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Abstract

Coming up with a system for early detection of machine damages and failures is one of the important challenges in the industrial

maintenance procedure to avoid additional costs and downtimes. To approach this goal, this paper uses the signal gathered by a

sensing system which employed a spintropic sensor to measure the magnetic field around the machine which somehow shows the

machine’s behaviour. Using this signal and focusing on analysing and processing the signal, this paper develops a data-driven

method to recognize signal patterns and subsequently detects anomalies. A challenging task that we succeeded to overcome in

this paper is recognizing relevant signal patterns without having any prior knowledge. An algorithm designed for this task is

therefore completely unsupervised which makes it consistent and suitable to apply it for the signals gathered for other types

of machines. Using both frequency and time domain information, the proposed algorithm, which utilizes signal processing and

machine learning techniques, is able to efficiently identify relevant signal patterns. Clustering results on the real data gathered

by the aforementioned sensor have shown the high accuracy of 99.38% in recognizing patterns. Furthermore, an anomaly score

measure is used and according to its distribution, anomalies are detected appropriately.

1



Developing a Data-Driven Unsupervised Pattern Recognition
Approach for Sensor Signal Anomaly Detection

Ensieh Iranmehr, Ricardo Ferreira, Member, IEEE, Tim Böhnert, and Paulo P. Freitas, Senior Member, IEEE

Abstract—Coming up with a system for early detection of
machine damages and failures is one of the important challenges
in the industrial maintenance procedure to avoid additional
costs and downtimes. To approach this goal, this paper uses
the signal gathered by a sensing system which employed a
spintropic sensor to measure the magnetic field around the
machine which somehow shows the machine’s behaviour. Using
this signal and focusing on analysing and processing the signal,
this paper develops a data-driven method to recognize signal
patterns and subsequently detects anomalies. A challenging task
that we succeeded to overcome in this paper is recognizing
relevant signal patterns without having any prior knowledge.
An algorithm designed for this task is therefore completely
unsupervised which makes it consistent and suitable to apply it
for the signals gathered for other types of machines. Using both
frequency and time domain information, the proposed algorithm,
which utilizes signal processing and machine learning techniques,
is able to efficiently identify relevant signal patterns. Clustering
results on the real data gathered by the aforementioned sensor
have shown the high accuracy of 99.38% in recognizing patterns.
Furthermore, an anomaly score measure is used and according
to its distribution, anomalies are detected appropriately.

Index Terms - Pattern Recognition. Clustering. Anomaly De-
tection, Sensor Signal, Hybrid Time-Frequency Domain Method.
Data-Driven.

I. INTRODUCTION

Anomaly detection refers to the tasks of identifying the
rare events or observations that are deviated from its normal
frequent behaviour. Today, anomaly detection is broadly used
in many research areas such as health monitoring [1], [2], [3],
[4], [5], [6] for example heart disease diagnosis [1] and neu-
romuscular disorders diagnosis [5], environment monitoring
such as sewer pipeline fault identification [7] and solar farms
anomalies detection [8], and machine condition monitoring
[9], [10] for example machinery fault diagnosis [11], [12],
[13], [14], [9]. Depending on the anomaly detection problem,
it is required to design algorithms which are able to identify
anomalies in different types of data such as image [15], [2],
[16], [17], video [7], sound signal [9] speech signal [18],
sensor signal [19], [5], text [20], spatio-temporal data [4],
streaming data [21] and time-series [22], [23]. Hence, it seems
that no general solution works for all of the anomaly detection
problems.

There are several anomaly detection techniques which are
model-based [24], [25]. It means prior physical knowledge for
modelling specific types of anomalies are required in model-
based methods. Machine learning techniques lead us to be
able to identify anomalies with a limited requirement of prior
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Fig. 1: Proof of concept demonstration for anomaly detection. Non-
invasive tools provide the data (signal) representing the machine’s
behaviour. The signal is then fed to an intelligent system to extract
the relevant patterns and anomalies.

physical knowledge. These are called data-driven methods [8],
[6], [26] which are principally rely on the information gathered
by data acquisition system.

Data-driven methods can be categorized into three main cat-
egories: 1) supervised [14], [1], [8], [27], 2) semi-supervised
[28], and 3) unsupervised [6], [26], [3], [23] anomaly detec-
tion. Since the labelled data, which is required for supervised
anomaly detection, is often not available or in other words,
collecting sufficient anomolous samples is infeasible in most
of the cases, many researchers have tried to detect anomalies
without labelled data. However, they were forced to take
advantage of supervised learning along with unsupervised for
other steps of their algorithms such as pattern recognition to
achieve better diagnosis [29], [30].

For anomaly detection, there are several machine learning
approaches categorized into simple statistical techniques [31]
such as Z-Score, interquartile range and histogram or dis-
tribution plot, density based methods such as local outlier
factor (LOF) [32], connectivity-based outlier factor (COF)
[33], distance-based methods [34] and isolation forest (iForest)
[35].

Detecting faults in machines is a hot topic nowadays due to
this fact that anomalies might cause a significant degradation
in machine’s performance leads to wasting huge amount of
money and time. Although several valuable works have been
published in the field of detecting specific faults in some
machines [11], [12], [13], [14], [9], it still seems a long way
ahead to reach an intelligent system which is able to early
detect anomalies automatically without having any knowledge
about the machines. In this paper, anomaly does not mean bad
behaviour, but rather rare/new/unexpected behaviour, which if
not detected may lead to bad behaviour of the machine. Hence,
this paper tries to get closer to this aim by designing a scheme
for machine early anomaly detection using machine learning
and signal processing techniques.

Fig. 1 demonstrates the proof of concept for non-invasive
machine early anomaly detection. A spintronic sensor based
on tunnel magnetoresistance (TMR) [36], [37] is placed nearby
a machine which measures a changing magnetic field around
that machine. This sensor was previously used in some other
proof of concepts [38], [39], [40] such as real-time interaction
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system for eye movement gesture control [38] which success-
fully classified eye movements. In this work, the TMR sensor’s
output signal which somehow shows the machine’s behaviour
is then fed into an intelligent system in order to detect signal
patterns and subsequently anomalies. The latter forms the basis
of present study in which an algorithm is proposed that can
recognize patterns and anomalies efficiently.

In this paper, it is assumed that we do not have any prior
physical knowledge about the machine. Hence, using machine
learning techniques, we want to get as much information as it
is possible from the TMR sensor’s output signal by developing
an unsupervised data-driven approach. Using this data, we
want to detect abnormal behaviour of the machine before dam-
age, failure or breakdown. Hence, the important task that we
are going to do in this work is to recognise signal patterns in
the input data unsupervisedly. Each signal pattern represents a
state of the machine. Thus, by recognizing the patterns, we are
able to understand the machine’s behaviour. Deviation from
average of signal patterns, informs that something unusual
has happened which leads us to predict the failure or damage
before it happens which is a very essential and challenging
step in maintenance.

There are many supervised and unsupervised pattern recog-
nition techniques including different types of neural networks
and machine learning techniques. Depending on the data
type and the problem to be solved, different algorithms have
been developed so far. Among them, feed-forward [41], [42],
recurrent [43] and reservoir neural networks [44], [45], [46]
should be mentioned as powerful tools to handle labelled data.
If we encounter a problem that data labels are not available,
we can benefit of some other techniques such as dimension
reduction [47], clustering [48], [49] to recognize patterns. The
latter along with some signal processing techniques was used
in our proposed algorithm since a completely unsupervised
solution for the problem is our desire. Using patterns extracted
from the input data, this paper used one of the simplest statis-
tical technique (Z-Score) to compute anomaly score. Besides,
another method was used to find rare pattern sequences which
were then considered as anomalies.

Concisely, the main contribution of this paper is: 1) De-
veloping a data-driven completely unsupervised algorithm for
recognizing patterns; 2) Using hybrid time-frequency domain
information in the proposed pattern recognition algorithm;
3) Utilizing some statistical techniques to find anomalies; 4)
Conducting a proof-of-concept validation on real data gathered
by the aforementioned sensor.

The paper is organized as follows. Section II focuses
on the intelligent system designed for patterns recognition
and anomaly detection. In this section, we explain in detail
the whole algorithm analysing hybrid time-frequency domain
information using signal processing and machine learning
techniques and also explains the algorithm used for finding
anomalous using some statistical techniques. Section III in-
cludes the results obtained from every step to achieve the goal.
Moreover, performance of the proposed algorithm relying
on several evaluation parameters is studied. We also discuss
advantages of the present study and express some future
works. Finally, we conclude the paper in section IV.

Fig. 2: Overview of the scheme (main steps, methods and input/output
of each step) designed to recognize patterns and anomalies.

II. PROPOSED SCHEME FOR PATTERN RECOGNITION AND
ANOMALY DETECTION

This section explains the scheme proposed for pattern
recognition and anomaly detection. An overview of the whole
algorithm designed for this work was demonstrated in Fig. 2.
In this figure, the main steps of the proposed algorithm, the
input/output of each step and the methods used for every step
was briefly shown. As it can be seen in Fig. 2, the proposed
scheme consists of 4 main steps: 1) feature extraction; 2) event
extraction; 3) signal pattern recognition; and 4) anomaly detec-
tion. By combining different methods and concepts, we were
able to provide a completely unsupervised data-driven system
for signal pattern recognition. Then, using the recognized
signal patterns and by using some simple statistical techniques,
anomalies were detected. In the following subsections, we
discuss about all of the steps in detail.

A. Extract Features from Signal

Here, the methods used in this paper to extract features
from the signal gathered by the TMR sensor is explained. This
main step consists of three steps. First, by designing a filter to
remove poweline harmonics, the signal is filtered and it is used
for time-domain analysis. The signal is segmented into the
same-sized windows. Each signal segment is then windowed
with a smoothing window function. Afterwards, to extract the
frequency domain features, each signal segment is transformed
into the frequency domain. Frequency components related to
powerline harmonics are removed and the remaining frequency
components are considered as features. Thus, we take advan-
tage of both ways (time and frequency) to look at the signal.

1) Filtering the signal: To filter the powerline harmonics,
a finite inpulse response (FIR) multi-band stop filter was
designed, shown in Fig. 3. As it can be seen from this
figure, only frequencies in some frequency bands related to the
powerline harmonics are attenuated and the other frequencies
are passed. The order of filter was considered NI = 400 and
to approach an optimal filter design, we used the equiripple
method. If x[n] is the input signal, h[n] is the impulse response
of the designed filter, the filtered signal y[n] is computed by
convolving x[n] with h[n] (Eq. 1). In this equation, bi denotes
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Fig. 3: FIR multi band stop filter designed for removing the 50 Hz
power line noise and its harmonics from the signal

the value of the impulse response at the ith instant of the
designed filter.

y[n] = x[n] ∗ h[n]

h[n] =
∑NI
i=0 bi.δ[n− i]

(1)

2) Segmenting the signal: The length of signal to be
transformed into the frequency domain is so large that we have
to subdivide it into smaller signal segments. Otherwise, the
desired frequency resolution can not be achieved. Depending
on the sampling rate frequency of the signal (Fs) and the fact
that to reconstruct a signal to its frequency domain, new length
is the next power of 2 from the signal window, the length
of each window was set (Sw). Otherwise, the signal will be
padded with trailing zeros. Lets assume that the number of
signal windows is Nw. Also, to avoid the edges of each signal
window from being lost, the signal windows should overlap
with each other for which an overlap of Ow was considered.

3) Transforming into frequency domain: To deconstruct
a time domain representation of a signal into its frequency
domain, Fast Fourier Transform (FFT) is used. Due to the
significant limitation of FFT based on the fact that FFT inter-
prets two endpoints of the signal connected to each other, we
improved the signal clarity using windowing before applying
FFT. Hence, we applied Hanning, a smoothing window func-
tion, since it is generally more satisfactory compared to other
window functions. Smoothing window reduces the amplitudes
of boundaries of the signal window toward zero, smoothly and
gradually. If x[n] is a signal window, the windowing result y[n]
is computed using Eq. 2 where w[n] is the Hanning window.
Afterwards, y is deconstructed to frequency components using
Eq. 3. Finally, removing the frequency bands of powerline
harmonics from the magnitude spectrum leads to extraction of
features. In the following, the windowed signal segments were
denoted by {w1, w2, ..., wNw} and the frequency components
of magnitude spectrum before and after removing powerline
harmonic frequencies were shown by {f i1 − f iNf |1 ≤ i ≤ Nw}
and {f i1 − f iN |1 ≤ i ≤ Nw}, respectively, where N < Nfft.

y[n] = x[n]× w[n]
w[n] = 0.5− 0.5× cos( 2πn

Nfft
), 0 ≤ n ≤ Nfft (2)

Y [k] =

Nfft−1∑
n=0

e
−i 2πknNfft y[n] (3)

B. Extracting Events

Here, how to extract events from the frequency domain
features and the time domain information is explained. A

dimension reduction technique is applied on the frequency
domain features to transform the high dimensional features to
low dimensional components. The extracted components are
then fed into a k-means method in order to be clustered. Using
some techniques based on cross-correlation (CC) method,
some of the event clusters are selected and then divided into
two different groups in order to distinguish between the signals
having similar frequency domain features but different time
domain information.

1) Reducing dimension of features: To transform high-
dimensional features into a low-dimensional features so that
the latter retains most of the meaningful information, we
can take advantage of dimension reduction techniques. We
used principle component analysis (PCA) [47] which is an
important linear technique that performs mapping of data to
a lower dimensions by maximizing the data variance in low
dimensional representation using singular value decomposition
(SVD). The number of principle components was determined
in such a way that low dimensional representation contains
a specific percent of total variability (VPC), denoted by
{PCi1 − PCin|1 ≤ i ≤ Nw}.

2) Clustering into event clusters: So far, each signal seg-
ment has been represented by its extracted principle com-
ponents. Here, how all of the signal segments cluster into
different event clusters using their PCs is explained. In other
words, we want to put the signal segments, whose behaviours
are much alike, in a same group. Hence, the similarity between
their corresponding PCs should be measured with an appro-
priate measure. Algorithm 1 presents the algorithm proposed
to cluster the signal segments. The proposed algorithm consists
of three parts: 1) first level clustering; 2) find relevant event
clusters; and 3) second level clustering.

In the first level clustering, all the signal segments cluster
into different groups. Depending on the initial centroids or
seeds, the clustering result will be different. Hence, we run the
k-means method in several iteration (Nitr), compute within-
cluster sums of point-to-centroid distance for each iteration
(Distwithin), find the iteration with minimum distance (I),
and finally, run the 1-iteration k-means using the centroids
computed in Ith iteration. For this purpose, we used the well-
known k-means which is a centroid-based clustering method
[49] for the first level clustering. Afterwards, the most frequent
events is considered as background.

So far, the clustering has been done based on frequency
domain information. What if in some signal segments, the fre-
quency components of magnitude spectrum are similar while
in the time domain are inverted? To overcome this challenge,
it is first required to find the relevant clusters and then run
the second level clustering algorithm on these clusters. To find
relevant event clusters, the transition probability between event
clusters is calculated. The relevant clusters are the ones that
have not happened too much and the variance of its transition
probabilities are not minimum or maximum.

In the second level clustering, each of the signal segments
belonging to the relevant cluster are compared with its first
signal segment using cross-correlation after normalization. Eq.
4 expresses the cross-correlation between two signals where
S1 denotes the conjugate of S1. If two signals are very
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Algorithm 1 Clustering the PCs into Event Clusters

Assumption
Number of Clustering Iterations = Nitr
Number of Event Clusters = k

Input/Output
Input: Principle Components (PCs) of signal segments
Input: Signal segments (Se)
Output: Event Clusters (CE)

Clustering Level 1
for every iteration i = 1 to Nitr do

Cluster PCs using k-means
Find within-cluster distances (Distwithin(i))

end for
I = argmini(Distwithin)
Run 1-iteration k-means using Ith centroids
Remove the most frequent events (background)
k ⇐ k − 1

Find Relevant Clusters
for every Event Cluster i = 1 to k do

for every Event Cluster j = 1 to k do
teij = prob(Sm+1

e ∈ CiE |Sme ∈ C
j
E)

end for
σ2
i = V ar(T = {teij}kj=1)

end for
I1 = argmaxi(σ

2)
I2 = argmini(σ

2)
RC = {1, ..., k}\(I1 ∪ I2)

Clustering Level 2
for i = 1 to Number of Relevant Clusters (|RC|) do

k ⇐ k + 1
for j = 1 to Number of Events in CiE do

Normalize Sie(j)
CCj = Sie(j)⊗ Sie(1)
Find Minima, Maxima and their Prominence (P )
if Pmin > α× Pmax then

CkE = CkE ∪ eventj
end if

end for
end for

similar, the most prominent maximum (Pmax) is significantly
larger than the most prominent minimum (Pmin), whereas the
opposite is true if the signals are inverted. As a result, if the
most prominent extremum is maximum, the signal segment
belongs to a same cluster. Otherwise, it belongs to a new
created cluster.

(S1 ⊗ S2)[n] =

+∞∑
m=−∞

S1[m]S2[m+ n] (4)

C. Recognizing Signal Patterns

The algorithm designed for recognizing signal patterns con-
sists of three steps, which are explained here. First, the consec-
utive events are subdivided into different segments depends on
their time of occurrences. Afterwards, the segments that were
repeated the most are found and clustered into appropriate
groups using a density-based clustering algorithm applied for

Algorithm 2 Clustering the frequent sequence segments into
Pattern Clusters

Assumption
Number of frequent sequence segments = Nf

Input/Output
Input: Signals of most frequent sequence segments (Sf )
Output: Pattern Clusters (CP )

Clustering Level 3
Mcc,Maxcc ⇐ 0
for every frequent sequence segment i = 1 to Nf do

for every frequent sequence segment j = 1 to Nf do
Normalize Sf (i) and Sf (j)
CCj = Sf (i)⊗ Sf (j)
Maxcc(i, j) = max(CCj)
Find Minima, Maxima and their Prominence (P )
if Pmax > α× Pmin then

Mcc(i, j) = 1
end if

end for
Meancc(i) = 1

Nf
Σj(Maxcc(i, j))

end for
µcc = 1

Nf
Σi(Meancc(i))

for every frequent sequence segment i = 1 to Nf do
if Meancc(i) < β × µcc then

Mcc(i) = 0
end if

end for
Cluster Mcc using DBSCAN (CP )

the cross-correlation results. By proposing a similarity mea-
sure, each segment is compared with the segments repeated a
lot in order to find the appropriate group to which this segment
belongs. After grouping all the segments, a dataset for each
pattern cluster containing the corresponding segments’ signal
patterns are provided.

1) Segmenting the consecutive events: So far, we could
identify the events that are presented by their corresponding
event clusters (CE) and their time of occurrences. Although in
some part of the signal, no event has been identified because
those part detected as background, on the contrary, some of
these events occurred consecutively. Here, the consecutive
events whose time of occurrence is near (less than t) are con-
sidered as a sequence. As a result, the events are transformed
into the fewer number of sequences, called sequence segments
(Seg).

2) Clustering the frequent sequence segments into pattern
clusters: Of all the sequence segments, some have happened
a lot. However, their corresponding signals might be very
similar. Hence, we first find the frequent segments and then
cluster them in order to put the similar frequent sequence
segments into a same group. Algorithm 2 expresses the way to
cluster these frequent sequence segments (third level cluster-
ing). In this algorithm, we first extract the features appropriate
for third level clustering, which is based on the results of
cross-correlation between corresponding signals (Sf ) of each
pair of frequent segments. By taking advantage of the same
method used in section II-B2, a matrix (Mcc) with the size
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of (Nf ×Nf ) is created. It is assumed that each row of Mcc

represents an observation with Nf features which are then
fed into a density-based spatial clustering of applications with
noise (DBSCAN) [50]. Due to its advantage not having to
specify the number of clusters, we chose DBSCAN method
for the third level clustering. DBSCAN clusters the observa-
tions based on two parameters epsilon and minpts which
indicate neighbourhood search radius and a minimum number
of neighbours, respectively. If some of the frequent sequence
segments represents noisy signals, then DBSCAN clusters
them in separate groups. To group these sequence segments in
one cluster, before applying DBSCAN, the maximum value of
cross-correlation is computed (Maxcc) and for each frequent
segment, its average (Meancc) is computed. If it is less than
a coefficient (β) multiplied by the total average (µcc), they are
considered as the first pattern cluster.

3) Grouping all the sequence segments using a similarity
measure: So far, we figured out how many pattern clusters
exists in the dataset. Here, we want to allocate each sequence
segment or its corresponding signal (signal pattern) to an
appropriate pattern cluster. For simplicity, instead of sequence
segments/signal patterns, we will say samples. Algorithm 3
expresses the way to measure the similarity of all samples to
pattern clusters and finally, consider it as a member of the most
similar pattern cluster set. The similarity measure is based on
both the frequency and time domain information, i.e. sequence
segments and their corresponding signal patterns. As it can
be seen from the algorithm, distance (Dist) between every
sequence segment and the frequent ones are computed, and
the index with minimum distance (I1) determines its label if
minimum distance is short and the cardinality of I1 equals to
1 (cardinality of sets were shown by |.|). Otherwise, we take
advantage of time domain analysis using the same method
mentioned in section II-B2 to measure similarity between
signal patterns and to find the index with maximum similarity
(I2). The intersection between I1 and I2 determines label of
the sample if it is not empty. Otherwise, the maximum index
of Maxcc determines the label. As a result, all samples are
recognized and now, we are able to make dataset for each
pattern cluster consisting of all the samples belonging to it.
It should be noted that the function used to compute (Dist)
between two sequence segments returns the minimum number
of elements which must be omitted from each of them or both,
so that the remaining elements of sequence segment are the
same.

D. Detecting Anomalies

Up to now, we explained all the details about recognizing
signal patterns. Here, the proposed method to find anomalies
relying on the results of previous steps is described. We are
supposed to detect two types of anomalies in this work: one
is the samples deviated from the norm of the pattern cluster
to which it belongs, and two is the sequence of patterns
which happen rarely. For detecting the first type of anomaly,
we compute the anomaly score and by using a threshold,
anomalies are found. Whereas for the second type of anomaly,
we compute the transition probability between each pair of

Algorithm 3 Grouping all the sequence segments into Pattern
Clusters

Assumption
Number of all segments (Seg) or samples = Ns
Number of frequent segments (Segf ) = Nf
Number of Pattern Clusters (CP ) = Nc

Input/Output
Input: Segments (Seg) & their corresponding signals (S)
Output: Predicted label of ith segment (Li)

for every segment i = 1 to Ns do
for every frequent segment j = 1 to Nf do

Find distance (Dist) between Seg(i) and Segf (j)
end for
I1 = argminj(Dist)
if |I1| = 1 &min(Dist) is short then

Li = {k| 1 ≤ k ≤ Nc, I1 ∈ CkP }
else

for every frequent segment j = 1 to Nf do
Normalize S(i) and Sf (j)
CCj = S(i)⊗ Sf (j)
Find Minima, Maxima and their Prominence (P )
Vcc ⇐ 0
if Pmax > α× Pmin then

Vcc(j) = 1
end if

end for
I2 = argmaxj(Vcc)
if I1 ∩ I2 6= ∅ then

I = I1 ∩ I2
if |I| = 1 then

Li = {k| 1 ≤ k ≤ Nc, I ∈ CkP }
else

Count elements of I belonging to CP s (NEI )
Li = argmax(NEI)

end if
else

for every frequent segment j = 1 to Nf do
Maxcc(j) = max(CCj)

end for
I = argmaxj(Maxcc)
Li = {k| 1 ≤ k ≤ Nc, I ∈ CkP }

end if
end if

end for

pattern clusters. In this way, the most frequent sequences of
patterns and also the sequences which happens rarely can be
found using the transition probability. Algorithm 4 expresses
how to identify anomalies.

1) Detecting anomalous samples: Sometimes, the samples
are categorized in a wrong cluster or differ significantly from
the corresponding cluster norm. If the latter happens, it may be
due to the poor condition of the machine or in other words, it
may indicates a malfunction of the machine that can lead to the
machine’s breakdown. Hence, detecting anomalous samples is
a very important task to prevent failures. To detect anomalous
signal patterns or sample, a simple statistical method based
on Z-Score is used. Eq. 5 expresses how to compute Z-
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Algorithm 4 Detecting Anomalies

Assumption
Number of Pattern Clusters (CL) = Nc
Total number of samples (s) = Ns

Input/Output
Input: Signals of all samples (Si) belonging to CiP
Input: Predicted label of mth samples (Lm)
Output: Anomalies (A)

Anomalous Pattern
for every cluster i = 1 to Nc do

Zero-padding the signals belonging to ith cluster
µi = Si(1)
for every sample in ith cluster j = 1 to Nsi do

Find lag between Si(j) and µi

Shift µi by lag
µi = µi + Si(j)

end for
µi = µi

Nsi
end for
for every cluster i = 1 to Nc do

for every sample in ith cluster j = 1 to |CiP | do
D(j) = (Si(j)− µi)2

end for
σi =

√
Σj(D(j))
Nsi

for every sample ith cluster j = 1 to Nsi do
Score =

√
D(j)

σi

end for
end for
Anomalous Sequence of Pattern
for every cluster i = 1 to Nc do

P i =
|CiP |
Ns

for every cluster j = 1 to Nc do
tij = P i × prob(sm+1 ∈ CiP |sm ∈ C

j
P )

end for
end for
T = {tij}Nci,j=1

RarePS = {(i, j)| tij < θ}
for every sample m = 1 to N do

if Score > ν or (Lm, Lm+1) ⊆ RarePS then
A = A ∪ Si

end if
end for

Score where µ, σ and x represent mean, standard deviation
and a sample, respectively. The scoring method used here is
similar but slightly different. The difference is that the score
is calculated in such a way that is always positive.

ZScore =
x− µ
σ

(5)

In the method used here, the average of all samples be-
longing to each pattern cluster is computed. Afterwards, the
deviation of each signal pattern from the average indicates
the degree of anomaly. As it can be seen from Algorithm 4,
to compute the average of all signal patterns, all the signal
patterns must be changed to a same size using zero-padding
which simply increases the signal’s length by adding zeros to

Fig. 4: Steps to extract information from the signal. A small part of
original signal was shown here filtered using the designed FIR filter to
be suitable for time domain analysis. On the other hand for frequency
domain analysis, the original signal were segmented to the same-sized
windows each of which was then windowed by a Hanning window.
Afterwards, it was converted into the frequency domain using FFT.
The magnitude spectrum of FFT represents the frequency components
(FCs). The FCs relating to the power line harmonics were removed
and the remaining FCs were considered as features.

the start and end of it. Then, by using cross-correlation, the
delay (lag) between signals is computed. By shifting one of
the signal as much as the computed lag and then summing
all the same-sized shifted signals, the average of ith pattern
cluster samples (µi) and the standard deviation of ith pattern
cluster are computed. If the Score is less than a threshold (ν),
the sample deviation from the mean is small and it will be
considered as normal or non-anomalous sample. Otherwise,
the deviation from mean is large and we can consider it as
anomalous sample.

2) Detecting anomalous pattern sequences: It is worth
mentioning that the disposition of signal patterns in relation to
each other is important because each signal pattern indicates
a specific state or mode of the machine. Hence, the order
of signal patterns recognised in the data can be referred
to basic information of the machine’s behaviour. Here, we
are going to distinguish common signal patterns from rare
signal patterns, which could indicate anomalous sequences.
For this purpose, state transition probability between every
pair of pattern clusters occurring consecutively is computed.
The state transition probability between ith and jth pattern
clusters is computed by prob(sm+1 ∈ CiP |sm ∈ CjP ), that
indicates the conditional probability of the (m+ 1)th sample
belonging to CiP given the (m)th sample belonging to CjP . By
computing the probability of each pattern cluster occurring and
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multiplying with its corresponding state transition probability,
transition probability matrix (T = {tij}Nci,j=1) is computed.
The matrix T indicates the occurrence probability of different
pairs of pattern clusters. In this algorithm, |CiP | is cardinality
of the set of ith pattern cluster. If the transition probability
between pairs is less than a threshold (θ), i.e. these transitions
are rarely happened and they may be anomalous sequences.
Anomalous sequences may be the order of more than two sig-
nal patterns. In this case, we can find the transition probability
between more than 2 pattern clusters and find the ones less
than threshold as rare pattern sequences.

III. RESULTS AND DISCUSSION

In this section, performance of the system designed to
recognize patterns and detect anomalies is presented. The
simulation results of each main step are shown separately
and also the signal patterns which are detected as anomalies
are shown. To fully investigate performance of the proposed
system, we labelled the patterns manually and then, using
some evaluation parameters, the actual results was compared
with the desired ones. Finally, the advantages of the proposed
approach and some future works are discussed.

A. Results of the algorithm’s main steps
Here, the results of proposed algorithm’s main steps are

depicted. Fig. 4 shows the results of every single step to extract

frequency features for frequency domain analysis as well as
filtered signal for time domain analysis. As it is seen, for
frequency domain analysis, the original signal was first seg-
mented and windowed to the Nw same-sized windows which
the amplitude of their boundaries were gradually decreased.
Each window was transformed into frequency components
(FCs) using FFT and the FCs related to power line harmonics
were then removed. The remaining components indicates the
frequency domain features. As a result, we have Nw window
segments each of which represented by N features.

Fig. 5 shows the results of first and second level clustering
of the principle components (PCs) to extract events. As it is
seen, the features of each window segment was transformed
into the lower dimensions. Each window segment was there-
fore represented by its corresponding n dimensional principle
components. The window segments were then clustered using
the k-means method that its result was shown in the scatter
plots. The window segments belonging to a specific cluster
were shown by an individual sign and colour. In the first
level clustering, the window segments were first clustered into
different groups. The optimal value of k is automatically de-
termined by an internal evaluation of the clustering for a range
of different values of k. Here, k = 5 was determined by the
algorithm with one cluster representing the background, which
leaves 4 event clusters. However, during the conversion into
the frequency domain, some time domain specific information

Fig. 5: Displaying the results of how to extract different events from the features (FC). First, PCA reduced the dimension of each window’s
features and transformed it to a smaller number of components (PC). The PCs extracted from all windows was then clustered into k event
clusters (Clustering Level 1). Then, using a proposed method based on cross-correlation, some of the clusters were chosen and each of which
was then split into 2 different clusters (Clustering Level 2), leading to more than k event clusters.

Fig. 6: Depiction of the steps to recognize signal patterns. The consecutive events were segmented based on their time of occurrences. Then,
the k-most frequent segments (k = 16 in this case) were selected. By running cross-correlation between each pair of frequent segments’
corresponding signals and then by taking advantage of DBSCAN method, the similar items were grouped automatically into clusters.
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Fig. 7: Depiction of the pattern clusters’ seeds or averages and displaying some non-anomalous, soft-anomalous and anomalous samples.
The average of all signal patterns belonging to every pattern cluster were computed, shown in first column. Then, by computing anomaly
score based on Z-Score, a non-anomalous, soft-anomalous and anomalous sample belonging to each pattern cluster were shown in second,
third and forth columns, respectively.

Fig. 8: Anomaly distribution of every pattern cluster. The histogram
of anomaly score considering all of the signal patterns belonging to
each pattern cluster was displayed here. Also, a density function fitted
to each histogram was drawn to show the anomaly score distribution.

got lost. For example, this dataset shows a characteristic
peak that is either positive or negative in the time domain,
but indistinguishable in the frequency domain. Thus, using
the proposed cross-correlation-based method in second level
clustering, these different behaviours become distinguishable.
It is worth mentioning that this method is not specific for this
dataset and it could be applied to a general dataset. Because
if all of the samples belonging to a cluster are similar in time
domain, all of them will be remained in the same cluster.

In this dataset, the relevant clusters were this occurred are
Cluster 3 and Cluster 4 and they were split into two clusters
using the cross-correlation based method resulted in the total 6
different clusters (CE), as shown in Fig. 5. As a result, except
the window segments related to the background, others were
considered as different types of events.

Considering the time of events occurrences, they were
segmented into sequence segments which were then used to
find the frequent ones. Fig. 6 shows the corresponding signals
of Nf = 16 most frequent sequence segments which were
then clustered using DBSCAN method. As it can be seen, they
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Fig. 9: Displaying several examples of normal and anomalous sequences of signal patterns. a) Two most repetitive sequences detected as
normal sequences, b) some rare sequences detected as sequence anomalies.

have been clustered into 5 different pattern clusters (CP ). By
measuring similarity between each sequence segment and the
frequent ones, it was grouped into one of the 5 pattern clusters,
which led to the recognition of all signal patterns.

To find anomaly, the average of all signal patterns existing
in each pattern cluster was calculated and the deviation of
each signal pattern from the mean indicates degree of anomaly.
The mean or seed (µ) of second to fifth pattern clusters have
been shown in the first column of Fig. 7. For each pattern
cluster, a non-anomalous or normal, a soft-anomalous and an
anomalous sample have been shown. Higher score indicates
higher probability of an anomalous signal pattern. From all the
samples for non-anomalous signal patterns, it is obvious that
the anomaly score less than a value leads to non-anomalous
samples. Whereas, the signal patterns with anomaly score
more than this value can be considered as soft-anomalous
and anomalous samples depending on the anomaly score
distribution of each pattern cluster. The anomaly distribution
of each pattern cluster has shown in Fig. 8. As it can be
seen, the total standard deviation of first, third and fifth pattern
clusters are much smaller than second and forth ones, leading
to narrower distributions. Moreover, it is seen that the anomaly
score range in the second and fourth pattern clusters are less
than the rest. According to these distributions and the score
range for each pattern clusters, we can set the parameters
to find soft-anomalies and anomalies. If density curve and
its most prominence local maximum are denoted by D and
Dmax, respectively, the thresholds to find soft-anomalies and

anomalies can be computed using Eq. 6 and Eq. 7.

νL = Score(D
max

γ1
)

νH = max(Score)−νL
γ2

+ νL
(6)

νL ≤ Score ≤ νH , 7→ SoftAnomalies
Score > νH , 7→ Anomalies

(7)

It is also clearly seen in Fig. 8 that the density curve of
cluster 2 and 4 have two peaks unlike the other clusters which
have one peak. This happened due to the two different width of
signal patterns belonging to each of these clusters. It should be
noted that because of this, the mean of these pattern clusters
(Fig. 7) are a little different from their corresponding non-
anomalous samples. In this case, two set of thresholds should
be set, each of which should be applied for the corresponding
samples. For this purpose, two representative samples, each
of them represents a peak, are compared with all the samples
belonging to the cluster and the samples are grouped to a
more similar one (G1 or G2) using a cross-correlation based
method. If two most prominence local maxima and the most
prominence local minimum are denoted by Dmax

1 , Dmax
2 and

Dmin, respectively, soft-anomalies and anomalies samples can
be computed using Eq. 8 and Eq. 9. Using the parameters
specified in Table II, the threshold values were computed and
mentioned in Table I and based on these values, the soft-
anomalous and anomalous samples were found.

Also, very rare sequences of signal patterns are considered
as sequence anomalies. As mentioned earlier, they were found
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TABLE I: Anomaly score thresholds for different pattern
clusters automatically extracted based on the distributions

Pattern Clusters 1 2 3 4 5
νL1 0.42 0.93 1.1 0.91 0.8

νH1 1.19 1.06 2.49 1 2.31

νL2 - 1.3 - 1.26 -
νH2 - 1.53 - 1.51 -

using the probability transition matrix between different pat-
tern clusters. The sequence anomalies were extracted and their
corresponding signals can be shown as anomalous sequences.
Some of the anomalous sequences have been shown in Fig.
9.b. As seen in this figure, each anomalous sequence may con-
sists of different number of signal patterns. The sequence of
corresponding pattern clusters and their anomaly scores have
been displayed above each sequence. To see the difference
between these rare sequences and the normal sequences, two
most repetitive sequences of signal patterns have been shown
in Fig. 9.a.

νL1 = Score(Dmin)− |Score(D
min)−νL1|
λ1

νH1 = νL1 + |Score(Dmin)−νL1|
λ2

νL2 = Score(D
max

γ1
)

νH2 = max(Score)−νL
γ2

+ νL2

(8)

((sample ∈ G1 & νL1 ≤ Score ≤ νH1) or
(sample ∈ G2 & νL2 ≤ Score ≤ νH2)) 7→ SoftAnomalies

((sample ∈ G1 &Score > νH1) or
(sample ∈ G2 &Score > νH2)) 7→ Anomalies

(9)

B. Evaluation Process

All of the parameters necessary for the proposed algorithm
have been specified for this real data and shown in Table
II. Also, the sampling rate and the duration of dataset has
been shown. Since the ultimate aim of this work is to figure
out the machine’s behaviour quite unsupervisedly, a small
part of dataset (about 10 %), that is unlabelled, was used
in the training stage in order to extract effective and helpful
information, which were then used in the test stage. The
information extracted from training stage and used in test stage
is the coefficients of PCA, the centroids of first level clustering,
the clustering results of third level and the mean of pattern
clusters. Using this information, we could diagnose anomaly.

To evaluate the scheme designed for signal pattern recog-
nition, we used different evaluation parameters including Ac-
curacy (Acc), Precision (Prec), Sensitivity (Sen), Specificity
(Spec), F1Score (F1S) and Purity (Pu) which are expressed
by the equations in Eq.10. In these equations, the number of
true positive, false positive, true negative and false negative
are denoted by TP , FP , TN and FN . Also, Nd is the total
number of signal patterns, Nc is the number of clusters, CiP
is ith pattern cluster and Targetj is the desired target of jth

pattern.
The performance of the proposed clustering model using the

above evaluation parameters have been shown in Table III. All
of these parameters were computed for training and test sets.

TABLE II: Dataset Information and Parameters Specification

Dataset Information
Fs 1200 Hz Duration 22 Hours

Parameters Specification
Sw 0.85 Sec Ow 75% Nfft 1024

Vpc 95% k 5 Nitr 20

epsilon 1 minpts 2 t Sw

α 1.5 Nf 26 β 0.8

θ 0.5% γ1 15 γ2 5

λ1 10 λ2 3

TABLE III: The clustering results of the training and test sets
using the proposed algorithm

Acc(%) Prec(%) Sens(%) Spec(%) Pu(%) F1S(%)

Training 99.37 99.15 99.08 99.85 99.37 99.11

Test 99.38 99.24 99.27 99.85 99.38 99.21

It is clearly seen from this table that the proposed algorithm
for recognizing signal patterns has excellent performance in
both training and test sets. The clustering accuracy of 99.38 %
achieved on test set confirms that the model was trained
correctly without knowing anything about the labels.

Acc = TP+TN
TP+TN+FP+FN

Prec = TP
TP+FP

Sens = TP
TP+FN

Spec = TN
TN+FP

F1S = 2
1

Sens+ 1
Prec

Pu = 1
Nd

∑Nc
i=1maxj(C

i
P ∩ Targetj)

(10)

Moreover, confusion matrix was computed for training and
test sets individually and the results have been shown in
Table IV. The target clusters was compared with the predicted
output clusters. The diagonal cells indicate the number of
total observations which were correctly recognized. Whereas,
the off-diagonal cells indicate the number of observations
which were incorrectly clustered. In these both confusion
matrices, the far right columns show the precisions of every
clusters, while the lowermost rows show the sensitivity of
every clusters. The overall accuracy was shown in bottom right
cell.

Furthermore, using the proposed method finding the soft-
anomalies and anomalies of signal patterns, the number of
samples in every cluster detected as soft-anomalies and anoma-
lies were brought in Table V. Using the total number of
samples belonging to each pattern cluster, the percentage of
soft-anomalies and anomalies were computed and shown. It
can be seen from this table that 3.88 % and 5.41 % of all the
signal patterns were detected as anomalies and soft-anomalies,
respectively.
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TABLE IV: Confusion Matrix for training and test sets

Training Set
Target Cluster

O
ut

pu
t

C
lu

st
er

1 2 3 4 5 %
1 80 1 0 1 0 97.56
2 0 199 0 0 0 100
3 0 0 155 0 0 100
4 1 0 0 198 0 99.50
5 2 0 0 0 152 98.70
% 96.39 99.50 100 99.50 100 99.37

Test Set
Target Cluster

O
ut

pu
t

C
lu

st
er

1 2 3 4 5 %
1 776 10 1 2 2 98.10
2 0 1457 0 0 0 100
3 11 2 1136 0 0 98.87
4 1 0 0 1471 0 99.93
5 7 1 0 0 1144 99.31
% 97.61 99.12 99.91 99.86 99.83 99.38

TABLE V: The number and percentage of soft-anomalous and
anomalous samples in entire dataset.

Pattern Clusters 1 2 3 4 5 Total
Total (Num) 873 1656 1304 1671 1306 6810

Soft Anomalies (Num) 160 81 10 20 98 369

Soft Anomalies (%) 18.33 4.89 0.77 1.19 7.5 5.41

Anomalies (Num) 128 39 23 53 21 264

Anomalies (%) 14.66 2.36 1.76 3.17 1.61 3.88

C. Discussion and Future Works

Applying the proposed algorithm on the real data gathered
by a sensor, led us to conducting the proof of concept
validation. Also, the high accuracy, precision, sensitivity and
other evaluation parameters demonstrate high efficiency of the
proposed algorithm in pattern recognition. Considering both
time and frequency domain information in different steps of
the proposed algorithm enabled us to achieve these promising
results. The time domain information was used to distinguish
upward and downward shape of the patterns, which signifi-
cantly increased accuracy and evaluation of other parameters.
The anomalies could be detected efficiently because of its
dependence to the results of pattern recognition. Also, it should
be noted that the proposed algorithm requires reasonable
resources, which can be easily run in real-time.

An important advantage of the proposed algorithm relates
to its learning which is totally unsupervised and will be useful
in cases where no prior knowledge is available. This property
made the algorithm suitable for analysing other signal data and
subsequently recognizing signal patterns. One of the future
work we are going to do is gathering more data from the
aforementioned sensor to figure out how well the proposed
algorithm works for other signal data. It is worth mentioning
that the algorithm was designed in such a way to have the
fewest parameters and least need to initialize them. However,
to increase its generalization, we are going to use some
optimization algorithm to set the parameters automatically.

Other advantage of the proposed algorithm relates to the size
of the training set compared to the test set. We used almost 2
hours of data for training stage and the rest (about 20 hours)
for the test stage. Actually, we could figure out the machine’s

states and their transitions just by using a small amount of
data. Using this information extracted from the training stage,
we are able to analyse all the data that will be collected for the
same machine. Moreover, as it can be seen from the accuracy
of the results, the training of the algorithm on the training set
was representative for the test set. In addition the unsupervised
learning, enables the algorithm to train on easily available
data without prior knowledge of the system and achieve high
reliability.

In the future, we plan to associate the detected anomalies
with the specific behaviours of this machine and enable ma-
chine operators to teach an additional algorithm layer, which
anomalies are relevant for machine maintenance and failure.

IV. CONCLUSION

In this paper, a data-driven intelligent system has been de-
veloped for the non-invasive machine early anomaly detection
to avoid machines’ breakdown. The approach proposed for
this system is totally unsupervised, depending only on the
input data. The algorithm consists of different levels so that the
input of each level of data analysis is the results of previous
level. The cascaded structure of the proposed algorithm which
was designed by taking advantage of hybrid time-frequency
information, created a strong and robust clustering method that
led to a high accuracy in pattern recognition. The recognized
patterns were then used for anomaly detection relying on the
deviation from the norms of patterns and their sequences. The
proof of concept was evaluated using a real data gathered by
the spintropic TMR-based sensor and the results shows high
performance of the proposed algorithm. One advantage of this
work relates to the extraction of useful information from a
very small amount of data, which allows the algorithm to be
performed on a huge amount of unseen data successfully. As
a result, this paper provided an interesting approach for rec-
ognizing signal patterns and thereupon identifying anomalies.
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