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Abstract

Automatic Modulation Classification (AMC) receives significant interest in the context of current and future wireless commu-

nication systems. Deep learning emerged as a powerful AMC tool, as it allows for the joint learning of discriminative features,

and signal classification. However, the optimization of Deep Neural Network (DNN) architectures for AMC is a manual and

time-consuming process that requires profound domain knowledge and much effort. Moreover, most proposed solutions focus

mainly on classification accuracy, while optimization of network complexity is neglected. In this paper, we propose a novel

bi-objective memetic algorithm, BO-NSMA, to search optimal DNN architectures for AMC to maximize classification accuracy

and minimize network complexity. We show that BO-NSMA, with a small initial population of six individuals and only ten

generations, finds a DNN architecture that outperforms all human-crafted State-of-the-Art (SoA) models. BO-NSMA discov-

ered the first low-complexity Convolutional Neural Network (CNN)-based model, which achieves slightly better performance

than costly Recurrent Neural Network (RNN)-based approaches, allowing a 2.8-fold reduction in network complexity with 0.7%

performance improvement. Compared to its counterparts from Network Architecture Search (NAS), BO-NSMA finds the best

architecture, which achieves up to 18.24% accuracy gain and up to a 78.71-fold reduction in network complexity.
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Abstract—Automatic Modulation Classification (AMC)
receives significant interest in the context of current
and future wireless communication systems. Deep learn-
ing emerged as a powerful AMC tool, as it allows for
the joint learning of discriminative features, and signal
classification. However, the optimization of Deep Neural
Network (DNN) architectures for AMC is a manual and
time-consuming process that requires profound domain
knowledge and much effort. Moreover, most proposed
solutions focus mainly on classification accuracy, while
optimization of network complexity is neglected. In this
paper, we propose a novel bi-objective memetic algorithm,
BO-NSMA, to search optimal DNN architectures for AMC
to maximize classification accuracy and minimize network
complexity. We show that BO-NSMA, with a small initial
population of six individuals and only ten generations, finds
a DNN architecture that outperforms all human-crafted
State-of-the-Art (SoA) models. BO-NSMA discovered the
first low-complexity Convolutional Neural Network (CNN)-
based model, which achieves slightly better performance
than costly Recurrent Neural Network (RNN)-based ap-
proaches, allowing a 2.8-fold reduction in network com-
plexity with 0.7% performance improvement. Compared to
its counterparts from Network Architecture Search (NAS),
BO-NSMA finds the best architecture, which achieves up
to 18.24% accuracy gain and up to a 78.71-fold reduction
in network complexity.

Index Terms—Modulation Classification, Deep Learn-
ing, Network Architecture Search, Multi-objective Genetic
Algorithm.

I. INTRODUCTION

AUTOMATIC MODULATION CLASSIFICA-
TION (AMC), an intermediate step between

signal detection and demodulation, is an integral
part of designing an intelligent transceiver for future
wireless communication with critical applications
in Dynamic Spectrum Access (DSA) and resource

allocation. Furthermore, it is a key enabler for many
other spectrum sensing applications such as signal
monitoring, intruder detection, jammer identifica-
tion, and numerous regulatory and defense appli-
cations.

Due to its ability to jointly learn discriminative
features from raw In-phase/Quadrature (I/Q) data
and perform signal classification based on them,
Deep Learning (DL) has been widely adopted for
AMC. We distinguish two streams of DL-based
methodology: RNN [1] and CNN [2,3]. Due to
RNNs’ higher computational cost and memory re-
quirements, CNNs have been preferred for classifi-
cation tasks. Deeper CNN architectures have a van-
ishing gradient problem, making them not prefer-
able for complex classification tasks [4] because the
network performance degrades with depth. Recently,
inspired by RNN, new CNN based models such
as Residual Neural Network (ResNet) [5] and Ag-
gregated Residual Transformations for Deep Neural
Networks (ResNeXt) [6] have been proposed. These
models outperform SoA CNN models, as shown for
the ResNet-based AMC model in [2] and ResNeXt-
based AMC model in [4]. ResNet and ResNeXt are
modularized architectures where the pre-designed
blocks are stacked. Several designs of ResNet
blocks [5] and ResNeXt blocks [6] have been pro-
posed. Despite the great successes in using DNN
for AMC, designing efficient and accurate DNN
architectures is usually a manual, time-consuming
process that requires profound domain knowledge.
Moreover, many AMC applications run in real-time
and require fast inference. The following challenges
make this process even more difficult.

Immense search space: Even for a simple CNN
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architecture, the search space is very large, as the
degrees of freedom include the number of layers,
the number of filters per layer and the filter size.
Given ResNet-18 with 18 layers (16 Convolution
(Conv) and 2 pooling layers). A typical architecture
optimization task for ResNet-18 would consider
16 layers with 8, 16, 32, 64 or 128 filters and a
filter size of 1 or 3. This creates a large search
space of (5 × 2)16 = 1016 possible architectures.
A random search of such space can take days or
weeks. Recently, two heuristic approaches based
on Reinforcement Learning (RL) [7,8] and Genetic
Algorithm (GA) [9]–[11] have been widely adopted
in computer vision to automate the NAS. While the
former uses RL to guide the search, the latter is
a population-based metaheuristic reflecting natural
selection [12]. RL-based approaches [7,8] suffer
from prohibitively-high computational cost and are
not readily applicable to Multi-Objective Optimiza-
tion Problems (MOOPs) [13]. In contrast, GAs are
highly-efficient for MOOPs [12]. NAS has seldom
been considered for AMC [14,15].

Dataset-centric solutions: Most existing human-
crafted AMC DNN architectures were optimized
for a single set of modulations [1,16]. Adding
new modulation formats and/or changing the input
features are highly likely to deteriorate the DNN
performance [4]. Thus, new target classes trigger
re-optimization of the architecture. To make this re-
optimization tractable, we need to design a flexible
search space and encoding scheme for GAs to
make them robust to input feature changes. Most
of the GAs for NAS neglect this [11,14], and
require a new search space and encoding scheme
when the input feature space changes. [11] proposed
pre-designed blocks, which fails on input feature
changes as shown later. [14] proposed a shallow 2-
layers network architecture that fails on complex
feature spaces as shown in [4].

Maximizing classification accuracy, while ne-
glecting network complexity: All human-crafted
AMC DNN architectures have focused on maxi-
mizing the classification accuracy while reducing
network complexity has been neglected. However,
such the human-crafted DNN architectures might
not be optimized in terms of the connections and
hyperparameters values. As already mentioned, GA
provides a few techniques to solve MOOP, but GAs
applied for AMC’s NAS are still single-objective
driven [14,15].

Besides RL and GA, there are a few alterna-
tive approaches to optimize DNN architecture. In
[17], a human-crafted DNN is pre-selected, and
then greedy criteria-based pruning is applied to
reduce the number of trainable parameters, which is
achieved by pruning unimportant features per layer
basis. The performance of this method depends
largely on the human-crafted initial architecture.
Knowledge distillation was considered for NAS
in [18,19], where DNN architecture compression
is done by transferring knowledge from a trained
teacher network to a smaller and faster student
model. This method has a significantly lower com-
putational cost than GA and may arrive at a sub-
optimal solution as it does not explore the entire
search space. For AMC applications, it is very
important to have DNN architectures with high
classification accuracy while keeping the complexity
low. The time consumption for searching for such
architecture is not critical, allowing us to apply the
GA approach, which might provide optimal global
architecture.

In this paper, we propose a novel AMC algorithm
called BO-NSMA (Bi-objective Network Search
using Memetic Algorithm) to optimize both classi-
fication accuracy and network complexity. Memetic
algorithm refers to an extension of GA with Local
Search (LS) [12]. Optimization of network com-
plexity considers both the connections and hyper-
parameters of variable-length network architecture.
The key contributions of this paper are summarized
below:
• We are the first to apply multi-objective GA-

based NAS for AMC. We identify the key compo-
nents of our proposed BO-NSMA, such as Fitness
Sharing (FS), LS, and self-adaptivity of mutation
and crossover rates that enable it to find a diverse
population close to the Pareto optimal front.
• We explore the impact of the search space

and encoding on GA convergence rate and AMC’s
performance.
• We demonstrate that BO-NSMA can find a

diverse population very close to the Pareto optimal
front for a small set of 6 individuals. We show that
BO-NSMA outperforms all human-crafted DNN-
based AMC by yielding up to cc. 2% gain in
accuracy and up to cc. 5-fold reduction in network
complexity.
•We create the termination criteria that efficiently

balances the trade-off between search duration and
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gained performances.

II. RELATED WORK

GAs have been successfully used for NAS in
image processing [9,11,20]. By encoding the net-
work architecture as a chromosome or individual,
GA methods strive to optimize the weights of the
DNN architecture and/or the connections and hyper-
parameters of the DNN architecture. We can cate-
gorize the literature in GA for NAS in two main
streams.

1) Collaborative combination: GAs optimize
both the connections and hyperparameters, and
weights of the DNN architecture by using single
or multiple GAs. However, all the proposed GAs
assume a fixed-length network with simple archi-
tectures, such as Feed-Forward Neural Network
(FFNN) [21]–[23]. Complex network architectures
increase individual representations’ complexity and
result in a computationally expensive search for
the optimal weights. On the other hand, back-
propagation algorithms have emerged as an efficient
method for weights optimization [24]. Furthermore,
intelligent weight initialization can slightly boost
back-propagation performance, as shown in [9],
where weights initialization values encoded into
individuals as the additional hyperparameters are
optimized over generations.

2) Supportive combination: In this stream of
work, GAs are used to optimize the connections
and hyperparameters of the DNN architecture, while
the weights are optimized using other algorithms
such as the back-propagation [24]. FFNN opti-
mization is proposed in [25], CNN optimization
in [10,20,26,27] and RNN optimization in [26,28].
Mostly considered hyperparameters are the number
of hidden layers, learning rate, type of optimizer,
number of filters, layers’ positions, and activation
functions. We can distinguish a few different re-
search approaches within this stream. First, consid-
ering the network depth, we can separate them into
two categories: fixed [10,27] and variable [20,26,28]
network depth approaches. While the former might
waste computational power in cases when the net-
work depth is set to a value higher than optimal,
the latter tries to find the optimal network depth
and, thus, provides more computationally efficient
candidate solutions. Second, considering the op-
timization problem formulation, we can separate

them into two categories: single-objective [32] and
bi-objective [11,25] optimization approaches. While
the former minimizes only classification error or
mean squared error, the latter minimizes both the
classification error and network complexity. The bi-
objective optimization problem is translated into
single-objective using the scalarization method in
[25] or Pareto Dominance (PD) approach in [11].
The scalarization method is very sensitive to the
weighting of the objectives and may require a large
number of iterations in order to converge to a small
part of the Pareto optimal front. Third, considering
the way of DNN architectures building, we can
separate them into two categories: layer stacking
[9,20] and block stacking [11] approaches. The layer
stacking approach is not preferred for complex clas-
sification problems, as it requires a deeper network
vulnerable to the vanishing gradient problem where
gradients become vanishingly small, preventing net-
work training [5,6]. On the other hand, a careful
design of blocks with identity shortcuts makes the
network robust to the vanishing gradient problem.
These identity shortcuts allow gradient information
to pass through the layers, even in deeper networks,
making the training independent of network depth.
Besides adding the identity shortcuts, the design
of blocks highly impacts DNN’s performance. For
instance, in [11], a few pre-designed blocks are
proposed with the same human-designed connection
settings. NAS running on such a limited search
space might not find an optimal DNN architecture.

In the context of modulation classification, GA
methods have been employed to extract and opti-
mize classification features [29]–[32] or to optimize
the DNN architecture [14,15]. However, none of
these prior work considers the joint optimization
of both the connections and the hyperparameters
of the AMC’s DNN architecture. Moreover, only
the simple CNN or FFNN network architectures
have been considered [14,15]. In this paper, we
aim to jointly optimize both the connections and
hyperparameters of the AMC’s DNN architecture
by a novel memetic algorithm that addresses the
aforementioned drawbacks of GA methods in image
processing.

III. METHODOLOGY

In this section, we introduce our proposed BO-
NSMA (Bi-objective Network Search Memetic Al-
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gorithm). BO-NSMA considers the block-level de-
sign and utilizes PD with a novel FS strategy to
solve the bi-objective optimization problem. Simul-
taneously, in contrast to [11], it allows blocks with
different connection settings, using expanded hyper-
parameters search space. As we consider a complex
network architecture, we choose back-propagation
for the weights optimization with the default Xavier
weights initializer [24]. All works mentioned in
Section II use the absolute number of iterations to
terminate their GAs. This termination criterion is in-
efficient and may lead to unnecessary computations.
Thus, we employ the averaged Hausdorff distance
to avoid it. Further, we enhance exploration and
exploitation by self-adaptive mutation and crossover
rates. In what follows, we state the optimization
problem and explain the components of the pro-
posed BO-NSMA.

A. Problem definition

The NAS for AMC can be treated as a bi-
objective optimization problem where classification
accuracy should be maximized, and simultaneously,
network complexity in terms of computational cost
and memory requirements should be minimized. As
we search for an optimal CNN architecture, network
complexity can be roughly approximated as the
total number of trainable parameters of the model.
We now give a mathematical representation of our
problem.

Let X ⊂ <2×N be the feature space and Y =
{1, ..., c} be the label space, where N is the instance
size and c is the number of considered modulation
classes. An instance is a vector of I/Q samples.
Thus, our training dataset can be defined as D =
{(xi, yi)}ni=1, where (xi, yi) ∈ (X ×Y). A classifier
is defined as a function that maps the input feature
space to label space, f : X → <c. The AMC
classifier adopts the Softmax output layer with cross-
entropy loss for classification. Accordingly, the clas-
sification risk, which captures the discriminative
nature of features learned by DNN, is given as

RL(f) = ED
[
L(f(x; θ), yx)

]
=

− 1

n

n∑
i=1

c∑
j=1

yij log fj(xi; θ), (1)

where θ is set of parameters of the classifier, L
is cross-entropy loss, yij is the label of instance

xi (represented as j’th element of one-hot encoded
label), and fj denotes the j’th element of the classi-
fier function f . The lower the classification risk, the
higher classification accuracy pc will be. Therefore,
we can formulate the joint connections and hyper-
parameters optimization of the DNN architectures
as

minimize F (x) =
(
RL(f(x)),#θ

)
subject to x ∈ X , f(x) ∈ A,#θ > 0,

(2)

where A is the architecture search space and #θ
is the number of trainable parameters out of all
classifier parameters θ. Given A, we seek to find an
optimal architecture f(x) for the classifier with the
minimal number of trainable parameters #θ, such
that after training those parameters the architecture
can achieve the minimal classification risk, RL.

B. Search space and encoding

Inspired by the ResNet [5] and ResNeXt [6]
architectures, we design the CNN-based network ar-
chitecture as a serial fusion of the number of blocks
followed by a global pooling layer and several dense
layers. Each block is defined as a parallel fusion of
w branches with d Conv layers, whose outputs are
first concatenated and then merged with the Identity
branch, as shown in Fig. 1. With the probability
of ppool, each block is followed by a pooling layer.
We explore different variants of the merge function,
including Multiply, Add, and Concat. Traditionally,
CNNs capture the spatial properties of the un-
derlying signal as classification features. However,
these spatial properties are inherently sensitive to
noisy conditions and may suffer significant per-
formance deterioration [4]. We propose to address
this problem by expanding the search space of the
merge function, which might enable the extraction
of new features that capture cumulants-like signal
properties. To enforce the dimensionality reduction
of features space with network depth, we employ to
add one Conv layer either before the Conv branches
and Identity branch (Fig. 1(a)) or in the Identity
branch (Fig. 1(b)). The first block in the network has
a width equal to 1, depth equal to 1, and no Identity
branch, while for the other blocks, width and depth
are randomly chosen from the following ranges:
w ∈ [1, wmax]; d ∈ [1, dmax]. As dense layers require
a higher number of trainable parameters, they are
added with a probability of pdense. GA seeks the



5

(a) (b)

Figure 1: Block structure examples, w = 3, d = 2
with (a) Dim. reduction before the Conv and Identity
branches, and followed by a pooling layer; (b) Dim.
reduction in the Identity branch, and without a
pooling layer.

Table I. Hyperparameters encoded into individuals

Unit Hyperparameters Search space

Network No. of dense layers
No. of blocks

[0, 4]
[1, 10]

Block

Pooling
Dim. reduction
Merge function

depth
width

{Y es,No}
{Before,After}

{Add,Multiply, Concat}
[1, 4]
[1, 32]

Conv
Activation
Kernel size

Filters

{relu, selu, tanh, linear}
{1, 3, 5, 7}

{4, 8, 16, 32, 64, 128}

Pooling Kernel size
Type

{2}
{Max,Average}

pooling
Global Type {Average, F latten}

Dense Activation
Units

{relu, selu, tanh, linear}
[32, 256]

optimal number of blocks, the number of dense
layers, and each block’s optimal depth and width.
In addition, GA seeks the optimal hyperparameter
values for each architecture layer. The search space
for hyperparameters is given in Table I. An indi-
vidual is represented as a list of several blocks, one
global pooling layer, and several or no dense layers.
A sum of the number of blocks, the number of
dense layers, and one global pooling layer denotes
an individual’s length, L. Fig. 2 presents several
examples of individuals.

C. Population initialization
The search space, given in Table I, might result in

a very complex network architecture. Many human-
crafted DNN architectures have been proposed for
AMC [1,2,4], and can help in the more intelligent

Figure 2: Examples of individuals

Table II. BO-NSMA input parameters

Name Notation Default Value
Population size λ 6
Offspring size µ 6
Max. no. of blocks NB 8
Max. no. of Dense layers ND 4
Max. block width wmax 32
Max. block depth dmax 4
Probability of adding a Dense layer pdense 0.4
Probability of adding a Pooling layer ppool 0.5
Max. allowed no. of trainable param. #θmax 100,000
Absolute no. of iter. J 10
No. of iter. for convergence check H 3
Convergence threshold ε 10−4

No. of epochs Nepochs 10
Probability to flip units in crossover pc flip 0.6
Optimal classification accuracy p̂c 0.9
Optimal no. of trainable parameters #̂θ 10,000
Tournament Selection Parameter k 2
Max. length of individual Lmax 20

design of the population initialization. Therefore,
we introduce a control parameter referred to as the
maximum allowed number of trainable parameters,
#θmax, with a value determined from the human-
crafted SoA. Even with limited network complexity,
there are still many architectures to explore. The
process of population initialization is explained in
Algorithm 1. The initialization of an individual
consists of adding block units (lines 11−17), adding
a global pooling unit (lines 18 − 19), and adding
dense layers (lines 20− 22). If the individual has a
higher number of trainable parameters than #θmax,
it will be discarded and initialized again until the
generated candidate satisfies the target number of
trainable parameters. Although this might prolong
the initialization time, it results in a much lower
overall time cost induced by alternative complex
network architectures.

D. Fitness evaluation
The fitness evaluation is performed in three steps:

(1) counting of trainable parameters, (2) training of
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Algorithm 1: Population initialization
Input: Input parameters given in Table II
Output: Initialized population P0

1 Po ← ∅
2 for i← 1 to λ do
3 while True do
4 Individual← Null
5 nb ←

Uniformly generate an integer between [1, NB ]
6 nd = 0
7 r ← Uniformly generate a number between [0, 1]
8 if r ≤ pdense then
9 nd ←

Uniformly generate an integer between [0, ND]

10 list← []
11 block0 ← Randomly initialize a block unit with

d = 1, w = 1, no the Identity branch, and ppool
12 list← list ∪ block0
13 for j ← 1 to nb do
14 w ←

Uniformly generate an integer between [1, wmax]

15 d←
Uniformly generate an integer between [1, dmax]

16 block ← Randomly initialize a block unit
with d, w, and ppool

17 list← list ∪ block
18 gp← Randomly initialize a global pooling unit
19 list← list ∪ gp
20 for j ← 1 to nd do
21 dl← Randomly initialize a dense layer unit
22 list← list ∪ dl
23 Individual.units← list
24 Individual.accuracy ← 0.0
25 Individual.complexity ← count #θ()
26 if Individual.complexity < #θmax then
27 P0 = P0 ∪ Individual
28 break

29 return P0

the decoded individual through a predefined number
of epochs, Nepochs, and (3) evaluating the trained
models on the validation dataset. The number of
trainable parameters and validation classification
accuracy are the objectives that are utilized during
offspring generation and elimination. We use Adam
optimizer [33] with a learning rate of 0.001. This
learning rate is a reasonable trade-off between slow
convergence at lower rates and inaccurate results at
higher rates.

E. Offspring generation
GA reflects the process of natural selection,

where the fittest individuals are selected for mating

in order to produce offspring for the next generation.
Natural selection in GA is performed by selection,
crossover and mutation operators [12].

1) Selection: We employ the deterministic k-
tournament [12] to select the individuals for mating
without replacement, whereby k individuals are
evaluated randomly, and the best one is chosen.
Since there are two objectives in our problem, we
utilize the well-known concept of Pareto Dominance
(PD) to determine which individual is better. One
individual is said to dominate the other if one of the
following conditions is satisfied: (1) it has a higher
classification accuracy, and a lower or equal number
of trainable parameters, or (2) it has a higher or
equal classification accuracy, and a lower number
of trainable parameters. For each individual, we
count the individuals by which it is dominated. The
individual with a lower number of individuals by
which it is dominated is treated as better.

2) Crossover: The crossover operator is analo-
gous to natural reproduction and is usually per-
formed with a rate of 1. However, such a rate may
result in the mating of parents with poor genes,
which leads to poor offspring performance. The
survival selection will highly likely eliminate poor
offspring, resulting in slowing down or completely
halting the GA progress. Thus, it is important to
generate good offspring in order to speed up the
solution search and increase the offspring’s survival
rate. To this end, we develop self-adaptive crossover
rates inspired by Q-learning [34]. Specifically, we
keep track of whether an individual is good for
mating or not by encoding information about its
crossover rate, pcr. Each individual in the initialized
population P0 has a crossover rate of 1. Offspring
crossover rates are updated as below:

poffspringcr = γ ∗ pparentcr + (1− γ) ∗ poffspringc , (3)

where γ is learning rate ranging from 0 to 1, pparentcr

denotes the parent crossover rate, while poffspringc

denotes the validation classification accuracy of the
offspring. The value of γ is mostly set to 0.3 in
practice, as for higher values, Q-learning becomes
unstable [34]. Intuitively, the higher the reward
in maximizing the objective score, the higher the
crossover rate. To avoid duplicates in the population,
for offspring generated without crossover operator
(copies of their parents), we apply the mutation
operator with a rate of 1. As a crossover operator,
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Figure 3: Crossover example

we adopt the uniform crossover with a flip prob-
ability of pc flip = 0.6 [12] (see lines 6 − 13 in
Algorithm 2). Uniform crossover is applied to type-
aligned units, as shown in Fig. 3.

3) Mutation: As uniform crossover of aligned
units does not impact the length of the offspring,
each offspring inherits the parent’s length. To al-
low offspring length variability, we introduce the
following mutation operators: Add new, Duplicate,
Delete, and Reset. With probability pm unit, which
is inversely proportional to the individual’s length
L, one uniformly chosen mutation operator will be
applied to each unit of the individual. Similarly,
each individual has encoded information about the
mutation rate pmr as the crossover rate, which is
adapted over generations. The initialized popula-
tion has randomly selected mutation rates within a
certain range. High mutation rates introduce more
exploration in an individual’s length. The mutation
rates are updated using log-normal transformation
[35] as given below:

pnewmr =
(
1 +

1− poldmr
poldmr

exp−τN(0,1)
)−1

, (4)

where τ is the adaptation speed control parameter
(set to 0.22), and N(0, 1) is a normal variable with
zero mean value and unit variance. The log-normal
transformation of the mutation rates keeps them
between 0 and 1, and has been shown as an efficient
technique for mutation rate self-adaptation [35].

F. Local Search (LS)
Before applying the elimination strategy, we ap-

ply LS to the best and the worst individuals (off-
spring + parents). The best individuals are non-
dominated by any other individual and belong to

the Pareto optimal front. In contrast, the worst
individuals have the maximum number of individ-
uals by which they are dominated. LS explores the
worst individuals’ neighbourhood to find their fitter
neighbours that might have a chance to survive.
LS consists of applying mutation to the selected
individual for two runs. The selected un-mutated
individual is replaced with its mutated version only
if one of the following conditions is satisfied: (1) the
mutated individual has a higher classification accu-
racy, and its number of trainable parameters is not
increased more than 5%; (2) the mutated individual
has a lower number of trainable parameters, and its
classification accuracy is not decreased more than
0.5%.

G. Elimination strategy

Crossover and mutation operators generate µ off-
spring. We opted for λ+µ strategy for the elimina-
tion strategy [12], where parents and offspring are
merged, and the λ best individuals are selected for
the next generation. The best individuals selection
is made according to the modified classification
accuracy by using Fitness Sharing (FS) for diversity
promotion. The modified classification accuracy is
given as below:

p′c = pc ∗
[ ∑
y∈N i

σ(x)

1−
(d(x, y)

σ

)α]
, (5)

where σ denotes the threshold of dissimilarity,
d(x, y) is the distance between the individual x and
the individual y, α is a constant parameter that
regulates the shape of the sharing function, and
N i
σ(x) denotes the σ neighbourhood of individual x

in the current population Pi given as N i
σ(x) =

{
y ∈

Pi|d(x, y) ≤ σ
}
. The distance d(x, y) is calculated

as the Euclidean distance between individuals’ nor-
malized complexities and classification accuracies
as below:

d(x, y) =

√(
#θx −#θy

#θmax

)2

+ (pc,x − pc,y)2, (6)

where #θmax is the maximum allowed number of
trainable parameters. As the maximum distance can
reach

√
2, we choose σ equal to 0.2. The shape

parameter α is set to 2, ensuring high diversity
pressure in the σ neighborhood.
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H. Termination strategy

Unlearned termination criteria present one of the
main GA’s drawbacks. In a large search space, an
infinite number of iterations might be required to
reach an optimal global solution. As each iteration
of GA is very expensive, it is necessary to have the
right termination criteria, which indicates the point
in time when further computations become unnec-
essary as they do not gain substantial performance
improvement. We adopt the following termination
conditions (lines 27 − 34 in Algorithm 2): (1) the
number of iterations is greater than or equal to a
fixed number, J , decided a-priori; (2) an acceptable
solution is reached - GA will terminate if the
algorithm generates an individual with classifica-
tion accuracy higher than a predefined value p̂c
and trainable parameters lower than a predefined
number, #̂θ; (3) when there has not been any im-
provement in the population for the lastH iterations,
i.e., differences between the generations in the last
H iterations are less than a certain convergence
threshold, ε. To measure the similarity between
two Pareto sets, we utilize the averaged Hausdorff
distance [36]. The averaged Hausdorff distance be-
tween two sets, X = {x1, x2, ..., xn} ⊂ Rk and
Y = {y1, y2, ..., ym} ⊂ Rk is defined as below:

∆p(X, Y ) = max
(
(

1

N

N∑
i=1

dist(xi, Y )p)1/p,

(
1

M

M∑
i=1

dist(yi, X)p)1/p
)
, (7)

where dist(xi, Y ) is the minimal Euclidean distance
from xi to set Y , dist(yi, X) is the minimal Eu-
clidean distance from yi to set X , and p is the
control factor for outliers’ penalty. The higher the
value of p, the more penalized are the outliers. Since
∆p is used as the termination condition, p is set to
1.

IV. PERFORMANCE EVALUATION

A. Experimental setup

1) Baselines: We employ four baselines from
the literature that are manually designed by hu-
man experts: LSTM [1], ResNeXt [4], ResNet [2],
and 1D-CNN [2]. Furthermore, we employ two
of the newest baselines from GA NAS in image
processing: NSGA-Net [11] and EvoCNN [9]. The

Algorithm 2: BO-NSMA
Input: Input parameters given in Table II
Output: Population

1 Po ← Initialize population using Algorithm 1
2 i← 1
3 while True do
4 Pi ← Pi−1

5 for j ← 1 to µ/2 do
6 parent1, parent2← run k-tournament selection

without replacement
7 r ← Uniformly generate a number between [0, 1]
8 crossover done← False
9 if r <

(
pparent1cr + pparent2cr

)
/2 then

10 offspring1, offspring2 ← crossover(parent1,
parent2)

11 update poffspring1cr and poffspring2cr by the
Eq. (3)

12 crossover done← True

13 else
14 offspring1 ← parent1
15 offspring2 ← parent2

16 r ← Uniformly generate a number between [0, 1]
17 if r < poffspring1mr or

crossover done == False then
18 offspring1 ← mutation(offspring1)

19 r ← Uniformly generate a number between [0, 1]
20 if r < poffspring2mr or

crossover done == False then
21 offspring2 ← mutation(offspring2)

22 update poffspring1mr and poffspring2mr by the Eq.
(4)

23 Fitness evaluation of offspring1, offspring1
24 Pi ← Pi ∪ {offspring1, offspring2}
25 LocalSearch(Pi)
26 Pi+1 ← Elimination(Pi)
27 if i == J then
28 stop BO-NSMA!

29 else if ∃ Individual, x ∈ Pi, pxc ≥ p̂c and #θx ≤ #̂θ
then

30 stop BO-NSMA!

31 else if ∀j ∈ [0,H),∆(Pi−j , Pi−j−1) ≤ ε then
32 stop BO-NSMA!

33 else
34 i← i+ 1

35 return Pi

former is a bi-objective optimization with adopted
PD for block-level NAS, while the latter is a single-
objective optimization for layer stacking NAS. The
NSGA-Net searches for the network architecture
based on a few pre-designed blocks with fixed
hyperparameters. In contrast, the EvoCNN seeks to
optimize each layer’s hyperparameters in the DNN
architecture, including the weights initialization val-
ues. As those baselines are applied for the 2D image
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processing problem, we replaced each 2D layer in
the architectures with a corresponding 1D layer
while keeping all other hyperparameters the same.

2) Datasets: We use two modulation sets: (1)
Simple set, containing 11 low-order modulation for-
mats: BPSK, QPSK, 8-PSK, 16/64-QAM, PAM4,
GFSK, CPFSK, BFM, DSB-AM and SSB-AM; and
(2) Complex set, containing the simple ones and
9 more modulations: OQPSK, 32/128/256-QAM,
16/32/64/128/256-APSK. The I/Q samples are gen-
erated at increasing Signal-Noise Ratio (SNR) (-6
dB to 18 dB). The performance of DNN models for
different channel models follows the same trends as
long as there is enough labelled data at disposal, as
shown in [4]. In this work, the emphasis is on the
performance evaluation of BO-NSMA, and thus we
modelled the channel as AWGN. For each combi-
nation of SNR and modulation type, we generated
1000 instances with a size of 128 and 1024 for the
simple set and the complex set, respectively. A seed
is used to generate random mutually exclusive in-
stance indices, which are then used to split the data
into three subsets: training, validation and testing at
a ratio of 80:10:10, respectively.

3) Implementation details: Each evaluated AMC
method is implemented using TensorFlow [37]. The
fitness evaluation training is performed over 10
epochs and a batch size of 256. The models are
trained and evaluated on a GPU server with eight
Nvidia RTX 2080Ti cards. The default values of
BO-NSMA input parameters (see Table II) are kept
constant over all experiments. The population size
is set to a low value, λ = 6, as each individual’s
evaluation is computationally heavy. We opted for
k = 2 for deterministic tournament selection, which
gives a high chance that each individual is selected
for crossover operator. All presented classification
accuracies are averaged over the whole SNR range
of [−6, 18] dB.

B. Results

1) Performance evaluation of BO-NSMA: Be-
sides GA’s performance over generations common
to any GA, there are two qualitative metrics to
be considered to assess how good a certain multi-
objective GA is for a given problem: (1) popula-
tion accuracy, that is to determine how similar the
population is to the Pareto optimal front, and (2)
population diversity, that is to evaluate how well

distributed individuals are in the population. Note
that the Pareto optimal front denotes the set of non-
dominated individuals. Keeping that in mind, we
will justify why we design BO-NSMA as described
in Section III by using the simple set of modula-
tions. BO-NSMA denotes the proposed GA with
applied FS, LS, high mutation rate, pmr ∈ [0.5, 1],
and self-adaptive crossover rates. To evaluate their
impacts on the mentioned qualitative metrics over
generations, we run seven experiments: (1) BO-
NSMA, (2) BO-NSMA with low mutation rate
pmr ∈ [0.05, 0.2], (3) BO-NSMA without FS in
elimination and keep the λ individuals with the
highest classification accuracy, (4) BO-NSMA with
low mutation rate pmr ∈ [0.05, 0.2] and without
FS in elimination and keep the λ individuals with
the highest classification accuracy, (5) BO-NSMA
without LS, (6) BO-NSMA with low mutation rate
pmr ∈ [0.05, 0.2] and without LS, (7) BO-NSMA
with constant crossover rates equal to 1.

Fig. 4 presents the performance of BO-NSMA
over generations showing average classification ac-
curacy for the entire population (top left), an aver-
age number of trainable parameters for the entire
population (top right), and the maximum accuracy
of the best individual in the population (bottom).
Fig. 5 (right) presents Pareto front approximation
for the 10th generation. The Pareto optimal front is
illustrated with the solid line in Fig. 5 (right), and
the best-performing method should follow closely it.
Fig. 5 (left) shows the Pareto set difference between
two population generations which is important for
GA convergence rate monitoring.

a) BO-NSMA performance over generations:
Fig. 4 (top left and bottom) shows that BO-NSMA
without FS, for both mutation rates, achieves the
best average accuracy and maximum accuracy at
the tenth generation. BO-NSMA with FS and high
mutation rates has a better performance compared to
BO-NSMA with low mutation rates, whereas it con-
verges to the same maximum accuracy as the BO-
NSMA without FS after the tenth generation. BO-
NSMA without LS and BO-NSMA with constant
crossover rate, pcr = 1 have the worst average ac-
curacy over generations. BO-NSMA with constant
crossover rate, pcr = 1 has 5% lower average accu-
racy and 2% lower maximum classification accuracy
at the tenth generation than our proposed self-
adaptive crossover rate (see Fig. 4). Regarding the
average number of trainable parameters, each BO-
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NSMA with low mutation rates converges to almost
the same number, around 60k, while BO-NSMA
cases with high mutation rates end in the higher av-
erage number of trainable parameters, around 80k.
High mutation rates introduce more exploration,
explaining the increase in trainable parameters after
the fourth generation for BO-NSMA cases with high
mutation rates.

b) Population accuracy and diversity: Fig. 5
shows that BO-NSMA with FS provides a diverse
population for both mutation rates. On the other
hand, BO-NSMA without FS and with high muta-
tion rates converges to one optimal Pareto point after
the sixth generation, while BO-NSMA without FS
and with low mutation rates slowly converges, and
at the tenth generation we can still notice two op-
timal Pareto points. BO-NSMA with high mutation
rates finds six diverse individuals and two optimal
Pareto points, while BO-NSMA with low mutation
rates finds five diverse individuals and three optimal
Pareto points (Fig. 5 (right)). The individuals found
by BO-NSMA with high mutation rates are closer
to the Pareto optimal front compared to BO-NSMA
with low mutation rates. Thus, we can state that
BO-NSMA with high mutation rates found the best
population in terms of both population accuracy and
diversity.

To sum up, BO-NSMA without FS achieves the
best average and maximum accuracy but at the cost
of diversity loss. In contrast, BO-NSMA with FS
slowly converges to the optimal Pareto points, but
it provides a diverse population. High mutation rates
enable a more accurate population, closer to the
Pareto optimal front.

2) Impact of the search space and encoding
on performance: The solutions found by any GA
heavily depend on the given search space and in-
dividuals’ representation. In order to assess how
good is our proposed search space, we explore the
benefits of our proposed block design versus well-
known ResNet blocks [5] and simple networks with
layer stacking, while keeping all components of BO-
NSMA (FS, LS, offspring generation) the same.
ResNet blocks by design have d = 3, w = 1, and
Add as merge function [5]. Thus, to demonstrate the
impact of encoding, we run five experiments: (1)
BO-NSMA with our designed encoding, (2) BO-
NSMA with layer stacking, (3) BO-NSMA with
ResNet block stacking, (4) NSGA-Net [11] with
their pre-designed blocks, and (5) EvoCNN [9].
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Figure 4: BO-NSMA components and their impact
on: average accuracy (top left); average number of
trainable parameters (top right); maximum accuracy
(bottom) over generations.
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Figure 5: The averaged Hausdorff distance of two
subsequent generations (left). Pareto front approxi-
mation for Generation 10 (right).

Each experiment uses the simple set of modulations.
EvoCNN stacks the Conv, pooling and dense layers
(the maximum number of layers is set to 15).

Fig. 6 shows that BO-NSMA with our proposed
block design has 4% higher average classification
accuracy and 4% higher maximum achieved classi-
fication accuracy after the sixth generation than BO-
NSMA with layer stacking and the ResNet block
stacking. Furthermore, BO-NSMA with ResNet
block stacking finds the population with the lowest
average number of trainable parameters. NSGA-Net
achieves very poor AMC performance where each
found architecture is overfitting. Although NSGA-
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Figure 6: The search space and encoding impact on:
average accuracy (top left) and average number of
trainable parameters (top right) over generations.

Net employs PD, its proposed architecture search
space with pre-designed blocks and the fixed hy-
perparameters values prevents GA from optimiz-
ing such architectures according to the considered
problem. In contrast, EvoCNN gives a much higher
number of degrees of freedom for hyperparameters
values, resulting in complex network architectures
compared to NSGA-Net and BO-NSMA. Moreover,
EvoCNN for population size λ = 6 prematurely
converges after the second generation to one non-
optimal Pareto point. The high number of degrees
of freedom for hyperparameters values and un-
controlled population initialization require a higher
population size to avoid premature convergence.
Thus, we run EvoCNN for λ = 30. Fig. 6 shows
that EvoCNN with a higher population size will
take a longer time to converge, whereas a higher
population size will increase its chance to find at
least one Pareto optimal point.

3) Comparison with SoA AMC: Finally, we com-
pare the performance of the best individual found
by BO-NSMA with selected baselines for both
sets of modulations. All models are trained for 80
epochs and evaluated on the testing dataset. Ta-
ble III presents classification accuracy averaged over
all SNRs for the simple and complex modulation
datasets mentioned in Section IV-A2, respectively,
whereas Fig. 7 presents accuracy across SNRs for
the simple modulation dataset.

LSTM [1] is the best-performing SoA architec-
ture for AMC evaluated on the simple modulation
dataset, which achieves an average accuracy of 86%

Table III. BO-NSMA top-1 accuracy and corre-
sponding #θ vs baselines

Model
Simple Modulation Set Complex Modulation Set
Acc.(%) #θ Acc. (%) #θ

LSTM [1] 86.17 200,075 46.49 201,236
ResNet [2] 85.58 255,115 79.71 313,620
ResNeXt [4] 85.72 85,051 80.40 86,212
1D-CNN [2] 82.01 100,811 79.54 142,932
BO-NSMA 86.87 71,399 82.71 79,560
EvoCNN [9] 78.36 1,045,844 64.47 6,261,901

(layers)
BO-NSMA 83.73 83,115 82.12 72,708

(ResNet blocks)
BO-NSMA 85.07 58,591 82.09 45,284

with over 200k trainable parameters. BO-NSMA
finds the first genetically-optimized architecture,
which achieved slightly higher average accuracy (an
improvement of 0.7%) while reducing the number
of trainable parameters to 71k (a 2.80-fold reduction
in the number of trainable parameters). LSTM with
default training parameters given in [1] fails to
converge for the complex modulation dataset. Next
in terms of achieved performance are ResNet and
ResNeXt architectures. For the simple modulation
dataset, BO-NSMA achieves 1.29% and 1.15% ac-
curacy gain over ResNet and ResNeXt, respectively,
while keeping the number of trainable parameters
over three times lower compared to ResNet. For the
complex modulation dataset, BO-NSMA achieves
3.0% and 2.31% accuracy gain over ResNet and
ResNeXt, respectively, while keeping the number
of trainable parameters over 3.9x lower compared to
ResNet. While exploring BO-NSMA’s performance
across SNR (Fig. 7) for the simple modulation
dataset, we note that it gets 3% higher classifi-
cation accuracy at mid-SNR, which illustrates its
robustness to noise compared to other baselines.
BO-NSMA can also successfully optimize CNN
with layer stacking, achieving the architecture with
1.7% and 2.6% higher classification accuracy at
1.7x and 1.9x lower number of trainable parameters
compared to 1D-CNN [2] for the simple dataset and
complex dataset, respectively. Similarly, BO-NSMA
finds a better architecture with ResNet blocks which
has 0.5% lower and 2.4% higher classification ac-
curacy at 4.0x and 6.9x lower number of train-
able parameters than ResNet for the simple dataset
and complex dataset, respectively. BO-NSMA with
layer stacking achieves to find a solution within
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Figure 7: Classification accuracy across SNR (sim-
ple modulation dataset).

10 generations and population size of 6 that has
8.5% and 18.2% accuracy gain at 14.6x and 78.7x
lower number of trainable parameters than its coun-
terpart EvoCNN for the simple dataset and complex
dataset, respectively.

V. CONCLUSIONS

Although DNNs have achieved remarkable results
for AMC, the manual optimization of their archi-
tectures is challenging due to the immense search
space. In addition, a given optimized architecture
often does not transfer properly when input fea-
tures change, triggering repetitive and tedious opti-
mization. Automated Network Architecture Search
(NAS) using Genetic Algorithm (GA)s has received
considerable attention in computer vision. However,
a smooth transfer of those methods to time-series
problems such as modulation recognition results in
suboptimal performances, as we showed for NSGA-
Net. Thus, in this paper, we proposed BO-NSMA,
a novel bi-objective memetic algorithm for joint ar-
chitecture and network complexity optimization for
DNN-based modulation recognition applications.
Following extensive experimentation, we show that
BO-NSMA finds a diverse population very close to
the Pareto optimal front defined by performance and
complexity. The architecture found by BO-NSMA
outperforms all human-crafted DNNs. Moreover, we
demonstrated that BO-NSMA does not have a pre-
mature convergence problem for a low population
size, as is the case with its counterpart EvoCNN.

The reported results show that BO-NSMA is a
promising tool for NAS, but its computational cost
has not been optimized. Future research would
benefit from focusing on the dynamic adaptivity of
BO-NSMA components to reduce its computational
cost by employing smart policies for LS use and a
more refined metric for network complexity, such
as inference time.
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