net-
works,” in IEEE GLOBECOM, 2019, pp. 1–6.

[34] M. Peng, S. Yan, K. Zhang, and C. Wang, “Fog-computing-based radio
access networks: issues and challenges,” IEEE Network, vol. 30, no. 4,
pp. 46–53, 2016.

[35] M. A. Habibi, M. Nasimi, B. Han, and H. D. Schotten, “A comprehensive
survey of ran architectures toward 5g mobile communication system,”
IEEE Access, vol. 7, pp. 70 371–70 421, 2019.

[36] G. Brown, “Service-based architecture for 5g core networks,” A Heavy
Reading white paper produced for Huawei Technologies Co. Ltd. Online:
https://www.huawei.com/en/press-events/news/2017/11/HeavyReading-
WhitePaper-5G-Core-Network, vol. 1, pp. 1–12, 2017.

[37] R. El Hattachi and J. Erfanian, “Ngmn 5g white paper,” NGMN Alliance,
February, 2015.

[38] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[39] A. D. Tijsma, M. M. Drugan, and M. A. Wiering, “Comparing explo-
ration strategies for q-learning in random stochastic mazes,” in IEEE
SSCI. Athens, Greece: IEEE, 2016, pp. 1–8.

[40] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and
J. Pineau, An Introduction to Deep Reinforcement Learning, 2018.

[41] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[42] K. Hornik, M. Stinchcombe, H. White et al., “Multilayer feedforward
networks are universal approximators.” Neural networks, vol. 2, no. 5,
pp. 359–366, 1989.

[43] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[44] J. G. Herrera, “Resource allocation in an nfv/sdn-based network archi-
tecture,” Ph.D. dissertation, Universidad de Antioquia, august 2018.

[45] A. Hagberg, P. Swart, and D. S Chult, “Exploriponerng network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[46] R. Albert and A.-L. Barabási, “Topology of evolving networks: local
events and universality,” Physical rev. letters, vol. 85, no. 24, p. 5234,
2000.

[47] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Trans. on networking, vol. 20, no. 1, pp. 206–219, 2011.

William F. Villota Jácome is a Ph.D. student in
computer science at the State University of Camp-
inas, Brazil. His research interests include network
and service management, 5G, network virtualization,
network softwarization, and machine learning.

Oscar M. Caicedo (GS’11–M’15–SM’20) is a
Full Professor at the Departamento de Telematica,
Universidad del Cauca. His research interests in-
clude network management, network virtualization,
software-defined networking, machine learning for
networking, 5G and beyond networks, and network
slicing.

Nelson L. S. da Fonseca (M’88–SM’01) is a Full
Professor with the Institute of Computing, State
University of Campinas, Brazil. He has authored or
coauthored more than 400+ papers and supervised
70+ graduate students. Currently, he serves as Senior
Editor for the IEEE Systems Journal, IEEE Com-
munications Magazine and IEEE Communications
Surveys and Tutorials. Dr. Fonseca served as Vice
President of Technical and Educational Activities,
Vice President of Publications and Vice President
Member Relations for the IEEE Communications

Society (ComSoc).

12

