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Decision Boundary Computation-based
Over-sampling for Imbalance Learning

Yi Sun, Lijun Cai, and JunLin Xu

Abstract—Imbalanced problem, one significant challenge in
data mining, occurs when the number of samples in one class
(minority) is obviously smaller than the other one (majority).
Over-sampling methods that generating new synthetic samples
for the minority class have been proven to be effective. But rare
over-sampling methods focus on the decision boundary between
classes and none of them are proposed to directly compute the
certain area of decision boundary for imbalanced problem. Thus,
one novel method named Decision Boundary Computation-based
Oversampling is proposed to fill this gap. The novel method
employs the intuitive observation, that both boundary samples
and their surrounding areas corporately constitute the decision
boundary, to compute the partition belonging to the minority
class by subtracting the partition of majority class from their
corporate one. Which greatly enhancing the full use of boundary
information brought by both boundary individuals and their
near areas, and implicitly complement the nature information
insufficiency of minority class at the same time. Finally, new
synthetic samples are generated in the partition of decision
boundary of minority class. Extensive experiments indicate the
good performance of proposed method when compared with
other state-of-art methods.

Index Terms—Imbalance learning, decision boundary, area
partition, over-sampling.

I. INTRODUCTION

CLASS imbalance, served as one of the most challenging
problem in data mining and machine learning, appears

in many real-world applications like credit fraud detection
[1], stream data mining[2], face recognition [3] and so on.
In one binary classification, one class of the smaller number
of samples is called as the minority class and samples of
this class are called as minority samples, and another one
as the majority class and majority samples. Generally in
one imbalanced problem, the classifier tends to bias towards
the recognition of majority samples. For example, given 10
minority samples and 90 majority samples, the classifier can
achieve 90% accuracy when classifying all samples as the
majority class. While many real-world applications care more
about the recognition of rare minority samples, especial for
some secure domains. So learning from imbalanced data is a
long-standing and significant challenge for machine learning
[4].

To deal with the imbalanced problem, several techniques
have been reported and proven to be efficient that mainly
involving the algorithm-level strategy [5], [6] and the data-
level strategy [7], [8], [9]. First for the algorithm-level strategy,
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the cost-sensitive learning [10], [11] and the ensemble learning
[12], [13] are two extensively used techniques to cope with
the imbalanced problem. Besides, the algorithm-level strategy
also includes some other techniques like hyperplane shift [14],
kernel perturbation [15] and multiobjective optimization[16].
Then, the data-level strategy mainly include the minority over-
sampling [17], [18] and majority under-sampling [21], [22]
techniques. The minority over-sampling technique balances the
ratio between classes by generating new synthetic samples for
the minority class [19], [20]. Inversely, the under-sampling
technique decreases the number of majority samples for the
balanced ratio. In this paper, we focus on the over-sampling
technique for its characteristic that not missing any original
information. For example, the under-sampling technique may
lose some important information on original data after decreas-
ing the number of majority samples.

From the perspective of interpolation of synthetic sam-
ples, the over-sampling technique mainly includes the linear-
interpolation [23], [24], [25] and non-linear or structure-
preserving interpolation methods [26], [27], [28]. For exam-
ple, synthetic minority over-sampling technique(SMOTE) [23]
generates one new synthetic sample by the linear interpolation
between the target minority sample and its randon one of
k-nearest neighbours of minority. On the basis of SMOTE,
the linear-interpolation method also involves into the bor-
derline minority over-sampling [29], hard-to-learn minority
over-sampling [24], [30] and kernel over-sampling [7], [18]
techniques. Contrary to those linear-interpolation methods,
structure-preserving interpolation method first estimates the
corresponding structure of minority class and then generates
new samples to maintain or preserve this estimated structure.
For example in [26] and [27], they use the covariance of
minority class to generate new synthetic samples.

However, only techniques like B-SMOTE1 and B-SMOTE2
in [29], ADASYN in [24] and MWMOTE in[30] involve
the decision boundary between classes. In detail, B-SMOTE1
and B-SMOTE2 [29] only generate synthetic samples for
minority samples that near to the borderline (called them
borderline minority samples for convenience); ADASYN [24]
and MWMOTE [30] only generate synthetic samples for
hard-to-learn minority samples that with different weights for
selection, which making more subtler and fine distinctions be-
tween borderline minority samples. Although these techniques
select borderline minority samples for generating synthetic
samples, only rough information in decision boundary are
used. In other words, they only use the linear-interpolation
between selected samples to generate synthetic samples and
not consider their surrounding areas in decision boundary at
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all. Besides, some of other techniques do not care about the
decision boundary but potentially or slightly generated several
synthetic samples in the decision boundary. For example, like
INOS in [26], it preferentially generates synthetic samples in
the whole data space with corresponding covariance structure
and subsequently cleans synthetic data that nearer to majority
samples. Thus, it finally obtains several synthetic samples
in the decision boundary but earns much from the date
cleaning technique. Simultaneously, INOS borrows a small
percentage of synthetic samples from ADASYN to protect the
key original minority samples. Moreover, like SWIM in [31],
it generates synthetic samples for each minority sample with
the same Mahalanobis distance from the majority class mean.
Thus, it generates several synthetic samples in the decision
boundary for borderline minority samples but may include
several overlapped synthetic samples at the same time.

In this sense, we, therefore, propose one Decision Bound-
ary Computation-based Over-sampling (DBO) method to fill
this gap. From the intuitive observation, the area in design
boundary not only includes individual samples but also their
surrounding areas. To take full use of boundary information,
we first compute the area of decision boundary on the basis of
boundary majority and minority samples and their surrounding
areas; and compute the partition belonging to the majority
class on the basis of boundary majority samples and their
surrounding areas. Then, we obtain the the partition belonging
to the minority class by subtracting the partition of majority
class from the area of decision boundary. For convenience, we
call the area of decision boundary as the decision boundary
area, the partition belonging to the minority class as the
boundary minority area and the partition belonging to the
majority class as the boundary majority area. Finally, we
generate new synthetic samples in the boundary minority area
to cope with the imbalanced problem.

Contributions are summarized as:

1) We innovatively attempt to compute the decision bound-
ary area between classes and divide it into different
boundary areas corresponding to different classes which
may give a theoretical reference for many classification
tasks.

2) We propose one novel minority over-sampling method
that generating synthetic samples in the boundary mi-
nority area for class imbalance problem.

3) We take full use of information in the decision bound-
ary by simultaneously considering boundary individual
samples and their surrounding areas.

4) The subtraction of boundary majority area can well
avoid synthetic samples deeply rooting into the majority
area and make our over-sampling method being robust
to several outliers at the same time.

The rest of paper is organized as follows. Sections II reviews
several related literature. Section III presents the decision
boundary computation-based over-sampling (DBO) method.
Experimental results and discussion are respectively prepared
in Section IV and V. In Sections VI, the conclusion is included.

II. RELATED WORK AND MOTIVATION

A. Related Work

Han et al. [29] proposes B-SMOTE1 and B-SMOTE2 to
only generate synthetic samples for borderline minority sam-
ples. Where one minority sample is considered as the border-
line one when the number of its majority nearest neighbours
is larger than the number of its minority ones. For example,
denoting the number of majority samples among m nearest
neighbours as m’, one minority sample is determined as the
borderline one when m/2 ≤ m′<m. For those borderline
minority samples, B-SMOTE1 searches k nearest neighbours
from minority samples for linear-interpolation to generate new
synthetic samples; specially, B-SMOTE2 searches k nearest
neighbours from both majority and minority samples for
linear-interpolation. To make more subtler and fine distinctions
between different borderline minority samples, He et al.[24]
proposes ADASYN to assign minority samples with different
weights by the ratio of the number of majority samples in m
nearest neighbours. Where the higher weight means the higher
level of difficulty in learning and more synthetic samples
are generated. Slight difference from ADASYN, MWMOTE
first identifies hard-to-learn informative minority samples, and
then assigns them different weights according to their Eu-
clidean distance from nearest majority samples [30]. Specially,
MWMOTE does not use k nearest neighbours for linear-
interpolation but use clusters. For example, for one hard-
to-learn minority sample, MWMOTE searches one random
minority samples that with the same cluster as the hard-to-
learn one for linear-interpolation. Thus, all synthetic samples
by MWMOTE lie in clusters of minority class.

Among those methods, for the target borderline minority
one, B-SMOTE1, ADASYN and MWMOTE only search
one from minority samples for linear-interpolation; and B-
SMOTE2 searches one from both majority and and minority
samples for linear-interpolation. For the first type of meth-
ods, B-SMOTE1 and ADASYN search a rand one from
k nearest minority neighbours for linear-interpolation; and
MWMOTE search a rand one from the same cluster for
linear-interpolation. Thus, B-SMOTE2 generates more syn-
thetic samples in the design boundary but may generate some
overlapped synthetic samples at the same time. ADASYN
generates more synthetic samples for those minority samples
with more majority samples surrounded, and MWMOTE gen-
erates more synthetic samples for those with nearer distance
to majority samples and make those synthetic samples never
erroneously falling into the majority class region.

Obviously, above methods only use individual minority and
majority samples for linear-interpolation and not consider their
surrounding areas at all.

B. Motivation

From the intuitive observation, boundary individual samples
and their surrounding areas together constitute the decision
boundary area as seen in Fig. 1. (c) in R2. Where the green
area means the boundary majority area and the blue area
means the boundary minority area, and the green and blue
area together constitute the decision boundary area. So we ask
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whether generating synthetic samples in the boundary minority
area can help much for the classification of imbalanced data.
However, two problems existed make it difficult to directly
compute the boundary minority area. In the one hand, rare
number of boundary minority samples leads to the missing
information on minority class in the boundary minority area.
In the other hand, complex distributions of data make it
impossible to directly compute the integral or continuous
boundary minority area.

To solve the first problem, we borrow information from
boundary majority samples. Owing to enough boundary ma-
jority samples, we first combine them with rare boundary
minority samples to compute the decision boundary area, then
use them to compute the boundary majority area; finally, we
can obtain the boundary minority area by subtracting the
boundary majority area from the decision boundary area. To
solve the second problem, we do not directly compute the
integral boundary area (for all decision boundary, boundary
majority and minority area); we first compute a serious of
local boundary areas; we then integrate those local boundary
areas together to approximately represent the integral boundary
area. Details of proposed method are described below.
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select one majority for linear interpolation

select one minority for linear interpolation

Fig. 1. Motivation of proposed method. (a) original imbalanced samples;
black circle means majority samples, red square means minority samples;
obviously, the number of majority samples is larger than the number of
minority one, and the minority class misses many information in the data
space especial for the decision boundary; inversely, the majority class owns
more information in the decision boundary. (b) linear interpolation; the solid
red square denotes one point A that selected for display of linear interpolation,
the red line segment means the linear interpolation between A and one of its
neighbouring minority sample and the black line segment means the linear
interpolation between A and one of its neighbouring majority sample; for
example, like B-SMOTE1, ADASYN and MWMOTE, they would like to
generate one synthetic sample in the line segment between A and one other
minority sample (denoted as the red line segment); like B-SMOTE2, it would
like to generate one synthetic sample in the line segment between A and one
other majority or minority sample (denoted as the black or red line segment),
but may generate one overlapped synthetic sample in the black line segment.
(c) decision boundary between classes; solid black circle means boundary
majority samples, solid red square means boundary minority samples, the
green area means the boundary majority area and the blue area means the
boundary minority area; obviously, boundary majority samples own more
information in the decision boundary than the boundary minority one; if
we can compute the green and blue areas, it can be beneficial both for the
oversampling and classification of imbalanced data.

C. Preliminary knowledge of area computation

In this section, we introduce how to compute corresponding
local area when give a group of samples. For example, when
given one group of samples {x1, x2, x3, ..., xm}, we compute
its corresponding area as the set:

S = {x| (x− x̄)TQ−1(x− x̄) ≤ 1} (1)

where Q is one symmetric and positive definite matrix; and x̄
is the center of this group:

x̄ =
1

m
×

m∑
j=1

xj (2)

Obviously, this area is just one ellipsoid where Q defines
how far it extends in each direction from x̄. To facilitate
understanding, we compute:

Q−1 = (α ∗ U)−1 (3)

where U is the covariance matrix of this group; α is one
predefined length for this covariance matrix U . And the inverse
matrix of covariance matrix can be obtained by the eigen
decomposition of the covariance matrix U:

U−1 = (V EV T )−1 = V TE−1V (4)

where E is one diagonal matrix with diagonal elements as
(λ1, λ2, ..., λn) (supposing no zero eigen value existed).

As seen in Fig.2. (a) the black circle denotes one group of
samples. Fig.2. (b) plots the area of this group when assigning

α = αA = (xA − x̄)TU−1(xA − x̄) (5)

where point A is one sample in this group, O is the center
of this group; xA is one 2-D coordinates vector for point A.
And Fig.2. (c) plots the area of this group when assigning
α = 1.5×αA. Obviously, A is one point in the surface of this
area when assigning α = αA; A is one interior point when
assigning α>αA (for example α = 1.5 × αA). To describe
conveniently, we mean αA as the length of A (on covariance
matrix U ).

Thus, Eq. 1 can be transformed as:

S = {x| (x− x̄)TU−1(x− x̄) ≤ α} (6)

To this end, we can compute the area of one group of
samples when assigning its corresponding covariance matrix
with one length α. In other words, the certain area depends
on the selection of corresponding group of samples and the
assignment of length α.

III. DECISION BOUNDARY COMPUTATION-BASED
OVER-SAMPLING

The proposed method mainly involves into three steps
respectively as the computation of decision boundary area, the
computation of boundary majority area and the generation of
synthetic samples. For both first two steps, we preferentially
select a group of samples and posteriorly assign one length
to corresponding covariance matrix. As seen in Fig.3, the
general procedure chart of proposed method is plotted for the
computation of local boundary minority area. After subtracting
the boundary majority area from the decision boundary area,
the remained area are obtained as the boundary minority area
in which synthetic samples are generated.
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(c) corresponding area when assigning α = 2 × α
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the center of group
one sample selected for display

 α
A

2 × α
A

Fig. 2. area computation. (a) a group of samples. (b) corresponding area when assigning α = αA; the solid black circle denotes one samples selected for
display, the solid red square denotes the center of this group and the red arrow denotes the predefined length α for the covariance matrix of group; obviously,
this area is one ellipse in R2; there, α = αA that computed in Eq. 5, thus point A is on the surface of ellipse. (c) corresponding area when assigning
α = 2× αA; the red arrow denotes the predefined length α for the covariance matrix of group; there, α = 2× αA>αA, thus point A and its surrounding
area are simultaneously covered. Totally, for the computation of one local area in our method, only a group of samples and one suitable length α are needed.

A. decision boundary area

1) a group of samples: In this subsection, we first compute
boundary minority samples and then select the group of
samples for each boundary minority sample. As seen in Fig.1.
(b), boundary minority samples are nearer to the majority class
than other non-boundary minority samples. Thus, for each
majority sample, we first compute its nearest minority one
to the boundary minority set:

BMIN = {bmin1, bmin2, ..., bmini, ..., bminn} (7)

where n is the number of boundary minority samples and
bmini is the i-th boundary minority sample in BMIN . Then,
for each boundary minority sample in BMIN , k nearest
majority samples are computed:

BMAJ = {{Bmaj1}, {Bmaj2}, .., {Bmajn}} (8)

Bmaji = {bmaji1, bmaji2, .., bmajik} (9)

where Bmaji includes k nearest majority samples for bmini.
Finally, for each boundary minority sample, we select the

group of samples.

groupDecB = {{gdb1}, {gdb2}, ..., {gdbn}} (10)

gdbi = {bmini,meani1,meani2, ...,meani
k} (11)

meanij =
bmajij + bmini

2
(12)

where gdbi includes the target boundary minority sample and
mean points between it and its k nearest majority samples.

As seen in Fig.4, the reason why we choose mean points
instead of k nearest majority samples is plotted and discussed.
Obviously as seen in Fig.4. (d), if selecting k nearest majority
samples, the local decision boundary area tends to cover
the whole local boundary majority area and the remained
boundary minority area will deeply root into the majority
area. Details and deep explanation are seen in the next
subsection.

2) corresponding length: In this subsection, we assign one
length to corresponding covariance matrix of preferentially
selected group. To cover both the target boundary minority
sample and its surrounding area with enough range size, we
double up this area with the length of target boundary minority
sample:

αDB
i = 2 ∗ αbmin

i (13)

αbmin
i = (bmini − x̄DB

i )T (UDB
i )−1(bmini − x̄DB

i ) (14)

where αDB
i is the length to assign to corresponding covariance

matrix, bmini denotes the i-th minority sample in BMIN; x̄DB
i

and UDB
i are respectively as the center and covariance ma-

trix of group (gdbi = {bmini,meani1,meani2, ...,meani
k});

αbmin
i is the length of target boundary minority sample bmini.

Since the group of samples and corresponding length are
selected and assigned, the local decision boundary area is
computed as:

SDB
i = {x| (x− x̄DB

i )T (UDB
i )−1(x− x̄DB

i ) ≤ αDB
i } (15)

where (UDB
i )−1 is the inverse matrix which can be obtained

by the eigen decomposition in Eq. 4.
As seen in Fig.3. (b) and (d), the local decision boundary

area does not deeply root into the majority area and is of
enough size at the same time. In detail, for the first goal, as
seen in Fig.4. (b), we zoom out the local decision boundary
area by setting ratio = 0.5. Obviously in Fig.4. (a), smaller
ratio makes the local decision boundary area smaller like
ratio = 0.25 that not enough area is covered. As seen in Fig.4.
(c) or (d), larger ratio makes the local decision boundary
area larger like ratio = 0.75 or 1 that over-much area are
covered. For the second goal, as seen in Fig.3. (b) and Fig.4.
(b), we zoom in the local decision boundary area by setting
α = 2 × αB (where point B is the target boundary minority
sample) to cover both point B and its near local minority area.
In general, we first double down this area and then double
up this area to simultaneously meet above two goals. After
reviewing the whole method, those two zooming operations
can be further understood.
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B. Boundary majority area

Similarly, we first select a group of samples and then as-
sign one length to corresponding covariance matrix. Different
from the local decision boundary area, we directly select
all k nearest majority samples in Eq. 9 into the group (as
Bmaji = {bmaji1, bmaji2, .., bmajik}). To cover both local
boundary majority samples and their surrounding areas and
not involve into the local boundary minority area at the same
time, we refer to lengths of target boundary minority sample
and its nearest majority one and assign the nearly mean length
of those referred two to corresponding covariance matrix:

αMAJ
i = αnnmaj

i + 0.5× |αmin
i − αnnmaj

i | (16)

αnnmaj
i = (bmajnn− x̄MAJ

i )T (SMAJ
i )−1(bmajnn− x̄MAJ

i )
(17)

αmin
i = (bmini− x̄MAJ

i )T (SMAJ
i )−1(bmini− x̄MAJ

i ) (18)

where bmajnn is the nearest one in k nearest majority
samples for the boundary minority sample bmini, α

nnmaj
i

is the length of bmajnn; x̄MAJ
i and SMAJ

i are respectively
as the center and covariance matrix of group (Bmaji =
{bmaji1, bmaji2, .., bmajik}). Besides, the use of absolute
value in Eq. 16 is prepared for outliers of minority class that
will be seen in Section V-A.
Since the group of samples and corresponding length are
respectively selected and assigned, the local boundary majority
area is computed as:

SMAJ
i = {x| (x− x̄MAJ

i )TS−1i (x− x̄MAJ
i ) ≤ αMAJ

i } (19)

As seen in Fig.3. (c), we refer to lengths of B and C
(the nearest majority to B) and assign nearly mean length of
those two to corresponding α. Obviously, the local boundary
majority area tends to cover much of decision boundary area
when assigning α = αB ; similarly, it tends to cover little
of the decision boundary area when assigning α = αC .
To make the trade-off between those two scenes, we assign
α = αC + 0.5 × |αB − αC | owing to that almost the half of
local decision boundary area belongs to the minority class and
another half belongs to the majority class.

C. Generation of synthetic samples

In this section, we first give the final integral boundary
minority and majority area and then generate new synthetic
samples in the boundary minority area for imbalanced prob-
lem. Firstly, since the local decision boundary and boundary
majority areas are computed, we obtain the local boundary
minority area as:

SMIN
i = SDB

i − SDB
i ∩ SMaj

i (20)

As seen in Fig.3. (d), we subtract the intersecting area from the
local decision boundary area and the remained area denotes
the local boundary minority area. To this end, we respectively
integrate those local boundary areas together to approximately
estimate corresponding integral boundary areas.

SDBA =

n⋃
i=1

SDB
i (21)

-5 0 5

(a) imbalanced data

-5

0

5

majority samples
minority samples
the target minority sample
k nearest majority samples
mean points between k nearest majority and the target minority
the center of a group samples

-5 0 5

(b) the local decison boundary area

-5

0

5

B

-5 0 5

(c) the local boundary majority area

-5

0

5

BC

-5 0 5

(d) the local boundary minority area

-5

0

5

B

2 × α
B

α
C

+0.5× |α
B
-α

C
|

the intersecting area of local decision boundary and boundary majority areas

the local decision boundary area

the local boundary majority area

Fig. 3. The computation of the local boundary minority area. (a) imbalanced
data; the red square denotes minority samples and the black circle denotes
majority samples. (b) the local decision boundary area; the solid red square
denotes the target boundary minority sample B for the display of computation
of local decision boundary area, the solid black circle denote k nearest
majority samples for B (there k=5, and calling them as k nearest boundary
majority samples), the solid blue square denotes mean points between B and
its k nearest boundary majority samples, the solid red circle denotes the center
of those mean points and B, the red arrow denotes the predefined length
α for the covariance matrix of group and the red slash area denotes the
local decision boundary area; first for the selection of a group of samples,
those k mean points and one point B are selected; then for the selection of
suitable length α, we set α = 2 × αB ; thus, the local decision boundary
area covers the minority samples B and its its surrounding area, and part of
boundary majority samples and their surrounding areas. (c) the local boundary
majority area; the solid black circle denotes k nearest boundary majority
samples for B, the solid red circle denotes the center of those k nearest
boundary majority samples, the red arrow denotes the predefined length α
for the covariance matrix of group and the green slash area denotes the local
boundary majority area; first for the selection of a group of samples, those
k nearest boundary majority samples are selected; then for the selection of
suitable length α, we set α = αC + 0.5 × |αB − αC | (notice: αB in (c)
is not equal to αB in (b), because of different group of samples selected
so leading to different covariance matrices or ellipses in R2); thus, the local
boundary majority area covers part of boundary majority samples and their
surrounding areas; sometimes, all boundary majority samples are covered,
sometimes not, because we care more about whether the majority area near
to the target boundary minority sample B is covered; of course, a larger α
may help to cover all boundary majority samples, but also tend to cover
much local boundary area that belonging to the minority class. (d) the local
boundary minority area; since the local decision boundary area and the local
boundary majority area are computed, we obtain the local minority area by
subtracting the local boundary majority area; obviously, the subtracting part
is the intersecting area of the local decision boundary area and the local
boundary majority area, and the remained area in local decision boundary
area is obtained as the local boundary minority area.

SBMajA =

n⋃
i=1

SMaj
i (22)

SBMINA =

n⋃
i=1

SMIN
i (23)

where n denotes the number of boundary minority samples in
BMIN in Eq. 7; SDBA is the integral decision boundary area,
SBMajA is the integral boundary majority area and SBMINA

is the integral boundary minority area.
Then for imbalanced problem, we generate new synthetic

samples in the boundary minority area in Eq. 23. Of course,
direct generation in the boundary minority area is impossible.
As seen in Eq. 20, we only own the information of local
decision boundary area and boundary majority area. Thus, we
first generate the synthetic sample in one randomly selected
local decision boundary area and then judge whether it falls
in the boundary majority area; only condition-satisfied one is
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Fig. 4. Different selections of the group of samples for the local decision
boundary area; we only carry the liner selection between one target boundary
minority sample and its k nearest boundary majority samples (one liner
selected sample: (1 − ratio) × bmin + ratio × bmajj where bmin and
bmajj are respectively coordinate vectors of target boundary minority sample
and the j-th one in k nearest boundary majority samples); and use different
ratios to denote the location of liner selected samples; for example, liner
selected samples are mean points between the target boundary minority sample
and its k nearest boundary majority samples when setting ratio = 0.5;
the red slash area denotes the decision boundary area and the green slash
area denotes the boundary majority area for all(a)-(d). (a) ratio = 0.25,
(b) ratio = 0.5, (c) ratio = 0.75, (d) ratio = 1. Obviously, as the
ratio increases, other liner selected points are nearer to corresponding k
nearest boundary majority samples (when ratio = 1, those liner selected
points are just k nearest boundary majority samples); so the local decision
boundary area covers more areas as the ratio increases; moreover, the local
decision boundary area would cover the whole local boundary majority area
with a larger ratio (like ratio = 0.75 or 1); of course, smaller ratio (like
ratio = 0.25) will make the local decision boundary area be of smaller size.
In general, for the computation of local decision boundary area, we first zoom
out this area (which includes both samples and their surrounding areas) by
setting ratio = 0.5 first and then zoom in this area by setting α = 2×αB .
Two zooming operations make the local decision boundary area be of enough
size and not root into the majority area too much at the same time, especially
avoid the scene that the local decision boundary area covers the whole local
boundary majority area..

recorded as the new synthetic sample for the minority class.
In detail, for the generation of one synthetic sample in the

local decision boundary area, we first use the rand Gaussian
distribution (G(µ = 1, σ = 1)) generator to generate one rand
value and then obtain the rand length len (in [0,1]) as:

len = (1− |G(µ, σ)|) ∗ αDB
i (24)

where G(µ, σ) is one rand value by the Gaussian generator.
Next, one normalized direction direc is randomly generated
satisfying

||direc|| = 1 (25)

The new synthetic sample is computed as:

Newtemp = V DB
i (EDB

i )1/2(len ∗ direc) + x̄DB
i (26)

where V DB
i and (EDB

i ) are components in the eigen decom-
position of covariance matrix UDB

i in Eq.4. In the next step,
we judge whether Newtemp falling in SMaj

i by Eq.19. If
not falling in, record Newtemp as the new synthetic sample
for the minority class; if falling in, re-generate one new
sample Newtemp again. To consider the possibility that the
local boundary majority area covers the whole local decision
boundary area, we restrict the time of re-generation as 100 in
experience. The algorithm of DBO is seen in Algorithm 1.

Algorithm 1 DBO
Input: Training set: T = {Tmaj , Tmin}; number of samples in majority and minority

class: nmaj and nmin.
Output: Synthetic samples Snew

Construct the boundary minority set BMIN ;
Construct the boundary majority set BMAJ ;
for i=1 to nmin do

Pick up the i-th boundary minority sample bmini from BMIN ;
Pick up corresponding boundary majority samples Bmaji from BMAJ ;
Estimate the local boundary area SDB

i ;
Estimate the local boundary majority area SMaj

i ;
Obtain the local boundary minority area SMIN

i = SDB
i − SDB

i ∩ SMaj
i ;

end for
Compute the number of new synthetic samples: N = nmaj − nmin

n=0;
while n < N do

Randomly select one local boundary minority area SMIN
i ;

Randomly generate one new data Newtemp in SDB
i ;

Judge whether Newtemp /∈ SMaj
i ;

If not, randomly re-generate again (repetition maximum: 100).
If is, add the new synthetic sample to Snew , n=n+1;

end while
return Snew

IV. EXPERIMENTAL RESULTS

In this section, we pick three borderline-related methods
as B-SMOTE2 [29], ADASYN [24] and MWMOTE [30],
and other three state-of-the-art methods as INOS [26], SWIM
[31] and GDO [32], for comparisons in this paper. First, we
generate synthetic samples for those methods in 2D emula-
tional datasets for visualization. Then, we test all methods
on real-world benchmark datasets that collected from UCI
machine learning repository [33] and [34]; and carry statistical
hypothesis tests for those methods. Finally, we analyse differ-
ent performances and corresponding characteristics of picked
methods.

A. Synthetic data in 2D space

As seen in Fig. 5, we generate synthetic samples for above
picked methods in three 2-D datasets. Three 2-D datasets are
respectively as Circle dataset, Triangle dataset and lappedCir-
cle dataset. Specially, for Triangle dataset and lappedCircle
dataset, we add them with several outliers. Each row corre-
sponding to one dataset. In a row, the original data is first
plotted where black denotes majority samples and red denotes
minority samples, then synthetic samples of each method are
plotted. For each method, nmaj −nmin synthetic samples are
generated, where nmaj is the number of majority samples and
nmin is the number of minority samples in the original data.

Obviously, our method DBO is robust to some of outliers
and almost generates all synthetic samples in the decision
boundary that to form a hollow structure as seen in Fig. 5.
DBO. In the one hand, this implies that DBO takes full use of
information in the decision boundary including both boundary
individual samples and their surrounding areas. In the other
hand, DBO can well compute the boundary minority area and
boundary majority area for different classes.

B. Comparison on real-world benchmark datasets

The performance of each method is evaluated on real-world
benchmark datasets from UCI repository[33] and [34]. The
basic information on those datasets is seen in Table I. Before
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Original data B-SMOTE2 ADASYN MWMOTE INOS SWIM GDO DBO
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(b) Triangle

0

0.5

1
Original data B-SMOTE2 ADASYN MWMOTE INOS SWIM GDO DBO

-1 0 1

(c) LappedCircle

-1

0

1

Original data

majority samples

minority samples

synthetic samples

B-SMOTE2 ADASYN MWMOTE INOS SWIM GDO DBO

Fig. 5. Synthetic data in 2-D space with three emulational datasets including (a) Circle, (b ) Triangle, (c) LappedCircle. For each row, the original data
distribution is first plotted where red denotes the minority and black denotes the majority; then synthetic data by each over-sampling method are subsequently
plotted. First from the perspective of robustness to outliers, all other methods suffer from outliers except MWMOTE; because MWMOTE uses clusters before
generating synthetic samples. Then for B-SMOTE2, it is robuster to outliers than remained methods; the reason is that B-SMOTE2 does not generate synthetic
samples for the one that all its m nearest neighbours are majority samples. Next, for our method DBO, it is robuster to outliers than other methods except
MWMOTE and B-SMOTE2; because for most outliers, their corresponding local decision boundary areas are covered by local boundary majority samples that
no synthetic sample generated. Second from the perspective of the number of synthetic samples in the decision boundary, our method DBO owns the largest
one; because DBO only generates synthetic samples in the decision boundary and is robust to some of outliers. Then for B-SMOTE2, ADASYN, MWMOTE
and GDO, they own the larger number than remained methods; because B-SMOTE2 only selects boundary minority samples for generating synthetic samples;
ADASYN, MWMOTE and GDO assigns high weights of selection for boundary minority samples; and for MWMOTE, many slightly interior boundary
minority samples are selected, so its number of synthetic samples in decision boundary is smaller than B-SMOTE2, ADASYN and GDO. Special for INOS,
it generates several overlapped samples like ADASYN; because it borrows nearly half percentage of synthetic samples from ADASYN; and for the linear
interpolation of synthetic samples, INOS chooses 15 nearest minority samples for ADASYN while ADASYN itself only chooses 5 nearest minority samples.

experiment, all datasets are preprocessed by the standardized
z-scores. For all methods, Nmaj − Nmin synthetic samples
are generated for the minority class. Two classifiers including
SVM and AdaBoostM1 (Method: AdaBoostM, NLearn: 10,
Learners: decision tree) are used. For each classifier, we
apply a twofold SKFCV(stratified k-fold cross validation, and
setting k=2) for 30 times. In total, 60 runs are conducted.
Corresponding mean and standard deviation are recorded as
the results.

To evaluate the classification performance, accuracy is cur-
rently used to evaluate the classification performance. But it
does not apply to imbalanced data at all. Because imbalanced
classification cares more about the minority class. Thus, we
select g-mean as the measurement to evaluate the classification
performance. Besides, precision and recall are also selected for
the comparison between different methods.

precision =
TP

TP + FP

recall =
TP

TP + FN

g −mean =

√
TP × TN

(TP + FN)× (TN + FP )

(27)

where TP, TN, FN and FP are respectively as the number
of true positives, true negatives, false negatives and false
positives.

As shown in Table II and III, the performance of each
method on two classifiers SVM and AdaBoostM1 are re-
spectively displayed. Where Ori means the classification

performance that directly sending the imbalanced dataset to
the classifier. Different from the Ori method, other methods
simultaneously send imbalanced dataset and synthetic samples
to the classifier. And in each table cell, except the mean and
standard deviation of 60 runs, the rank among all methods is
recorded in a bracket (1 denotes the best rank). For example
in experiment, we apply a twofold SKFCV for 30 times for
the method DBO on the Balance-scale middle dataset. There
are 60 values of g-mean for the DBO on Balance-scale middle
dataset, where the mean and standard deviation of 60 values
are respectively as 0.3573 and 0.0670. Obviously, DBO with
the average g-mean (0.3573) ranks the 4th best. And the best
rank is highlighted as bold like B-SMOTE2 on Balance-scale
middle dataset.

As shown in Table IV and VI, mean ranks of those method
on precision, recall and g-mean are computed for the further
comparison. For example in Table IV, we compute the mean
rank of DBO on all datasets as 1.84. And the best mean rank
is highlighted as bold. Besides, the Friedman test, as one of
non-parametric statistical test, is applied to judge whether the
significant difference exists among all methods. For example
in Table IV, the actual value among all methods on g-mean
is 105.23 that is larger than the table look-op value 17.04
(n=8-1, α = 0.05); we reject the original hypothesis; thus
there exists the significant difference among all methods on
g-mean. Moreover, the Bonferroni-Dunn test, as one of post-
hoc test,is applied to judge whether the significant difference
exists between our method DBO and any one of other methods
on recall and g-mean (only consider DBO achieving the best
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mean rank). For example in Table IV, the gap of mean rank
on g-mean between B-SMOTE@ and DBO is 1.84 (3.68-1.84)
that is larger than the critical value 1.67; thus there exists the
significant difference between B-SMOTE2 and DBO; in other
words, DBO performs better than B-SMOTE2; and we denote
a dagger symbol after the mean rank of B-SMOTE2.

As shown in Table V and VII, the Wilcoxon paired signed-
rank test, as one of non-parametric statistical hypothesis test,
is applied for pairwise comparisons between DBO and one
of other method that the significant difference does not exist
after using the Bonferroni-Dunn test. In the Wilcoxon paired
signed-rank test, the significant difference exists when the
corresponding p-value is smaller than 0.05. For example in
Table V, the p-value is 0.0242 on recall between DBO and
SWIM that smaller than 0.05; thus, significant difference
exists; in other words, DBO outperforms SWIM; and denote
0.0242 as bold.

TABLE I
BASIC PROPERTIES OF USED REAL-WORLD DATASETS

Data set Attri Min;Maj Min: Maj IR
Balance-scale middle 4 - 49:576 11.8

Biomed diseased 5 - 67:127 1.9
Housing MEDV¿35 13 - 48:458 9.5

Diabetes absent 8 - 268:500 1.9
Iris setosa 4 - 50:100 2.0

Iris virginica 4 - 50:100 2.0
Thyriod hyperfunction 21 - 191:3581 18.7

Vowel 1 10 - 48:480 10.0
Vowel 9 10 - 48:480 10.0

Abalone58 8 5,8;rest 683:3494 5.1
BreastTissue3 8 3;rest 18:88 4.9
BreastTissue4 8 4;rest 16:90 5.6

Ecoli2 8 im;rest 77:259 3.4
Ecoli3 8 pp;rest 52:284 5.5
Glass7 9 7;rest 29:185 6.4

ImageSegmentation1 19 1;rest 330:1980 6.0
LibrasMovement6 90 6;rest 24:336 14.0

LibrasMovement15 90 15;rest 24:336 14.0
Pageblocks45 10 4,5;rest 203:5270 26.0
Pageblocks34 10 3,4;rest 116:5357 46.2

StatlogVehicleSilhouettes4 18 4;rest 199:647 3.3
Vowel 1 2 3 10 - 144:384 2.7

WallFollowingRobotNavigation4 24 4;rest 328:5128 15.6
Wine1 13 1;rest 59:119 2.0

Yeast569 8 5,6,9;rest 115:1369 11.9
GLRCNBI1 698 hyperplasic;rest 55:21 2.619

Colon 1 1908 - 22:40 1.8
Leukemia 1 3571 - 25:47 1.9

Metas 1 4919 - 46:99 2.2
DrivFace3 6399 3;rest 33:573 17.3636

ARBT1 8265 Buddhism;rest 46:544 11.8261

C. Performance analysis

In this subsection, we analyse different performances of
methods based on their mean ranks in Table IV and VI.
From the perspective of precision and recall seen in Eq. 27,
better precision means the smaller number of false positives,
where false positives denote majority samples being wrongly
classified; better recall means the smaller number of false
negatives, where false negatives denote minority samples
being wrongly classified. Basically, good recall is connected
with bad precision or good precision is connected with bad
recall for all methods. Because more synthetic samples that
generated near or in the decision boundary may increase the
rate of minority recognition but meanwhile decrease the rate
of majority recognition.

Roughly, those methods can be divided into two types
respectively as the one of better recall such as B-SMOTE2,
SWIM and DBO; another one of worse recall such as Ori,
MWMOTE and INOS. Obviously, methods in the first type

generate more samples in the decision boundary than meth-
ods in the second type. For example, B-SMOTE2 generates
synthetic samples between majority and minority samples,
SWIM generates synthetic samples with the same Mahalanobis
distance from the majority class mean as the minority sample
and DBO just generates synthetic samples in the boundary
minority area. Specially for SWIM, it may generate synthetic
samples along the borderline for the boundary minority sam-
ple when its Mahalanobis distance meets the covariance of
majority class. And for the second type of methods, although
MWMOTE picks out hard to learn minority samples but in
which many slightly interior one are also picked. INOS gen-
erates one percentage of synthetic samples by self and borrows
another percentage of synthetic samples from ADASYN, thus
tend to be affected by ADASYN.

Different from above two types of method, ADASYN is
more sensitive to outliers and tends to generate many over-
lapped synthetic samples. Moreover for DBO, it uses the
Gaussian distribution of each minority sample to generate
synthetic sample; thus it tends to generate many overlapped
samples when its corresponding (µ, σ) of Gaussian distribution
does not match current data distribution.

From the perspective of g-mean as seen in Eq. 27, better
g-mean means the good recognition rate of both minority and
majority classes. As seen in Table IV and VI, DBO achieves
the best mean rank on g-mean. This implies DBO can well
perform the balance on both recognitions rates of minority and
majority samples to cope with the imbalanced problem.

V. CHARACTERISTICS OF DBO

A. Robust to outliers

As seen in Fig. 6, three scaling size of graphs for each
outlier are plotted in a col. First for the bottom and middle
one, the local decision boundary area is covered by the local
boundary majority area so lead to the empty local boundary
minority area. Then for the top one, the local boundary
majority area covers a part of the local decision boundary area;
specially in this scene, the remained minority area distributes
in the non-majority existed region (a certain region that no
majority existed).

In general, DBO is robust to some of outliers and only
generates synthetic samples in very near regions or temporary
non-majority existed regions for other outliers.

B. Parameter setting and time consuming

As seen in Fig. 7, one parameter K which means K nearest
majority samples of the target boundary minority sample is
involved in DBO. Obviously, larger value of K means larger
sizes of both the local decision boundary area and local
boundary minority area. To maintain the local property for
DBO, we set K=5 for all datasets.

As shown in Table VIII, the time consuming of different
methods is displayed. In experiment, we run the code of
eigen decomposition on NVIDIA GeForce GTX 1050Ti and
remained code on Intel Core i9 CPU for the last five high-
dimension datasets as Colon 1, Leukemia, Metas 1, DrivFace3
and ARBT1. For remained datasets, we run the code on
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TABLE II
SVM: AVERAGE G-MEAN ON REAL-WORLD DATASETS

Dataset Ori B-SMOTE2 ADASYN MWMOTE INOS SWIM GDO DBO
Balance-scale middle 0.0000±0.0000(8) 0.3919±0.0666(3) 0.4026±0.0696(1) 0.3987±0.0749(2) 0.3007±0.1052(7) 0.3468±0.0727(6) 0.3546±0.0686(5) 0.3673±0.0670(4)

Biomed diseased 0.8336±0.0444(8) 0.8581±0.0375(4) 0.8624±0.0344(1) 0.8587±0.0367(3) 0.8537±0.0376(7) 0.8572±0.0413(5) 0.8572±0.0377(6) 0.8596±0.0326(2)
Housing MEDV¿35 0.6803±0.0784(8) 0.8160±0.0503(6) 0.8327±0.0545(4) 0.7996±0.0702(7) 0.8272±0.0587(5) 0.8593±0.0343(1) 0.8524±0.0397(3) 0.8591±0.0398(2)

Diabetes absent 0.6267±0.0340(8) 0.7119±0.0218(1) 0.7055±0.0247(4) 0.7058±0.0227(3) 0.6904±0.0272(7) 0.7004±0.0220(5) 0.6980±0.0255(6) 0.7075±0.0246(2)
Iris setosa 0.9906±0.0102(6) 0.9906±0.0102(6) 0.9906±0.0102(6) 0.9906±0.0102(6) 0.9906±0.0102(6) 0.9923±0.0099(2) 0.9909±0.0101(3) 1.0000±0.0000(1)

Iris virginica 0.9076±0.0523(8) 0.9484±0.0365(6) 0.9598±0.0287(2) 0.9523±0.0313(4) 0.9494±0.0347(5) 0.9398±0.0365(7) 0.9530±0.0269(3) 0.9637±0.0222(1)
Thyriod hyperfunction 0.0000±0.0000(8) 0.7913±0.0544(3) 0.8444±0.0371(2) 0.7633±0.0456(5) 0.6704±0.0689(7) 0.6947±0.0523(6) 0.7649±0.0364(4) 0.8726±0.0425(1)

Vowel 1 0.0978±0.1579(8) 0.7857±0.0614(7) 0.8151±0.0465(6) 0.8328±0.0497(4) 0.8261±0.0528(5) 0.8428±0.0413(2) 0.8417±0.0420(3) 0.8525±0.0296(1)
Vowel 9 0.6475±0.0877(8) 0.8645±0.0676(7) 0.8940±0.0544(5) 0.8689±0.0737(6) 0.9013±0.0469(4) 0.9078±0.0315(2) 0.9046±0.0359(3) 0.9096±0.0263(1)

Abalone58 0.0000±0.0000(8) 0.6676±0.0124(5) 0.6780±0.0111(1) 0.6608±0.0161(6) 0.6536±0.0183(7) 0.6709±0.0155(3) 0.6690±0.0123(4) 0.6739±0.0121(2)
BreastTissue3 0.0000±0.0000(8) 0.6190±0.1035(5) 0.6251±0.1373(4) 0.6188±0.1079(6) 0.6071±0.1355(7) 0.6680±0.0946(1) 0.6346±0.0921(3) 0.6482±0.1006(2)
BreastTissue4 0.0292±0.1170(8) 0.7649±0.1327(7) 0.7957±0.0765(3) 0.7781±0.0739(6) 0.7935±0.0845(4) 0.7972±0.0428(2) 0.7892±0.0728(5) 0.7977±0.0547(1)

Ecoli2 0.7972±0.0448(8) 0.8698±0.0341(2) 0.8611±0.0337(3) 0.8429±0.0335(6) 0.8415±0.0327(7) 0.8503±0.0267(5) 0.8610±0.0367(4) 0.8750±0.0280(1)
Ecoli3 0.7224±0.0643(8) 0.8759±0.0303(3) 0.8804±0.0280(2) 0.8668±0.0368(6) 0.8663±0.0374(7) 0.8675±0.0329(5) 0.8735±0.0326(4) 0.8837±0.0295(1)
Glass7 0.8834±0.0462(8) 0.8974±0.0474(6) 0.9057±0.0516(4) 0.8950±0.0502(7) 0.9088±0.0407(3) 0.9205±0.0334(1) 0.9025±0.0511(5) 0.9204±0.0322(2)

ImageSegmentation1 0.9842±0.0054(7) 0.9925±0.0042(3) 0.9921±0.0056(4) 0.9903±0.0066(6) 0.9931±0.0043(1) 0.9917±0.0038(5) 0.9822±0.0132(8) 0.9930±0.0036(2)
LibrasMovement6 0.6386±0.1095(8) 0.8073±0.0872(3) 0.7789±0.1034(4) 0.7655±0.1195(6) 0.7742±0.0997(5) 0.8286±0.0631(1) 0.7639±0.1063(7) 0.8199±0.0748(2)
LibrasMovement15 0.6265±0.0939(8) 0.8056±0.0981(2) 0.7934±0.0953(4) 0.7974±0.0992(3) 0.7278±0.0993(7) 0.7622±0.0846(6) 0.7835±0.0993(5) 0.8148±0.0842(1)

Pageblocks45 0.5334±0.0386(8) 0.8866±0.0523(5) 0.9158±0.0319(2) 0.9085±0.0248(3) 0.8760±0.0357(6) 0.9051±0.0156(4) 0.8666±0.0792(7) 0.9289±0.0159(1)
Pageblocks34 0.7223±0.0834(8) 0.9647±0.0181(2) 0.9603±0.0173(4) 0.9467±0.0255(7) 0.9587±0.0243(5) 0.9536±0.0202(6) 0.9621±0.0232(3) 0.9659±0.0126(1)

StatlogVehicleSilhouettes4 0.9184±0.0209(8) 0.9625±0.0095(1) 0.9543±0.0136(5) 0.9502±0.0164(7) 0.9539±0.0142(6) 0.9604±0.0089(3) 0.9592±0.0099(4) 0.9612±0.0101(2)
Vowel 1 2 3 0.8071±0.0350(8) 0.8635±0.0275(3) 0.8622±0.0276(4) 0.8468±0.0270(7) 0.8494±0.0198(6) 0.8568±0.0212(5) 0.8696±0.0244(1) 0.8645±0.0220(2)

WallFollowingRobotNavigation4 0.4680±0.0810(8) 0.9004±0.0115(3) 0.8587±0.0223(6) 0.8928±0.0130(4) 0.8914±0.0123(5) 0.9139±0.0088(1) 0.8429±0.0171(7) 0.9077±0.0082(2)
Wine1 0.9828±0.0208(5) 0.9811±0.0220(7) 0.9828±0.0208(5) 0.9828±0.0208(5) 0.9880±0.0137(1) 0.9858±0.0154(3) 0.9790±0.0199(8) 0.9860±0.0130(2)

Yeast569 0.5626±0.0691(8) 0.8642±0.0224(3) 0.8555±0.0244(6) 0.8534±0.0272(7) 0.8570±0.0251(5) 0.8726±0.0195(1) 0.8623±0.0202(4) 0.8702±0.0207(2)
GLRCNBI1 0.6776±0.1241(5) 0.7500±0.1208(1) 0.6776±0.1241(5) 0.6776±0.1241(5) 0.6543±0.1202(8) 0.7192±0.0926(3) 0.6774±0.1242(7) 0.7276±0.1120(2)

Colon 1 0.5708±0.1250(5.5) 0.6928±0.1067(2) 0.5708±0.1250(5.5) 0.5708±0.1250(5.5) 0.5696±0.1247(8) 0.6432±0.1246(3) 0.5708±0.1250(5.5) 0.7949±0.0953(1)
Leukemia 1 0.7277±0.1174(7) 0.8670±0.1000(2) 0.7277±0.1174(7) 0.7277±0.1174(7) 0.7291±0.1141(5) 0.8582±0.0860(3) 0.7296±0.1170(4) 0.9523±0.0427(1)

Metas 1 0.2454±0.1321(6) 0.4186±0.1223(2) 0.2454±0.1321(6) 0.2454±0.1321(6) 0.2452±0.1304(8) 0.3084±0.1342(3) 0.2465±0.1328(4) 0.4497±0.0841(1)
DrivFace3 0.7057±0.0983(6) 0.8702±0.0838(2) 0.7057±0.0983(6) 0.7057±0.0983(6) 0.6921±0.0998(8) 0.8712±0.0695(1) 0.7092±0.0997(4) 0.8695±0.0727(3)

ARBT1 0.4037±0.2243(6) 0.5359±0.2219(2) 0.4037±0.2243(6) 0.4037±0.2243(6) 0.4225±0.2201(3) 0.5819±0.0796(1) 0.4138±0.2313(4) 0.4020±0.2169(8)

For each table cell, the average value of evaluation metric is first recorded, the corresponding standard deviation is followed and the rank among methods is recorded in a bracket. And the best rank for each row is highlight as bold.

TABLE III
ADABOOSTM1: AVERAGE G-MEAN ON REAL-WORLD DATASETS

Dataset Ori B-SMOTE2 ADASYN MWMOTE INOS SWIM GDO DBO
Balance-scale middle 0.0000±0.0000(7) 0.0880±0.1135(1) 0.0286±0.0821(4) 0.0818±0.1258(2) 0.0047±0.0362(5) 0.0000±0.0000(7) 0.0000±0.0000(7) 0.0578±0.1138(3)

Biomed diseased 0.8317±0.0418(7) 0.8340±0.0394(6) 0.8398±0.0372(1) 0.8391±0.0377(2) 0.8385±0.0379(3) 0.8352±0.0339(5) 0.8246±0.0435(8) 0.8383±0.0327(4)
Housing MEDV¿35 0.7793±0.0578(6) 0.8655±0.0469(3) 0.8672±0.0494(2) 0.8478±0.0541(5) 0.8511±0.0599(4) 0.5185±0.1826(8) 0.6392±0.1797(7) 0.8817±0.0469(1)

Diabetes absent 0.5839±0.0545(8) 0.6662±0.0433(3) 0.6696±0.0381(2) 0.6743±0.0400(1) 0.6429±0.0377(5) 0.6188±0.0471(6) 0.5951±0.0807(7) 0.6455±0.0556(4)
Iris setosa 0.0000±0.0000(5.5) 0.0000±0.0000(5.5) 0.0000±0.0000(5.5) 0.0000±0.0000(5.5) 0.0000±0.0000(5.5) 0.0000±0.0000(5.5) 0.3487±0.4792(1) 0.0498±0.2191(2)

Iris virginica 0.9054±0.1713(8) 0.9190±0.1234(5) 0.9075±0.1722(7) 0.9081±0.1721(6) 0.9250±0.1238(4) 0.9413±0.0270(1) 0.9286±0.1240(2) 0.9265±0.1239(3)
Thyriod hyperfunction 0.1163±0.3228(7) 0.9571±0.0040(4) 0.9842±0.0084(2) 0.9814±0.0083(3) 0.9905±0.0160(1) 0.1753±0.1390(6) 0.0599±0.0783(8) 0.9529±0.0047(5)

Vowel 1 0.4126±0.2046(8) 0.7701±0.0947(7) 0.8051±0.0764(4) 0.7990±0.0778(5) 0.8206±0.0670(3) 0.7757±0.0961(6) 0.8288±0.0645(2) 0.8325±0.0792(1)
Vowel 9 0.6198±0.1153(8) 0.8265±0.0739(6) 0.8451±0.0616(3) 0.8166±0.0769(7) 0.8284±0.0640(5) 0.8550±0.0542(1) 0.8531±0.0618(2) 0.8419±0.0534(4)

Abalone58 0.0000±0.0000(7) 0.2032±0.2445(2) 0.0000±0.0000(7) 0.3464±0.2448(1) 0.1055±0.1360(3) 0.0224±0.0846(4) 0.0000±0.0000(7) 0.0096±0.0747(5)
BreastTissue3 0.1430±0.1948(8) 0.4851±0.1736(2) 0.4751±0.1541(3) 0.4649±0.1661(4) 0.4628±0.1579(5) 0.3956±0.2138(7) 0.4066±0.2018(6) 0.5332±0.1562(1)
BreastTissue4 0.5796±0.1889(8) 0.7279±0.1598(5) 0.7705±0.0843(3) 0.7577±0.0993(4) 0.7891±0.0865(2) 0.6413±0.2365(7) 0.7275±0.1355(6) 0.7905±0.1422(1)

Ecoli2 0.7727±0.0578(8) 0.8535±0.0406(4) 0.8614±0.0336(2) 0.8540±0.0399(3) 0.8444±0.0459(5) 0.7789±0.0538(7) 0.7800±0.0723(6) 0.8754±0.0435(1)
Ecoli3 0.7713±0.0845(6) 0.8545±0.0448(3) 0.8392±0.0608(5) 0.8598±0.0419(1) 0.8551±0.0453(2) 0.7707±0.2227(7) 0.4679±0.4161(8) 0.8437±0.0402(4)
Glass7 0.8954±0.0493(8) 0.9090±0.0395(7) 0.9176±0.0384(5) 0.9143±0.0481(6) 0.9231±0.0338(4) 0.9263±0.0346(1) 0.9244±0.0360(3) 0.9251±0.0362(2)

ImageSegmentation1 0.9726±0.0216(6) 0.9845±0.0069(3) 0.9640±0.0197(7) 0.9855±0.0089(2) 0.9748±0.0197(5) 0.9754±0.0174(4) 0.9314±0.1057(8) 0.9856±0.0046(1)
LibrasMovement6 0.5098±0.1731(8) 0.7764±0.1091(4) 0.7864±0.0926(3) 0.7131±0.1246(7) 0.7748±0.1093(5) 0.7665±0.0959(6) 0.7890±0.0937(2) 0.8034±0.0928(1)
LibrasMovement15 0.6200±0.1367(8) 0.7820±0.1190(4) 0.7987±0.0907(3) 0.7740±0.1224(6) 0.7809±0.0878(5) 0.7718±0.0836(7) 0.8097±0.1011(2) 0.8412±0.0815(1)

Pageblocks45 0.7316±0.0544(7) 0.8476±0.0591(4) 0.8818±0.0430(2) 0.8693±0.0405(3) 0.8173±0.0634(5) 0.6940±0.0909(8) 0.7468±0.0981(6) 0.8910±0.0404(1)
Pageblocks34 0.8190±0.0443(8) 0.9460±0.0605(2) 0.9447±0.0271(3) 0.9122±0.0378(6) 0.9293±0.0486(4) 0.9180±0.0534(5) 0.9059±0.0762(7) 0.9584±0.0173(1)

StatlogVehicleSilhouettes4 0.6905±0.1354(8) 0.8652±0.0447(6) 0.8721±0.0325(4) 0.8525±0.0465(7) 0.8698±0.0427(5) 0.8788±0.0369(3) 0.8891±0.0480(1) 0.8884±0.0431(2)
Vowel 1 2 3 0.7211±0.0714(8) 0.8382±0.0510(5) 0.8344±0.0494(7) 0.8429±0.0415(4) 0.8524±0.0454(2) 0.8552±0.0479(1) 0.8364±0.0425(6) 0.8517±0.0471(3)

WallFollowingRobotNavigation4 0.9244±0.0343(8) 0.9761±0.0097(2) 0.9779±0.0095(1) 0.9555±0.0126(6) 0.9621±0.0113(5) 0.9534±0.0120(7) 0.9626±0.0090(4) 0.9726±0.0092(3)
Wine1 0.9633±0.0263(8) 0.9664±0.0196(4) 0.9643±0.0241(7) 0.9659±0.0233(6) 0.9692±0.0223(3) 0.9699±0.0198(2) 0.9661±0.0183(5) 0.9719±0.0144(1)

Yeast569 0.5235±0.2316(6) 0.8201±0.0315(2) 0.8108±0.0345(5) 0.8190±0.0314(3) 0.8122±0.0287(4) 0.4193±0.2966(7) 0.2679±0.1547(8) 0.8238±0.0350(1)
GLRCNBI1 0.7526±0.1117(5) 0.7787±0.0899(3) 0.7794±0.1029(2) 0.7953±0.0916(1) 0.7695±0.1117(4) 0.7226±0.1036(8) 0.7493±0.1005(6) 0.7433±0.1103(7)

Colon 1 0.6991±0.0941(8) 0.7310±0.0862(4) 0.7299±0.0861(5) 0.7026±0.0963(7) 0.7391±0.0798(3) 0.7535±0.0725(2) 0.7027±0.0933(6) 0.7579±0.0774(1)
Leukemia 1 0.4643±0.4852(7) 0.6826±0.4346(4) 0.4607±0.4813(8) 0.4645±0.4854(6) 0.5566±0.4756(5) 0.9199±0.0489(1) 0.8518±0.2889(2) 0.7972±0.3607(3)

Metas 1 0.4247±0.1078(8) 0.5205±0.0638(2) 0.4981±0.0882(4) 0.4871±0.0912(7) 0.4918±0.0866(6) 0.5245±0.0929(1) 0.4954±0.1029(5) 0.5011±0.0853(3)
DrivFace3 0.6823±0.1091(8) 0.8288±0.0792(2) 0.7845±0.0921(6) 0.7699±0.0958(7) 0.8007±0.0850(4) 0.8493±0.0712(1) 0.8217±0.0812(3) 0.8000±0.0854(5)

ARBT1 0.4696±0.0875(5) 0.4700±0.1316(4) 0.5130±0.0981(1) 0.4899±0.1090(2) 0.4723±0.1014(3) 0.3097±0.1306(7) 0.4676±0.1091(6) 0.2858±0.1405(8)

For each table cell, the average value of evaluation metric is first recorded, the corresponding standard deviation is followed and the rank among methods is recorded in a bracket. And the best rank for each row is highlight as bold.

TABLE IV
SVM: MEAN RANKS OF RECALL, PRECISION AND G-MEAN

Measurement Actual value(Friedman test) Ori B-SMOTE2 ADASYN MWMOTE INOS SWIM GDO DBO
precision 57.21(reject) 3.10 4.73 4.48 3.10 3.27 5.63 5.61 6.08

recall 125.31(reject) 7.55† 3.82† 4.23† 5.68† 5.97† 3.21 3.94† 1.61
g-mean 105.23(reject) 7.40† 3.68† 4.11† 5.40† 5.65† 3.29 4.63† 1.84

the Friedman Test: F=14.07, (n=8-1,alpha=0.05)
the Bonferroni-Dunn test: critical values=1.67

TABLE V
SVM: WILCOXON PAIRED SIGNED-RANK TEST FOR PAIRWISE COMPARISONS

recall g-mean
Ours vs. p-V Ours vs. p-V
SWIM 0.0242 SWIM 0.0042
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TABLE VI
ADABOOSTM1: MEAN RANKS OF RECALL, PRECISION AND G-MEAN

Measurement Actual value(Friedman test) Ori B-SMOTE2 ADASYN MWMOTE INOS SWIM GDO DBO
precision 43.18(reject) 2.69 4.76 5.05 3.37 4.08 5.44 4.61 6.00

recall 80.02(reject) 7.37† 3.55 4.24† 4.63† 4.40† 4.69† 5.00† 2.11
g-mean 65.13(reject) 7.27† 3.82 3.98 4.37† 4.02 4.79† 5.06† 2.68

the Friedman Test: F=14.07, (n=8-1,alpha=0.05)
the Bonferroni-Dunn test: critical values=1.67

TABLE VII
ADABOOSTM1: WILCOXON PAIRED SIGNED-RANK TEST FOR PAIRWISE COMPARISONS

recall g-mean
Ours vs. p-V Ours vs. p-V

B-SMOTE2 0.0093 B-SMOTE2 0.1124
ADASYN 0.0073

INOS 0.0108

Intel Core i7 CPU. Obviously, DBO costs many seconds
for last four high-dimension datasets as Leukemia, Metas 1,
DrivFace3 and ARBT1; costs several time for the dataset as
WallFollowingRobotNavigation4 with the middle dimension
(as 24) and large numbers of minority and majority samples
(respectively as 328 and 5128). For rest datasets, DBO costs
very few time.

VI. CONCLUSION

In this paper, a novel Decision Boundary Computation-
based Oversampling(DBO) method is proposed to address the
imbalanced problem to take full use of information in decision
boundary. First DBO computes the decision boundary area and
the boundary majority area; and then obtains corresponding
boundary minority area by subtracting the boundary majority
area from the decision boundary area. Finally, DBO generates
new synthetic samples in the boundary minority area. Thus,
DBO not only takes individual samples but also their surround-
ing areas into consideration. Moreover, DBO innovatively
divide the decision boundary area into two partitions for
majority and minority classed. And experimental results on
real-world datasets show the good performance on recall and
g-mean when compared to other methods. Especially on recall,
DBO can greatly enhance the rate of minority recognition.

In the future, some works will be attached to improve the
robustness towards outliers and good structure representation
of the boundary majority area to decrease the risk of much
lose on precision.
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