
P
os
te
d
on

8
M
ay

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
45
38
11
7.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Reconstructing the Unveiling Demonstration of the ENIAC

Brian Stuart 1

1Drexel University

October 30, 2023

Abstract

Reports on a reimplementation of the ENIAC programming demonstrated at its unveiling on Feb 15, 1946. The reconstructed

demonstration is shown in the YouTube video: https://youtu.be/SGBT2Danh-g

1



Article

Reconstructing the Unveiling
Demonstration of the ENIAC

Brian L. Stuart

Drexel University

Abstract—What must it have been like to have seen the ENIAC for the first time at it’s unveiling,

to learn of this new type of machine, to see computations happening faster than previously

imagined? Here we discuss a reconstruction of the demonstration conducted at the unveiling.

We piece together available information about the event and create a configuration to run on a

simulated ENIAC to create an opportunity to relive the experience of seeing it for the first time.

ON FEBRUARY 15, 1946, the Electronic

Numerical Integrator and Computer (ENIAC) was

unveiled at the University of Pennsylvania, Moore

School of Electrical Engineering. Designed by

John Mauchly and J. Presper Eckert, this machine

had been in development from 1943 to 1945 in

secret under contract for the US Army. With

World War II being over and a substantial need

for such a machine being foreseen, the Army

decided to lift the secrecy and make the machine

public. As part of the unveiling, the development

team prepared and conducted a demonstration of

the machine for those attending the event.

The year 2021 marks the 75th anniversary of

the unveiling, and a number of virtual events were

held to commemorate the occasion[1], [2]. As

part of the observations of the anniversary, we set

out to release a video reenactment of the demon-

stration. This project involved researching avail-

able records of the demonstration and reimple-

menting an ENIAC programming configuration

that would replicate the experience. Running that

configuration on the author’s ENIAC simulator[3]

provided the material for the video reenactment.

The presentation here assumes some knowledge

of the basic operation and programming of the

ENIAC. The reader is encouraged to consult

earlier sources for such introductions.[4], [5], [6],

[7], [8]

EVOLUTION OF THE
DEMONSTRATION

The demonstration performed on February

15 was not the first time that the ENIAC was

demonstrated to people outside the university and

military communities. On the first of the month, a

demonstration was conducted for the press. This

event provided news outlets with a preview of the

machine and with all the information they would

need to publish the first public accounts of the

system. Release of the information was, however,

embargoed until the official unveiling.

After the event was over, a number of the

reporters asked for information on what exactly

was demonstrated. In response, Arthur Burks,

who conducted the demonstration, wrote a de-

scription of what computations were included[9].

This document is still available to us, because it

IEEE Annals of the History of Computing Published by the IEEE Computer Society c© 2021 IEEE 1



Article

appeared as an exhibit in the ENIAC patent trial.

We provide a transcription of it in the appendix.

The stages of the demonstration described there

included:

1) One accumulator loaded with 97,367.

2) 5000 additions of 97,367, giving the sum

486,835,000.

3) Repeat of the addition demonstration with

the clock slowed down by a factor of 1000.

4) Loading the multiplier and multiplicand ac-

cumulators with 13,975.

5) Computation of the product 195,300,625.

6) Accumulation of 500 products, giving

97,650,312,500.

7) Generation of a tables of 100 squares and

cubes with printing.

8) Recomputation of the squares and cubes

without printing.

9) Computation of a table of 100 sines and

cosines with printing.

10) “A problem of great importance to the

Ordinance Department” but “classified as

secret.”

In his account of early computing, Herman

Goldstine describes the last part of the demon-

stration as “A modification of the E-2 ENIAC

run as an illustration of a long and complicated

calculation.” The footnote to this clarifies E-2

with the statement “The so-called E-2 run was

part of the Los Alamos problem.”[10] The Los

Alamos problem was the earliest major problem

solved on the ENIAC. It related to simulating the

ignition of a thermonuclear chain reaction as part

of the early theoretical work on the hydrogen

bomb[11]. These simulations were carried out

during late 1945 and January 1946, and further

work was done on them after the unveiling.

As one might guess, a classified computation

that can’t be explained to the audience does not

make for a very good demonstration. The original

motivation for the ENIAC, artillery trajectories,

would certainly be a much better example to

demonstrate. To that end after this first demon-

stration, Goldstine and his wife Adele invited

Jean Jennings (later Bartik) and Frances Eliz-

abeth (Betty) Snyder (later Holberton) to their

apartment to discuss the upcoming unveiling and

demonstration. As Bartik later described the ear-

lier demonstration, “I understand it was very

boring[12].” Bartik and Holberton had been work-

ing on programming artillery trajectory computa-

tions on the ENIAC. The Goldstines asked them

if the trajectory programming was ready to go

and could be up and running in time for the

unveiling on the 15th. In Bartik’s autobiography,

she describes their answer by saying, “We said

we sure could.”[13]

Although we have not found records of the

programming details of the later demonstration,

Burks did later refer to the demonstration, where

he mentioned addition being demonstrated first

and the trajectory being the centerpiece[14]. For

purposes of this reconstruction, it is our working

hypothesis that the functions demonstrated on the

15th were essentially the same as those on the

1st, but with the artillery trajectory computation

replacing the Los Alamos problem. The remain-

der of this paper describes a reimplementation of

the demonstration based on this conjecture.

SEQUENCING
For most applications of the ENIAC, a pro-

gram is started and it simply runs until it is com-

pleted. The types of applications envisioned for

the machine did not include any direct user inter-

action. However, for a demonstration, a presenter

needs the ability to present the computations in

phases, timed by discussion. The one mechanism

on the ENIAC suitable for this purpose is the

Initiating Pulse button on the Initiating Unit and

replicated on the portable control station. Each

time the button is pressed, a pulse is emitted on

the terminal labeled Io.

For the initiating pulse to trigger different

actions on each instance, it must act through the

Master Programmer. The approach we adopt here

is to “prime” a Master Programmer stepper as the

last step in the previous part of the demonstration.

Then, when the initiating pulse button is pressed,

the pulse passes to the Master Programmer which

in turn passes the pulse out the appropriate step-

per output.

Because each stepper in the Master Program-

mer has only six stages but there are more

than six phases of the demonstration, we use

a combination of multiple steppers. Stage 1 of

stepper A drives stepper C for the addition and

multiplication parts of the demonstration. Stage 2

drives stepper B for the generation of the squares

2 IEEE Annals of the History of Computing



1000 1 1 1 499 1

C
1 2 3 4 5 6

100 1 100 1 100 1

B
1 2 3 4 5 6

50 1 1

H
1 2 3

No Decades

A
1 2 3

Io

Clear
Load

Add Clear
Load

Mult Mult

Integ Test

Sqr
Cube

Clear
Sqr
Cube

Clear Sin
Cos

Print

Figure 1. Demonstration Control Structure

and cubes table and of the sine and cosine table.

Stage 3 initiates the simulation of the artillery

trajectory. Figure 1 shows this structure in the

form of a diagram of Master Programmer links,

similar to those shown in the ENIAC Technical

Manual[15].

There are a few techniques that are used here

that will make the control structure easier to un-

derstand. First, note that the actions on stages 2, 3,

and 4 of stepper C and those on stages 2 and 4

of stepper B don’t go anywhere when they are

completed. This is how the demonstration pauses

until the operator presses the initiating pulse

button again. Second, the repetitions are typical

of looping in ENIAC programming. The first iter-

ation is triggered by a pulse on the stepper input,

coming from stepper A. Then the control signal at

the end of each repeated operation also drives the

stepper input until the count is reached and the

stepper advances to the next stage. Actions that

result in a printing step operate a little differently.

They drive the next iteration by sending the pulse

indicating completion of the print operation to

stepper A’s input where the initiating pulses also

go. Third, because no decades are assigned to

stepper A, any number of input pulses will be

routed to the same stage, until a pulse is received

on the stepper direct input. The completion pulses

from stage 6 of both stepper C and stepper B are

routed to the stepper direct input of stepper A,

shifting the operation to the next stepper. The

remainder of this paper examines the details of

the demonstration.

ADDITION
The first part of the demonstration centers

around performing multiple additions. Prior to

performing the additions, however, the descrip-

April–June 2021 3



Article

tion of the demo has a constant loaded into one of

the accumulators, “The operator, with the push of

a button, made the number 97367 appear in an ac-

cumulator...” Because there are several constants

that are needed throughout the demonstration,

we load them from a punched card at this step.

Thus, we conjecture that the button referred to

in this statement is the one labeled Reader Start.

The initiating pulse button is then used to start

the addition sequence. This is consistent with

the statement in Burks’ description, “By pushing

another button he caused the number to be added

to itself 5000 times.” In the implementation here,

accumulator 1 holds the constant and accumula-

tor 2 performs the additions.

The natural way to carry out 5000 additions

would be to use the Master Programmer with a

stepper stage set at 5000. However, if we do this

where the stepper output triggers the addition and

the completion of the addition triggers the Mas-

ter Programmer, we introduce a second addition

time between each pair of actual additions. This

would contradict the intention of showing that the

machine is capable of 5000 additions per second

and the report that the answer is produced in one

second. The approach taken here is to set the

accumulators to a repeat of five, so that for each

stepper output pulse, five additions are performed.

This is why stage 1 of stepper C is set to 1000

in Figure 1. After 1000 cycles of five additions,

stepper C advances to stage 2 and the sequence

stops.

The last part of the addition demonstration

contrasts the ENIAC with its predecessors and

contemporaries. In particular, the machine is

demonstrated to be about 1000 times faster than

other machines such as the Harvard Mark I and

the Bell Labs Model V. This is described with

the statement, “...the ENIAC was slowed down to

one-thousandth of its normal speed...” This was

most likely done by connecting a 100Hz clock to

the external clock input on the Cycling Unit. In

the simulator used here, there is a control on the

Cycling Unit that’s treated as a switch for setting

the clock rate. To save stepper stages, the whole

initialization sequence is restarted with the slower

clock speed, including reading the punched card

of constants. Because the computation at that

speed would take 16 2/3 minutes to complete,

it seems unlikely that they actually ran the full

5000 additions before turning the clock back up

to its normal speed.

An alternative possibility is that the slower

additions were performed on the two-accumulator

prototype built in 1943. Analysis of the newsreel

footage suggests that it was the two-accumulator

prototype that had the now famous ping pong ball

lights for demonstration. If indeed that was how

the slower computations were demonstrated, it

would have made for an especially dramatic com-

parison, as the entire rest of the demonstration

could be conducted on the ENIAC-proper while

the prototype was still performing the 5000 ad-

ditions. Although it is appealing to imagine such

a contrast being illustrated, the only indication

that the prototype may have been involved are

references to the ping pong ball lights.

MULTIPLICATION
After completing the 5000 additions twice

(once at full speed and once partially at the

low speed), the high-speed multiplier is the next

unit demonstrated. As described, this part of the

demonstration was performed in three steps, each

triggered by the Initiating Pulse button. The first

step loads the values to be multiplied, driven by

stage 3 of stepper C. Because the multiplication

is described in terms of multiplying integers,

the numbers are loaded into the least significant

digits of the multiplier and multiplicand accumu-

lators (9 and 10). To minimize distraction of the

audience, this stage also clears accumulators 1

and 2 of the addition demonstration. In the sec-

ond step, a single multiplication is initiated by

stage 4 of stepper C, and the product is shown.

The third step is described as multiplying the

factors 500 times and accumulating the products.

Because one multiplication is already done at

this point, we have implemented 499 additional

multiplications in the the third step, as can be

seen in stage 5 of stepper C in Figure 1. We could

have performed exactly 500 multiplications in the

third step by inserting a stage that cleared the

product accumulators, but this would have added

unnecessary complication to the sequencing logic.

Because the final sum of 500 products re-

quires 11 digits to represent, the left-hand partial

product (LHPP) and right-hand partial product

(RHPP) accumulators are operated in pairs con-

figured to allow for representing and manipulating

4 IEEE Annals of the History of Computing



20-digit numbers. The final result appears in

accumulators 13 and 14. (Note that the ability

to work with 20-digit numbers has been added to

the simulator used here since earlier reports on

it[3].)

SQUARES AND CUBES
The next phase of the demonstration generates

a table of the first hundred squares and cubes

using the well-known relations:

(n+ 1)2 = n2 + 2n+ 1,

and

(n + 1)3 = n3 + 3n2 + 3n+ 1.

This table is generated first with a card punched

for each line of the table and then again without

the card punching to illustrate that almost all the

time was in punching the cards. Here, we put

the square in accumulator 16 and the cube in

accumulator 18 so that they appear separated on

the output card. Because this example is discussed

at length in the technical manual [15] and in other

accounts, no more detail is needed here.

SINES AND COSINES
As described in Burks’ account, the sines

and cosines are computed using the difference

equations

∆(sinx) = −A sinx+B cosx,

and

∆(cos x) = −A cos x−B sinx,

where

A = 1− cos∆x,

and

B = sin∆x.

The constants are given as A = 0 and B =
0.000098175 for ∆x = 0.1 mil. These values

correspond to the mil as an angular unit used in

ballistics where there are 6400 mil in a circle.

In the implementation here, the value of B

is stored in accumulator 10 with the decimal

point to the left of the most significant digit.

The values of sinx and cos x are stored in

accumulators 18 and 20, respectively with the

decimal point between the two most significant

digits. When calculating the new ∆, the value is

copied to accumulator 9 and the multiplication is

carried out. The product is in accumulators 13

and 14 with one digit to the left of the decimal

point, and 19 digits to the right. Adding five

to the most significant digit of accumulator 14

rounds the result to nine decimal places in accu-

mulator 13, placing the decimal point in the right

place to add to accumulator 18 or subtract from

accumulator 20 with no shifting necessary.

ARTILLERY TRAJECTORY
Unsurprisingly, the artillery trajectory is the

most involved of the parts of the demonstration.

At this time, we do not know of any record of

the complete detailed design of the trajectory as

used in the demonstration. Instead, we make an

attempt to recreate the design from the ground

up starting with the basic differential equations.

In the 1954 Ballistics Research Lab report 889,

the equations of motion are given as [16]

ẍ = −E (ẋ−Wx) + λ1ẏ,

ÿ = −Eẏ − g + λ1ẋ,

z̈ = −E (ż −Wz) + λ3ẏ + λ2ẋ,

where E is the influence of atmospheric drag, g

is the acceleration due to gravity, Wx and Wz

are the effects of wind, and the values of λ cor-

respond to the effects of the Earth’s rotation. We

find a similar set of equations (with some changes

in notation) later in the 1967 report 1371[17].

In the production of firing tables, the equations

are solved numerically under “normal” conditions

where there is no wind, the rotation of the Earth is

ignored, and ż is zero throughout. The equations

then reduce to

ẍ = −Eẋ,

ÿ = −Eẏ − g.

It should be noted that in these equations,

we are using the same value of E in both the

x and y directions. This is consistent with a

simplified model used in the first half of the 20th

century as described in BRL report 889. “The

physical assumptions behind the present compu-

tational procedures producing firing and bombing

tables are that the shell or bomb are essentially

particles. For the tables discussed in this report

the only concession in the equations used in the

April–June 2021 5



Article

∆x0

2
= ẋ0

∆t

2
,

∆y0

2
= ẏ0

∆t

2
,

x1 = x0 + 2

(

∆x0

2

)

,

y1 = y0 + 2

(

∆y0

2

)

,

∆ẋ0

2
= −(E0ẋ0)

∆t

2
,

∆ẏ0

2
= −(E0ẏ0 + g)

∆t

2
,

ẋ1 = ẋ0 + 2

(

∆ẋ0

2

)

,

ẏ1 = ẏ0 + 2

(

∆ẏ0

2

)

,

∆ẋ1

2
= −(E1ẋ1)

∆t

2
,

∆ẏ1

2
= −(E1ẏ1 + g)

∆t

2
,

∆x1

2
= ẋ1

∆t

2
,

∆y1

2
= ẏ1

∆t

2
,

x2 = x0 +
∆x0

2
+

∆x1

2
,

y2 = y0 +
∆y0

2
+

∆y1

2
,

ẋ2 = ẋ0 +
∆ẋ0

2
+

∆ẋ1

2
,

ẏ2 = ẏ0 +
∆ẏ0

2
+

∆ẏ1

2
.

Figure 2. Difference Equations for Artillery Trajectory

Using Heun’s Method

computation to the fact that the projectile is not

really a particle is that there is a drag force.”[16]

However, even as early as this 1954 report, there

is mention of work being done to add the effect

of lift as is done in modern simulations.

Both the first progress report on the ENIAC

(written sometime in early 1944) [18] and BRL

report 889 [16] discuss the use of Heun’s method

for numerically solving differential equations on

the ENIAC. It seems likely that this is the

approach taken in the unveiling, and it is the

approach taken in this reconstruction. Applying

Heun’s method to the simplified differential equa-

tions results in the set of difference equations

shown in Figure 2. As in the first progress report,

we set ∆t = 0.02s allowing us to perform

the multiplications by ∆t

2
by shifting two digits

to the right. A simple adapter cable allows this

shift to be performed much faster than using the

multiplier.

Next, we turn to the evaluation of E. The

Ballistics Research Lab report 1371 gives the

following equation[17]

E =
ρvKd

C
.

Here ρ is the density of air, which we will take

as a constant, though it’s really dependent on

altitude, y, and temperature. The magnitude of

the velocity of the projectile is given by v and

we use it by computing v2 = ẋ2 + ẏ2. Kd is the

drag coefficient and is found in the form of tables

or graphs giving the drag for a given velocity.

These data are collected experimentally for each

projectile shape. Finally, C is the ballistic coeffi-

cient given by the mass divided by the square of

the diameter of the projectile. We also find this as

one of two expressions for E in report 889[16].

In the simulation here, the value of E is

obtained by first using the high speed multiplier

to square ẋ and ẏ. The sum of the squares is

shifted to obtain a two-digit number used to index

one of the ENIAC function tables. The values in

the table are the values of E corresponding to

each value of v2. A 105mm shell provided the

characteristics for the value of C in computing

the table. The values of Kd came from the drag

coefficient vs. Mach number graph for shell HE

105-mm, M1 in the Handbook of Ballistic and

Engineering Data for Ammunition, Volume 2[19]

and reproduced here as Figure 3.

The final aspect of the artillery simulation

to consider is terminating the simulation. We

know that the simulation conducted as part of

the demonstration made use of the conditional

capabilities of the ENIAC to terminate the simula-

tion when the altitude became negative. The night

before the demonstration was to be given, there

was still a bug in which the simulation didn’t

terminate but continued after the altitude went

negative when Bartik and Holberton went home

for the night. After thinking about it overnight,

6 IEEE Annals of the History of Computing



Figure 3. Drag Coefficient vs. Mach Number for 105mm Shell

Holberton returned the morning of the demon-

stration, changed one switch setting and fixed the

bug.[12], [13]

The approach used here is that for each 50

simulation steps (each covering 0.02s for a total

of 1 second of simulated time), a card is punched

with the values of x and y, and the value of

y is tested. If y is non-negative, then the cycle

is repeated by computing another 50 time steps.

The details of the testing mechanism are worth

some discussion. Figure 4 shows the subset of

the set-up which implements the conditional test.

Master Programmer terminal H3o (stage 3 output

of stepper H) is connected to control trunk line

5-10 which is also connected to terminal 12i

of accumulator 20. Accumulator 20 holds the

value y and its program 12 is set to transmit the

contents of the accumulator subtractively. When

transmitting on the S terminal, a sign of P (+) is

transmitted as nine pulses and a sign of M (−)

results in no pulses being transmitted on the PM

line of the terminal. The box labeled PM in the

figure represents an adapter cable that plugs into

the S terminal on one end and brings the PM line

of that terminal out to control trunk line 5-11.

This control line is connected to accumulator 19,

terminal 5i, and program 5 is configured as a

dummy program as indicated by the operation

switch setting of 0. On a dummy program, data is

neither received nor transmitted; the accumulator

transceiver is used for adjusting pulse timing. If

any pulses arrive on a program input during the

early part of an addition time, the program output

emits a pulse at the next Central Programming

April–June 2021 7



Article

Master Programmer

Accumulator
19

Accumulator
20

1−1

1−2

1−3

1−4

1−5

1−6

1−7

1−8

1−9

1−10

1−11

· · ·

5−1

5−2

5−3

5−4

5−5

5−6

5−7

5−8

5−9

5−10

5−11

3

G H

0 1 0 0

0 0 0 1

0 0 0 1

α

A

1

β
×

1

0
×

δ

1

PM

S

1

0

1

Figure 4. Configuration for Testing Altitude

Pulse (CPP) time. Of course, if no pulses arrive

on a program input, then no pulses are emitted

from its output. Here, the 5o terminal is connected

to control line 1-4 which drives the stepper H

input to start the next integration cycle. The net

effect of this arrangement is that if y is non-

negative after the print is performed, nine pulses

will be emitted on the PM line of the S terminal,

pass through control line 5-11, initiate program 5

on accumulator 19, and trigger stepper H at the

next CPP time. On the other hand, if y is negative,

then no pulses are transmitted on the PM line of

the S terminal, program 5 is not started, and no

pulse is transmitted to the H stepper input. Thus

if y is non-negative, the simulation continues

for another cycle, but if it is negative, then the

simulation stops. Figure 5 shows the computed

trajectory for a shell leaving the gun at 1550 ft/s

and a gun elevation of 22.5◦.

BEYOND THE BASIC
DEMONSTRATION

Early in the development of this recreation, we

were asked whether it would be able to show the

bug that was fixed by Holberton on the morning

of the demonstration. The reality is that we do

not know enough about the details either of the

programming of the demonstration or of the bug

to say for sure. Bartik’s account reads: “The next

morning, Betty came in and knew exactly which

switch on the master programmer was set incor-

rectly... She went over, flipped the switch over one

position, and we were in business.”[13] Although

we can’t be certain whether this is the same

issue encountered the day before the unveiling,

there is a master programmer switch that, when

mispositioned, will result in the simulation not

stopping in this reconstruction. In particular, if

the stepper clear switch for stepper H were set

to 2, rather than 3, then the stepper would return

to stage 1 immediately after initiating the card

8 IEEE Annals of the History of Computing



−500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5000 10000 15000 20000 25000 30000 35000

”trajheun.dat”

Figure 5. Simulated Projectile Trajectory

punch without performing a test on the altitude.

As a result, the simulation would run indefinitely,

despite the simulated shell having hit the ground.

We also know that the trajectory computation

was repeated multiple times throughout the day.

It could well be that the original demonstration

was programmed so that after the trajectory ran to

completion, further initiating pulses restarted the

computation, assuming that this was planned for

ahead of time. In some ways it’s more interesting

to speculate on how it might have been done “on

the fly” during the demonstration. In this recon-

struction, this can be accomplished by moving a

couple of the patch cables so that the initiating

pulse drives the same clear and load operation

triggered by stepper B, stage 6 and the result

of the clear and load drives the stepper H input.

This involves unplugging the patch wire from the

Io terminal to control line 1-1 and plugging it

into control line 3-10. The second adjustment is

unplugging the patch wire going from terminal

14o of the constant transmitter to control line

1-11 and plugging it into control line 1-4. On

the ENIAC simulator, these changes can be made

with the commands:

p i.Io 3-10

p c.14o 1-4

Making these changes after the full demonstration

has run allows the initial pulse button to restart

the trajectory simulation as many times as de-

sired.

CONCLUSION
Seeing the ENIAC for the first time perform-

ing this variety of computations and operating at

unprecedented speed must have seemed fantastic

to those gathered to witness the unveiling. Re-

constructing the demonstration and running it on

a simulated ENIAC provides us with a way to see

the ENIAC a little like those first witnesses did.

We have made available on YouTube a video pre-

sentation of the reconstructed demonstration with

commentary at https://youtu.be/SGBT2Danh-g.

(Note that the programming run in the video is

an earlier version that used Euler’s method for

the integration in the artillery trajectory, rather

than Heun’s method, described here.) Source

code and related materials for the simulator used

here and for the reconstructed demonstration can

be found at http://cs.drexel.edu/∼bls96/eniac/ and

http://github.com/blstuart/eniac-simulator/.

ACKNOWLEDGMENT
The author would like to express his gratitude

to Kathy Kleiman of the ENIAC Programmers

Project for her assistance in getting the events sur-

round the demonstration correct and to Bakhtier

Farouk of Drexel University Mechanical Engi-

neering Department for his consultation regarding

atmospheric drag. Any remaining errors are mine

alone.

April–June 2021 9



Article

Appendix
FOR RELEASE FEBRUARY 16, 1946

From Henry Herbert,

Publicity Manager,

University of Pennsylvania

At the request of several persons who attended

the ENIAC press conference, February 1, 1946,

the following statement concerning the ENIAC

demonstration has been prepared by Dr. Arthur

Burks, who conducted the demonstration.

DEMONSTRATION OF ENIAC

February 1, 1946

The operation of addition was demonstrated first.

The operator, with a push of a button, made the

number 97367 appear in an accumulator, where it

could be read by means of the lights. By pushing

another button he caused the number to be added

to itself 5000 times. In one second the answer,

486,835,000 appeared in the accumulator next to

the one showing 97367.

You may wonder why such a simple operation

as addition was demonstrated. The answer to that

is that the numerical solution of even the most

complicated partial differential equation can be

obtained by means of sequences of the simple

operations of addition, subtraction, multiplication,

and division. The important fact about the ENIAC

is the speed with which it does these operations. It

is 1000 times as fast as any other general purpose

digital computor. To make clear how much dif-

ference this makes, the ENIAC was slowed down

to one-thousandth of its normal speed and told to

perform the 5000 additions. The fastest general

purpose digital computor in existence before the

ENIAC was completed takes 16 2/3 minutes to

do what the ENIAC can finish in one second.

The high speed multiplier was demonstrated

next. The number 13975 was put into the two ac-

cumulators to the left of the high speed multiplier.

When the operator pushed a button these two

numbers were multiplied together and the answer,

195,300,625 appeared in an accumulator to the

right of the high speed multiplier. With another

push of the button the operator caused 13975 to

be multiplied by 13975 five hundred times and

the products to be added together. The answer—

97,650,312,500—appeared after 1 second.

The ENIAC next produced a table of the

squares and cubes of the numbers from 1 to 100.

Each square was generated from the previous

number (x) and its square (x2) by means of the

formula,

(x+ 1)2 = x2 + 2x+ 1,

and each cube was generated from the previous

number (x), its square (x2), and its cube (x3) by

means of the formula,

(x+ 1)3 = x3 + 3x2 + 3x+ 1.

When the square and cube of each number was

computed the ENIAC stopped and the answer was

punched on a card. In this manner 100 cards were

punched, each containing a number, its square,

and its cube. (These cards were later put through

a machine which printed the table of squares and

cubes on paper—see enclosed sample.)

This problem required one minute, but during

most of this time the ENIAC was lying idle while

the answers were being punched on cards. To

show how fast the ENIAC computed the squares

and cubes from 1 to 100 the problem was repeated

without taking the time required for punching.

The problem was finished in 1/10 second—so

fast, in fact, that some who blinked didn’t see

it.

The ENIAC next produced a table of cosines

and sines. It did this by solving the difference

equations

∆(sinx) = −A sinx+B cosx

∆(cos x) = −A cos x−B sinx,

where A and B depend upon the intervals of the

argument and are given by

A = 1− cos∆x

B = sin∆x.

In the problem solved the sines and cosines were

calculated in intervals of 1/10 mil, so that A = 0
to nine significant figures and B = .000098175.

The sines and cosines for one hundred different

angles were computed, punched on cards, and

later printed in tabular form. (See enclosed sam-

ple.)

The operations and problems demonstrated

up to this point were very simple and did not

use much of the equipment on the ENIAC. The

10 IEEE Annals of the History of Computing



ENIAC was constructed for the purpose of solv-

ing more complicated problems. The last problem

demonstrated was of this character. It is a problem

of great importance to the Ordnance Department,

but since it is classified as secret not very much

can be said about it. It involves the solution of

partial differential equations. In solving it the

ENIAC did in 15 seconds what a mathematician

would require several weeks to do.

REFERENCES

1. “University of Pennsylvania ENIAC day: 75th anniver-

sary of ENIAC minisymposium,” 2021. [Online]. Avail-

able: https://events.seas.upenn.edu/event/eniacday/

2. “UNISYS corporation ENIAC day: 75th anniversary

of ENIAC broadcast,” 2021. [Online]. Available: https:

//vimeo.com/510236526

3. B. L. Stuart, “Simulating the ENIAC,” Proceedings

of the IEEE, vol. 106, no. 4, pp. 761–772, April

2018. [Online]. Available: https://ieeexplore.ieee.org/

document/8326772/

4. M. Bullynck and L. D. Mol, “Setting-up early computer

programs: D. H. Lehmer’s ENIAC computation,” Arch.

Math. Log., vol. 49, no. 2, pp. 123–146, 2010. [Online].

Available: https://doi.org/10.1007/s00153-009-0169-8

5. L. D. Mol and M. Bullynck, “A week-end off: The

first extensive number-theoretical computation on the

ENIAC,” in Logic and Theory of Algorithms, 4th

Conference on Computability in Europe, CiE 2008,

Athens, Greece, June 15-20, 2008, Proceedings, 2008,

pp. 158–167. [Online]. Available: https://doi.org/10.

1007/978-3-540-69407-6 19

6. A. K. Goldstine, “Report on the ENIAC: Part I

technical description of the ENIAC,” Republished

Periscope File, LLC, 2012, Moore School, University

of Pennsylvania, Tech. Rep., 1946. [Online]. Available:

http://archive.org/details/ReportonENIACEl00MoorB

7. T. Haigh, M. Priestley, and C. Rope, ENIAC in Action:

Making and Remaking the Modern Computer. The MIT

Press, 2016.

8. B. L. Stuart, “Programming the ENIAC,” Proceedings of

the IEEE, vol. 106, no. 9, pp. 1760–1770, September

2018. [Online]. Available: https://ieeexplore.ieee.org/

document/8467000/

9. A. W. Burks, “Demonstratin of ENIAC,” Memorandum,

ENIAC Patent Trial, Plaintiff Exhibit 4024.5, University

of Pennsylvania, February 1946.

10. H. H. Goldstine, The Computer from Pascal to von

Neumann. Princeton University Press, 1972.

11. W. Aspray, “An interview with Nicolas C. Metropolis,”

Charles Babbage Institute, Los Alamos, NM, 1987.

[Online]. Available: https://hdl.handle.net/11299/107493

12. J. J. Bartik, “Jean Jennings Bartik—ENIAC pioneer,”

Interview with Linda O’Bryon, Computer History

Museum, October 2008. [Online]. Available: https:

//www.youtube.com/watch?v=buAYHonF968

13. ——, Pioneer Programmer: Jean Jennigs Bartik and the

Computer that Changed the World, J. T. Rickman and

K. D. Todd, Eds. Truman State University Press, 2013.

14. A. W. Burks, “Who invented the general-purpose

electronic computer?” Lecture delivered in Rackham

lecture hall, University of Michigan, April 1974.

[Online]. Available: https://archive.computerhistory.org/

resources/text/Knuth Don X4100/PDF index/k-8-pdf/

k-8-u2772-Who-Invented-Computer.pdf

15. A. K. Goldstine, Electronic Numerical Integrator and

Computer ENIAC Technical Manual. Periscope Film,

LLC, 2012.

16. S. Gorn and M. L. Juncosa, “On the

computational procedures for firing and bombing

tables,” US Army Ballistics Research Laboratories,

Aberdeen Proving Ground, Maryland, Tech. Rep.

BRL R 889, January 1954. [Online]. Available:

http://apps.dtic.mil/dtic/tr/fulltext/u2/027123.pdf

17. E. R. Dickinson, “The production of firing tables

for cannon artillery,” US Army Ballistics Research

Laboratories, Aberdeen Proving Ground, Maryland,

Tech. Rep. BRL R 1371, November 1967. [Online].

Available: http://apps.dtic.mil/dtic/tr/fulltext/u2/826735.

pdf

18. “The ENIAC volume I: A report covering work until

December 31, 1943,” submitted in accordance with

Contract #W-670-ORD-4926, University of Pennsylva-

nia Moore School of Electrial Engineering, 1944.

19. “Handbook of ballistic and engineering data for

ammunition, volume II,” US Army Ballistic Research

Laboratories, Aberdeen Proving Ground, Maryland,

Tech. Rep., July 1950. [Online]. Available: https:

//apps.dtic.mil/dtic/tr/fulltext/u2/a955369.pdf

Brian L. Stuart is currently an associate teaching

professor at Drexel University, Philadelphia, PA, USA.

He received the B.S. degree from the Rose-Hulman

Institute of Technology, 1984, the M.S. degree from

Notre Dame, 1987, and the Ph.D. degree from Purdue

University, 1992. Contact him at bls96@drexel.edu.

April–June 2021 11


