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Abstract

The strict latency constraints of emerging vehicular applications make it unfeasible to forward sensing data from vehicles to

the cloud for processing. To shorten network latency, Vehicular fog computing (VFC) moves computation to the edge of

the Internet, with the extension to support the mobility of distributed computing entities. In other words, VFC proposes to

complement stationary fog nodes co-located with cellular base stations with mobile ones carried by moving vehicles. Previous

works of VFC mainly focus on optimizing the assignments of computing tasks among available fog nodes. However, capacity

planning, which decides where and how much capacity to deploy, remains an open and challenging issue. The complexity of

this problem comes from the mobility of vehicles, the spatio-temporal dynamics of vehicular traffic, and the computing resource

demand generated by varying vehicular applications. To solve the above challenges, we propose a data-driven capacity planning

framework that optimizes the deployment of stationary and mobile fog nodes to minimize the installation and operational costs

under the quality-of-service constraints, taking into account the spatio-temporal variation in computing demand. Through

real-world experiments, we analyze the cost efficiency potential of VFC in long term and demonstrate that the performance

loss of VFC is below $6\%$ compared to stationary deployment with equal network capacity. We also analyze the impacts of

traffic patterns on the potential cost saving. The results show when the traffic density is higher, more operational costs will be

saved in the long run due to more dense deployment of mobile fog nodes.
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Data-Driven Capacity Planning for
Vehicular Fog Computing

Wencan Mao, Ozgur Umut Akgul, Abbas Mehrabi, Byungjin Cho, Yu Xiao, and Antti Ylä-Jääski

Abstract—The strict latency constraints of emerging vehicular
applications make it unfeasible to forward sensing data from
vehicles to the cloud for processing. To shorten network latency,
Vehicular fog computing (VFC) moves computation to the edge
of the Internet, with the extension to support the mobility of
distributed computing entities. In other words, VFC proposes to
complement stationary fog nodes co-located with cellular base
stations with mobile ones carried by moving vehicles. Previous
works of VFC mainly focus on optimizing the assignments of
computing tasks among available fog nodes. However, capacity
planning, which decides where and how much capacity to deploy,
remains an open and challenging issue. The complexity of this
problem comes from the mobility of vehicles, the spatio-temporal
dynamics of vehicular traffic, and the computing resource de-
mand generated by varying vehicular applications. To solve the
above challenges, we propose a data-driven capacity planning
framework that optimizes the deployment of stationary and
mobile fog nodes to minimize the installation and operational
costs under the quality-of-service constraints, taking into account
the spatio-temporal variation in computing demand. Through
real-world experiments, we analyze the cost efficiency potential
of VFC in long term and demonstrate that the performance loss
of VFC is below 6% compared to stationary deployment with
equal network capacity. We also analyze the impacts of traffic
patterns on the potential cost saving. The results show when the
traffic density is higher, more operational costs will be saved in
the long run due to more dense deployment of mobile fog nodes.

Index Terms—Capacity planning, vehicular fog computing
(VFC), spatio-temporal analysis, integer linear programming
(ILP), techno-economic analysis, vehicular networks, intelligent
transportation system (ITS), 5G.

I. INTRODUCTION

CLOUD computing has long been the dominant solution
for handling large scales of data generated from various

sources [1]. However, the traditional cloud strategies are not
feasible to the low latency requirement imposed by the emerg-
ing vehicular applications, such as cooperative intersection
crossing [2] and lane change scheduling [3] for autonomous
vehicles. Fog computing, as a promising alternative, moves
the computation resource close to the edge of the network [4],
and reduces network latency by its proximity to the end-users
and dense geographical distribution [5].

In the scenarios of fog computing, distributed fog computing
entities (a.k.a. fog nodes) can be installed in network infras-
tructures such as cellular base stations and road side units.
We call the ones co-located with such as the cellular fog
nodes (CFNs). In order to guarantee the quality of service
(QoS) received by the end-users, the stationary deployment
almost always leads to the over-provisioning of the resources,
turning the service provisioning into a non-profitable business
model. Motivated by this techno-economic pressure, vehicular

fog computing (VFC) was proposed to enable mobility of
fog nodes by installing fog nodes on moving vehicles, and
to utilize the mobility to satisfy dynamic computing resource
demand with lower costs [4]. We call the fog nodes carried by
vehicles (e.g. buses, taxis and drones) as vehicular fog nodes
(VFNs). The VFNs perform as local cloud servers and provide
computing service to the surrounding vehicles [6].

Previous works on VFC focus on task assignment among
available fog nodes. For example, Zhu et al. proposed a
joint optimization solution to assign the tasks generated from
vehicles across the stationary and mobile fog nodes under the
constraints of service latency, quality loss, and fog capacity
[7]. Capacity planning, which focuses on determining the
locations and capacities of fog nodes, is different from the
task allocation problem. Noreikis et al. proposed a capacity
planning solution for edge computing that satisfies the QoS
requirements while minimizing the number of required edge
computing nodes [8]. However, their framework considers only
stationary deployment of fog nodes, and therefore cannot be
applied to VFC.

Capacity planning for VFC remains an open issue and it is
challenging because of the following reasons. Firstly, vehicular
traffic has high spatio-temporal diversity, where the traffic
flow depends on the time-of-day and the geographic location
[9]. The capacity planning for VFC requires a deep under-
standing of the spatio-temporal dynamics of the vehicular
traffic. Secondly, in order to estimate the computing resource
demand from the vehicular application users, the resource
consumption pattern of various vehicular applications should
be taken into consideration. Thirdly, VFNs are supposed to
serve the vehicles within the one-hop communication range.
The mobility of VFN adds a layer of complexity to the analysis
of service availability and cost estimation.

In this paper, we propose a data-driven capacity planning
framework that takes real-world traffic data and application
profiles as inputs, and outputs a cost-optimal deployment plan
of CFNs and VFNs using Integer Linear Programming (ILP).
Our framework determines the number and types of fog nodes
in divided region to satisfy the computing resource demand
from the vehicular traffic environment.

The contributions of this work are listed as follows.

1) To the best of our knowledge, this is the first work on
data-driven capacity planning for VFC. It provides methods
for estimating the spatio-temporal distribution of computing
resource demand from real-world traffic data and application
profiles, and provides a mathematical model for minimizing
the installation and operational costs under QoS constraints
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through optimal deployment of fog nodes on cellular base
stations and buses.

2) Through evaluation with real-world datasets, we show
the potential of utilizing the mobility of fog nodes to fulfil
dynamic computing resource demand with lower costs, com-
pared with traditional stationary deployment on cellular base
stations. Our evaluation also indicates that the deployment
of mobile fog nodes would cause a performance gain up to
9.3% compared to stationary deployment with fixed network
capacity and a performance loss less than 6% compared to
that with extended network capacity, which makes VFC a
promising solution for urban network deployment.

3) Our study provides deep insights on the impact of traffic
patterns on the fog nodes deployment strategies by compar-
ing the potential cost savings between areas with different
traffic characteristics (e.g. downtown with dense traffic flows
vs. suburb with low traffic volume) and between weekdays
and weekends. The mobility of VFNs provides flexibility of
adjusting the capacity deployment with varying demand.

The rest of this paper is organized as follows. Section II
gives an overview of VFC. Section III introduces the data-
driven methodology of the capacity planning platform for
VFC. Section IV presents methods for estimating comput-
ing resource demand based on real-world traffic data and
application profiles. Section V formulates the optimization
problem for capacity planning. Experimental setup and results
are discussed in Section VI and Section VII, respectively.
Section VIII discusses the computational complexity of the
model and the future directions. Section IX presents the related
work before we conclude the work in Section X.

II. VEHICULAR FOG COMPUTING

In this section, an overview of the VFC paradigm is pre-
sented. First, we demonstrate an application scenario of VFC.
Then, we introduce the vehicular communication technologies
to support the implementation of VFC.

A. VFC Application Scenario

Fig. 1 presents an application scenario of VFC. In this
scenario, Vehicle A generates an object detection task in order
to recognize the traffic signs. It is within the communication
range of a bus which carries a VFN. Thus Vehicle A offloads
the task to the bus. Meanwhile, Vehicle B generates a lane
detection task, which is offloaded to a CFN co-located with
the connected cellular base station.

In case more than one fog node is available within the
communication range of a vehicle, task allocation algorithms
are used to decide where to offload the tasks generated by
the vehicle to improve the QoS and achieve better techno-
economic performance. Capacity planning, on the other hand,
focuses on planning where to deploy the fog nodes and how
much computing capacity should be deployed in order to fulfill
estimated computing resource demand with better techno-
economic performance. In this paper, we focus on capacity
planning for VFC, taking the mobility of vehicles including
VFNs into account.

Fig. 1: Application Scenario of VFC.

B. Vehicular Communication Technology

Dedicated short range communications (DSRC) and cellular
V2X (C-V2X) are the most widely used radio access technolo-
gies for vehicular communication. DSRC uses an orthogonal
frequency division multiplexing (OFDM)-based physical layer
with a channel bandwidth of 10 MHz [10]. C-V2X, which
is developed by 3GPP, makes use of the widely distributed
cellular infrastructure. Besides, it defines additional transmis-
sion modes that allow direct V2X communication using side-
link channels [10]. According to [11], DSRC and C-V2X
can support basic safety applications as long as the vehicular
density is not very high. The basic safety applications are
mainly based on advertising driving alerts periodically about
potentially dangerous situations. The latency requirements for
these applications are 100ms [10].

Moreover, IEEE 802.11bd and 5G NR V2X are designed
to support the advanced vehicular applications characterized
by high-reliability and low-latency requirements [10]. These
applications, so-called advanced vehicular applications, aim to
increase driving safety and benefit traffic management. 3GPP
has divided the advanced vehicular applications into four
categories, i.e. vehicle platooning, advanced driving, extended
sensor, and remote driving. Their latency requirements are 10-
500ms, 3-100ms, 3-100ms, and 5ms respectively [12].

In this work, we consider 5G NR V2X as the communi-
cation module among the vehicles, which enables vehicular
communications either within or out of the gNodeB coverage,
and supports multiple communication types (i.e. broadcast,
groupcast, and unicast) and message types (i.e. periodic and
aperiodic). A system-level evaluation of the 5G NR V2X is
provided by [13] using a 60 kHz sub-carrier spacing, a 20
MHz channel, and a transmission rate of 10Hz. The results
show that under highway scenarios, the packet delivery rate
(PDR) is around 99.7% to 99.8%; under urban scenarios, the
PDR varies from 93% to 97% [13]. This means 5G NR V2X
can provide high-reliable vehicular communication for VFC.

III. DATA-DRIVEN CAPACITY PLANNING

We follow a data-driven methodology to plan for the
deployment solutions of CFNs and VFNs. An overview of
the data-driven capacity planning process is given in Fig. 2.
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The capacity planning is implemented in three steps, namely
demand estimation, cost minimization, and bus scheduling.
Three types of data are used as the inputs. The vehicular traffic
data and application profiles are used for demand estimation,
and the bus mobility data are used for cost minimization and
bus scheduling.

The first step is to estimate the computing resource demand
generated by vehicles, which varies over time and between
locations. The demand depends on the spatio-temporal dis-
tribution of vehicular traffic and the resource consumption
profiles of vehicular applications. The latter describes the
usage pattern of CPU and GPU resources for each application.
Based on real-world traffic datasets, we propose to apply
spatio-temporal analysis methods, such as clustering, traffic
flow theory, and Gaussian Process Regression to model traffic
flows (see Section IV-A). Meanwhile, we choose a set of
representative vehicular applications as examples, and profile
their resource usages under different latency constraints (see
Section IV-B). The output of the demand estimation module
defines the minimum amount of computing capacity (in terms
of the number of fog nodes with fixed unit size) required in
each cluster at each time slot with respect to the traffic flows
and QoS requirements (see Section IV-C).

The second step is to find out a cost-optimal deployment
plan based on the estimated demand and the potential supply
(see Section V-B). We assume that VFNs would be installed
on commercial fleets like buses, due to their predictable
mobility patterns (e.g. schedules, driving routes). Accordingly,
the supply of VFNs depends on the mobility pattern of buses,
while the supply of CFNs depends on the deployment of
cellular base stations. Based on real-world bus schedules, we
divide a target area into clusters, and map bus journeys using
a spatio-temporal availability matrix (see Section V-A). Here
a bus journey defines the driving route as well as the time-
of-day when the trip starts. The same journeys are typically
repeated on a daily basis during weekdays, and on a weekly
basis during weekends. The same bus journeys may be served
by different buses on different days.

The outputs of the cost minimization module include the
deployment plan of CFNs, the selection of bus journeys, and
the minimized operational cost. In this module, we assume
that VFNs are installed on all the buses in the study area. This
may cause oversupply of VFNs. To solve this issue, the last
step is to run the bus scheduling module to identify a minimal
subset of buses for covering the selected bus journeys for VFN
deployment. The bus journeys that are belong to the same
bus line while having sufficient shifting time in between are
chained together. This means the same bus can be reused for
implementing different journeys. In this way, the installation
cost of VFNs can be minimized.

IV. DEMAND ESTIMATION

In this section, the approach of demand estimation is
introduced. First of all, it is important to understand how
the vehicular traffic vary over time and among locations, thus
the spatio-temporal traffic model is established. Besides, we
also need to know the consumption pattern of the vehicular

Fig. 2: Flowchart of data-driven capacity planning.

applications, thus the process of application profiling is illus-
trated. With these inputs, the demand estimation problem is
formulated.

A. Spatial-temporal Traffic Modeling

The process of spatio-temporal traffic modeling is shown in
Fig. 3. Based on the road network, clustering is used to group
the road segments into clusters. Two types of traffic datasets
are used to derive the traffic density according to traffic flow
theory [14]. And Gaussian Process Regression is used to model
the daily traffic flow as a distribution of time-of-day.

1) Road Network: A graph G = (V,E) is used to represent
a road network, where each vertex V represents a road
segment, and each edge E represents a road intersection. The
road segment is the basic unit of the road network, and the
road intersections represent the topological relationship of the
road segments.

2) Road Segment Clustering: The road segments are
grouped into clusters based on the geographical relationship
among them, and the traffic flow is accumulated in each cluster
to estimate the demand. At each time slot, the CFNs and VFNs
will serve the client vehicles that are within the same cluster.
K-means is used for clustering the road segments, and there
should be at least one base station inside each cluster.

3) Traffic Density Derivation: According to the traffic flow
theory, the basic variables of traffic flow are the average speed,
flow rate, and density; and if we know any two of these
variables, we can always get the value of the last variable [14].
There are usually two types of traffic datasets. One type is the
speed dataset, which samples the average speed of the vehicles
on each road segment at each time slot. The other type is the
flow rate dataset, which records the number of vehicles that
pass through a site during a time interval. By applying traffic
flow theory to the two types of dataset, the density of each road
segment can be derived. More precisely, the scatter plot of the
traffic density is calculated through dividing flow rate of each
lane by the average speed. Then the traffic density is fitted
using piece-wise regression with respect to the normalized
speed (i.e. the ratio of average speed and speed limit). In this
way, we are able to calculate the traffic density of all the road
segments based on their normalized speed. The traffic density
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(a) The road network of our study
area, where each red line represents
a road segment, and each blue dot
represents a road intersection.

(b) Clusters of road segments using k-
means, colours are used to distinguish
clusters.

(c) Traffic density versus normalized
speed based on traffic flow theory.

(d) An example of traffic flow versus
time-of-day during the weekdays.

Fig. 3: Process of spatio-temporal traffic modeling.

is further used to estimate the number of vehicles on each road
segment at each time slot (i.e. spatio-temporal traffic flow) by
multiplying the traffic density with the number of lanes and
the length of the road segment.

4) Traffic Flow Modeling: Gaussian Process Regression
is used to model the daily traffic flow in terms of vehicles
per cluster, with the predicted mean and variance functions.
Assume the mean function and variance function in a cluster
have the value X̄ and σ̂ at a certain time. To get the upper
limit of the confidence interval, we use X̄+β×σ̂ to denote the
spatio-temporal traffic flow, where β represent the coefficient
of the variance in the confidence interval. The traffic flow
is modeled separately during weekdays and weekends due to
different time-of-day pattern (see Section VII-A).

B. Vehicular Application Profiling

Apart from the vehicular traffic, the demand of the fog
computing system also depends on the resource consumption
of the vehicular applications, which is reflected in the CPU
and GPU consumption [8]. The vehicular applications are
containerized into Docker Images, and a set of benchmark
testing is designed for each containerized application. The ap-
plication benchmark testing algorithm is shown in Algorithm
1. After getting the vehicular application profiles, nonlinear
least squares regression is used to map the mathematical
relationship among the CPU usage, the GPU usage, and the
latency. Different standards of latency requirement are set
for all the users, and the CPU and GPU consumption of
each application under each latency requirement is calculated
according to the regression results.

Algorithm 1: Application benchmark testing algorithm
Input: computing latency requirement rcompute

Output: mean of frame latency µcompute, variance of
frame latency σcompute, mean of CPU usage
µcpu, mean of GPU usage µgpu

i = 1;
while µcompute ≤ rcompute do

start the docker service of i replicas of application;
while service is running do

record the frame latency;
record the CPU and GPU usage per second;

end
calculate µcompute, σcompute, µcpu, µgpu;
i = i+ 1;

end

C. Formulation of Demand Estimation

The demand estimation problem aims to find the minimum
amount of computing capacity required in each cluster at each
time slot to meet the computing tasks generated from the
users of vehicular applications. And the computing capacity
is represented as the number of fog nodes with a fixed unit
size. The set of computing tasks is represented by I . Assume
each user will keep one active computing task at each time
slot, then the number of the computing task is equal to the
number of the users. This is denoted as |I| = n, where n is
the number of users, and |.| represents the cardinality of the set.
The CPU and GPU consumption of each computing task p is
represented by c(p) and g(p) respectively. The CPU and GPU
consumption depend on the vehicular application type and the
latency requirement. We assume the latency requirement is
universal for the users at each time. We also need to know
the maximum capacity of the CPU and GPU according to
their configuration, which is represented by BCPU and BGPU
respectively. In this work, all the fog nodes are homogeneous,
so they have the same CPU and GPU configuration.

The demand estimation problem is given in (1a) to (1e).
Our objective function is (1a), where d.e represents the ceiling
function. The object function reflects that a fog node will be
needed if at least one computing task is packed inside, and
it minimizes the required number of fog nodes to pack all
the computing tasks generated from the users. Constraint (1b)
is the CPU configuration constraint, which ensures that the
computing tasks packed to each fog node does not exceed the
CPU configuration of the fog node. Constraint (1c) is the GPU
configuration constraint, which prevents the computing tasks
packed to each fog node from exceeding the GPU configu-
ration of the fog node. Constraint (1d) is the non-repetitive
assignment constraint, which ensures each computing task
is assigned to exactly one fog node. Finally, constraint (1e)
defines the binary decision variable xpq , which indicates if
the task p is packed to the fog node q.

Since the objective of the above problem is to determine the
minimum number of fog nodes, the problem can be solved in
polynomial time using the algorithm as follows. We start by
picking a random fog node and assigning the tasks to it until
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it is full. We repeat this process of picking random fog nodes
and assigning tasks until all the tasks are allocated or all the
fog nodes are full.

min
xpq

n∑
q=1

d
∑

p∈I xpq

n
e (1a)

s.t.
∑
p∈I

c(p)xpq ≤ BCPU,∀q ∈ (1, 2, ..., n), (1b)∑
p∈I

g(p)xpq ≤ BGPU,∀q ∈ (1, 2, ..., n), (1c)

n∑
q=1

xpq = 1,∀p ∈ I, (1d)

xpq ∈ (0, 1),∀p ∈ I, ∀q ∈ (1, 2, ..., n). (1e)

V. COST-OPTIMAL FOG NODES DEPLOYMENT

This section focuses on finding out how to deploy CFNs
and VFNs in order to fulfill the estimated computing resource
demand from vehicular traffic environment. Different from
CFNs which will be deployed at stationary cellular base
stations, the locations of VFNs depend on the schedules and
driving routes of the carriers, which are buses in this case.
Therefore, we start by estimating the availability of VFNs
based on the mobility pattern of buses, and then move to
the problem of minimizing the operational and installation
costs through optimal distribution of computing capacity on
the cellular base stations and buses. The architecture of the
capacity planning model is shown in Fig. 4.

A. Bus Mobility Pattern

We assume that bus journeys are planned beforehand. A bus
journey m can be described with the following parameters,
including the bus line lm, the direction rm, the departure
time dpm, and the one-way travel time trm. The bus line
and direction together determine the driving route of the bus
journey. During a journey, a bus may go through several road
segment clusters.

1) Spatio-temporal Availability Matrix: To model the mo-
bility of buses, we define a spatio-temporal availability matrix
A(i, t) that describes the spatio-temporal distribution of bus
journeys. For each cluster i and each time slot t, the spatio-
temporal availability matrix is represented as a vector of size
(u × 1), where u is the number of bus journeys in the study
area. Each element in the vector is a binary indicating the
availability of the bus taking the journey. The value is 1 if
the bus taking the each journey is traveling in the cluster in
question; and is 0 if the bus journey does not cover the cluster
in question, or if the bus is traveling in another cluster. When a
VFN is deployed on a bus, the VFN service becomes available
along the bus journeys taken by the bus. When estimating
the spatial distribution of VFNs in each time slot, we go
through such bus journeys, and calculate the communication
range of each VFN. Each VFN is associated with the nearest
road segment cluster within its communication range. Tasks
generated within a cluster are supposed to be executed only
on the associated VFNs.

2) Adjacency of bus journeys: In addition, we use a pa-
rameter to indicate the adjacency relationship between each
pair of journeys m and n. To be more precise, it indicates
whether journey n can be covered after journey m by the
same bus. A journey can be adjacent with another if both
journeys belong to the same bus line, and the departure time
of the upcoming journey is later than the arrival time of the
last journey. Therefore, the adjacency between journey m and
journey n is defined as:

cmn =


1, if lm = ln and rm = rn
and dpm + 2trm ≤ dpn
1, if lm = ln and rm 6= rn
and dpm + trm ≤ dpn
−∞, otherwise.

B. Cost Minimization

The cost minimization problem aims to minimize the overall
installation and operational costs of the fog computing system.
The installation cost per fog node is represented by ccap. The
overall installation cost in this problem is represented by C ′

cap,
where ′ indicates that the installation cost will be further
minimized. The installation cost include the investment of
purchasing and installing the fog nodes, which is paid only
once. Assuming the VFNs are installed on all the buses in the
study area, we need to know the overall number of buses in
the area n0.

The operational cost of CFN and VFN per unit time
is presented by copc and copv respectively, and the overall
operational cost is represented by Cop. The operational cost
include the rent, the fee of power consumption (e.g. fuel,
electricity) and regular maintenance, which is proportional to
the operating time. To calculate the operational cost, we also
need to specify the operational time T in days, and record
the duration tj of each bus journey j (j ∈ U) in the study
area, where U is set of bus journeys, and the number of the
bus journey is denoted as u. Apart from above, the inputs also
include the spatio-temporal demand estimation, represented by
the demand dit in cluster i (i ∈ S) at time slot t (t ∈ W ).
S is the set of clusters, and W is the set of time slots in a
day. And we also need the spatio-temporal availability matrix
A(it) from the bus dataset, represented by a vector of size
(u× 1) in cluster i at time slot t.

The installation cost assuming the VFNs are installed on all
the buses in the area can be written as:

C ′
cap = ccap(

S∑
i=1

ni + n0).

The operational cost can be written as:

Cop = T (copc ×W
S∑

i=1

ni + copv ×
U∑

j=1

tjxj).

The cost minimization problem is given in (2a)-(2d). Our
objective function, cf. (2a), minimizes the overall installation
and operational costs. Constraint (2b) is the spatio-temporal
capacity constraint, which ensures that the capacity provided
by the cellular and vehicular fog nodes is equal or larger than
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Fig. 4: Flowchart of the capacity planning model.

the demand estimation for each cluster at each time slot. To
plan for the deployment of CFNs and VFNs, two decision
variables are defined in Constraints (2c) and (2d). The first
decision variable ni is an integer variable to indicate the
number of CFNs in cluster i. The second decision variable
xj is a binary variable to indicate whether the bus journey
j is selected to serve as the vehicular fog nodes. The vector
form of all the vehicular fog nodes decision is X, with size of
(u× 1).

min
ni, xj

C ′
cap + Cop (2a)

s.t. ni + AT (i, t)X ≥ dit,∀i ∈ S,∀t ∈W, (2b)

ni ∈ Z+,∀i ∈ S, (2c)
xj ∈ (0, 1),∀j ∈ U. (2d)

C. Bus Scheduling

The bus scheduling problem aims to find the minimum
number of buses to install VFNs so as to further minimize
the installation cost. The minimal decomposition model [15]
is used to schedule the buses. The set of selected journeys
is represented by J . The number of the selected journeys
|J | = k, where |.| represents the cardinality of the set. In order
to schedule the buses, we also need the adjacency relationship
cmn for each journey pair m and n.

The bus scheduling problem is given in (3a)-(3d). The
objective function is (3a), based on the Dilworth Theorem of
partial ordered sets [15]. It minimizes the number of buses to
cover the selected journeys (i.e. the minimum decomposition
of the bus journey set J [15]). Constraint (3b) and (3c) are
the non-repetitive scheduling constraints in two directions,
which guarantees each bus journey is either covered by an
individual bus or covered in a sequence of bus journeys.
Finally, Constraint (3d) defines the binary decision variable,
which indicates whether a bus is scheduled to cover journey
n after journey m.

min
bmn

k −
∑
m∈J

∑
n∈J

cmnbmn (3a)

s.t.
∑
n∈J

bmn ≤ 1,∀m ∈ J, (3b)∑
m∈J

bmn ≤ 1,∀n ∈ J, (3c)

bmn ∈ (0, 1),∀m ∈ J, ∀n ∈ J. (3d)

With the minimum number of buses, the minimized instal-
lation cost can be written as:

Ccap = ccap(

S∑
i=1

ni + nv), (4)

where nv equals to the value of objective function in the bus
scheduling problem.

VI. EXPERIMENTAL SETUP

Real-world datasets and applications are used to validate
the capacity planning framework. This section introduces the
datasets, applications, and the simulation settings.

1) Helsinki Speed Dataset: The Helsinki city map is
extracted from latitude 60.222306, longitude 24.858754 to
latitude 60.142211, longitude 24.993980. In the map, 869 road
segments are included. Each road segment has its geographical
information as a set of sequential coordinates with start and
end intersections. the Helsinki speed dataset is collected using
HERE Traffic API. The speed of all the road segments are
sampled every minute from January 1st to February 15th 2020.

2) Helsinki Flow Rate Dataset: the Helsinki flow rate
dataset is published by Traffic Monitoring System (TMS) of
Finnish Transport Agency. The traffic monitoring stations are
located at all the major roads in Finland, and the flow rate
of these roads in the same study area are sampled during
the same time period as the speed dataset. Combining the
speed dataset with the flow rate dataset, we can get the spatio-
temporal traffic models.
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Fig. 5: Helsinki city map with the road network, bus traces, and the
locations of downtown and suburb areas.

3) Helsinki Bus Position Dataset: the Helsinki bus position
dataset is collected using HSL High Frequency Positioning
(HFP) API. All the buses in Helsinki publish their status,
including their bus line, vehicle id, direction, departure time,
as well as real-time position around once per second. The bus
position data is re-sampled into every minute to correspond
with the traffic dataset. From the bus position dataset, we can
get the bus mobility pattern.

4) Helsinki Bus Timetable: the Helsinki bus timetable is
published by HSL General Transit Feed Specification (GTFS).
It records the departure time and arrival time of all the bus
journeys at every bus stop. From the bus timetable, we get the
adjacency relationship of the bus journeys.

5) City Downtown and City Suburb: The city downtown
and city suburb areas are extracted from the Helsinki city map
by further clustering the road segment clusters based on their
topological relationship, and they both consist of 6 clusters.
The locations of the downtown and suburb areas are shown
in Fig. 5. The city downtown includes the city center, central
railway station, commercial area, and high-density residential
area. The city suburb includes the highways, natural parks,
and the low-density residential area.

A. Vehicular Applications

To exemplify the compute-intensive and latency-sensitive
vehicular applications, four computing tasks are selected for
testing, namely object detection, semantic segmentation, lane
detection, and video transcoding.

1) Object Detection: the object detection application is im-
plemented through YOLOv5s [16] trained on COCO dataset.

2) Semantic Segmentation: the segmentation application is
implemented through Image Segmentation Keras [17] with
VGG-UNET model and trained on Cityscapes dataset.

3) Lane Detection: the lane detection application is imple-
mented by OpenCV in Python environment.

4) Video Transcoding: the video transcoding application is
implemented through HandBrake video transcoder with x265
video encoder and mp4 container.

The CPU used for testing is the Intel Core i7-7700K. The
CPU has 8 threads which can run in parallel. Assuming the

TABLE I: Capacity planning simulation settings.

Simulation 1 Simulation 2 Unit
ccap 1000 500, 1000, 1500, 2000 MU/device
copc 0.02 0.02 MU/minute
αop 0.5, 1.0, 1.5, 2.0 1.0 MU/minute
T 1300 780, 1040, 1300, 1560, 1820 day

rcompute 250, 150, 100 100 millisecond
β 3 /

ptask 1:1:1:1 /
W 1440 minute
S 6 in downtown, 6 in suburb cluster
U 5189 in downtown, 5853 in suburb journey
n0 543 in downtown, 603 in suburb bus

computing capacity for each thread is 100%, the capacity of
the CPU BCPU = 800%. The GPU used for testing is the
NVIDIA GeForce RTX 2080 Ti. The GPU resource is used
as an integral, so the capacity of the GPU BGPU = 100%.

B. Simulation Setup

To validate the functionality of our model, we consider three
deployment options in the experiment, as detailed below.
Option 1: deploying fog nodes on both cellular base stations
and buses, and installing VFNs on minimum number of buses
that can cover the selected bus journeys (i.e. where the number
of VFNs equals to nv).
Option 2: deploying fog nodes only on cellular base stations.
Option 3: deploying fog nodes on both cellular base stations
and buses, and installing VFNs on all the buses in the study
area (i.e. where the number of VFNs equals to n0).

Among these three options, Option 1 is the output of
proposed capacity planning framework, while the other two
options are used for comparison. Option 2 corresponds to the
traditional stationary fog node deployment model, and Option
3 corresponds to the output of the capacity planning model
without bus scheduling block.

Two sets of simulations are listed in Table I. The given
costs are purely designed for comparison purposes and given
in Monetary Units (MU). However, we investigate the impacts
of different cost ratios in Section VI-B. In both simulations,
the confidence interval in traffic modelling is selected as three
times of standard derivation. And for each user, the probability
of selecting each type of computing tasks is regarded as equal.

The first simulation scenario analyzes the impacts of latency
requirement and relative operational cost on the deployment
of CFNs and VFNs. To analyze the implications of latency
requirement, we change the computing latency requirements
among 250ms, 150ms, and 100ms. We have defined the
relative operational cost as the operational cost of CFNs per
time unit divided by the operational cost if VFNs per time
unit, which is denoted as:

αop = copc/copv. (5)

To analyze the implications of the relative operational cost,
we change it from 0.5 to 2.0, while keeping other parameters
as constants.

The second simulation scenario compares the installation
and operational costs of deployment options under different
unit installation cost and operational time. In this set of
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(a) Weekdays in city downtown. (b) Weekends in city downtown.

(c) Weekdays in city suburb. (d) Weekends in city suburb.

Fig. 6: Spatio-temporal traffic models, where each color represents a
cluster, and the traffic flow is represented by the number of vehicles
in each cluster.

simulation, while keeping other parameters as constants and
setting relative operational cost to 1.0, we change the unit
installation cost from 500 MU/device to 2000 MU/device,
and change operational time from 780 days to 1820 days
(i.e. approximate working days from 3 years to 7 years). To
estimate the overall costs in the long run, we assume that the
vehicular traffic and bus mobility pattern remain unchanged
during the operational time.

We compare the deployment decision as well as the cost es-
timation in city downtown versus suburb, on weekdays versus
weekends. For the convenience of comparison, we set the time
range of the weekend models equal to the weekday models.
The proposed framework in Fig. 4 is formulated as separate
ILP models. Among these models, the demand estimation
module is solved using the heuristic method detailed in Section
IV-C. The remaining modules are developed in Python 3.8 and
solved using Gurobi [18] solver.

VII. EXPERIMENTAL RESULTS

In this section, the results of traffic modeling, application
profiling, fog node deployment, and cost estimation are pre-
sented, and the impacts of traffic pattern, latency requirements,
and cost estimation parameters are analyzed. Furthermore, the
service provision of different capacity planning strategies is
evaluated through a VFC simulation.

A. Traffic Models

Fig. 6 shows the spatio-temporal distribution of the traffic
flow, where each color represent a cluster in the area. The
mean and standard deviation of the traffic flow are derived for
each cluster, and the average values for all the clusters in the
area are calculated for each traffic model. Despite having a
smaller geographical coverage, downtown area accommodates
a larger traffic volume with respect to suburb area. So the
traffic density is higher in the city downtown, especially during
the weekdays. The traffic flow has different time-of-day pattern

(a) Object detection latency vs. CPU. (b) Segmentation latency vs. CPU.

(c) Lane detection latency vs. CPU. (d) Video trans-code latency vs. CPU.

(e) Object detection GPU vs. CPU. (f) Segmentation GPU vs. CPU.

Fig. 7: Vehicular application profiles, where the red curves represent
the regression results, and the dashed lines represent the computing
latency requirements.

between weekdays and weekends. During the weekdays, there
are usually two peaks in the traffic flow due to the morning
and evening commuting hours. However, on the weekends, we
usually observe one peak around the noon. The traffic flow
also shows difference between downtown and suburb areas
through the day. In the downtown area, the variations of the
daily traffic flow are generally larger than the suburb area.

B. Application Profiles

The application profiles are shown in Fig. 7, represented
by the latency versus the CPU and GPU consumption of
each application. From the figure, we can see object detection
and semantic segmentation are GPU-intensive applications,
while lane detection and video transcoding are CPU-intensive
applications. Generally speaking, within the appropriate range,
the CPU usage is in inverse proportion to the mean latency,
and the GPU usage is in direct proportion to the CPU usage.
As a consequence, when the latency requirement become more
stringent, the CPU and GPU usage will become higher until
they have reached the maximum value.

C. Fog node Deployment

Fig. 8 shows the impacts of latency requirement, relative
operational cost, and the traffic pattern on the fog node
deployment using Option 1. In the figure, the x-axis is the
relative operational cost, and the y-axis shows the number
of fog nodes. The number of CFNs and VFNs are stacked
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(a) Weekdays in city downtown. (b) Weekends in city downtown.

(c) Weekdays in city suburb. (d) Weekends in city suburb.

Fig. 8: Effects of latency requirement, relative operational cost, and
traffic models on fog node deployment decisions.

together in each bar, and the three bars in parallel represent
the three settings of latency requirement.

Impacts of latency requirement: if we compare the three
bars from left to right, we can see the latency requirement will
influence the overall number of fog nodes. When the latency
requirement becomes stricter, more computing resource are
required, thus more fog nodes will be deployed.

Impacts of relative operational cost: comparing the x-axis
from left to right, we can see the relative operational cost
will influence the proportion of VFNs. When the relative
operational cost increases, the percentage of VFNs in the
downtown area will increase until it reaches the maximum
value. This is because when the operational cost of VFNs
becomes relatively cheaper, the model tends to select more
bus journeys. However, not all of the bus journeys are suitable
for deploying the VFN. In another word, at certain times
and places, deploying CFN will be more cost-efficient no
matter how much the operational cost is. The selection of
the bus journeys will stop at the saturation point when none
of the remaining bus journeys are suitable anymore, and the
proportion of the VFNs will stop increasing. In the suburb
area, the percentage of VFNs does not change with the relative
operational cost. This is because the selection of the buses has
already reaches the saturation point at the first setting.

Impacts of traffic pattern: if we compare the number of fog
nodes from Fig. 8a to 8d, combined with the mean of traffic
flow in Fig. 6a to 6d, we can see that the traffic density is the
main aspect to determine the fog node deployment decision.
The number of fog nodes increases with the traffic density,
because the fog nodes are more required at the times and
places with higher demand.

D. Cost Estimation

Fig. 9 shows the comparison of the installation and opera-
tional costs of the three options. Following it, it compares the
overall cost of Option 1 and Option 2, and the saving potential
of Option 1 with different traffic patterns.

Installation cost: Fig. 9a shows how the installation cost
changes with the unit installation cost for three deployment
options. The installation cost of Option 2 is the lowest, and

(a) Installation cost versus unit instal-
lation cost using Option 1, 2, 3.

(b) Operational cost versus opera-
tional time using Option 1, 2, 3.

(c) Comparison of overall cost using
Option 1 and Option 2.

(d) Saving of operational cost using
Option 1 with different traffic patterns.

Fig. 9: Cost analysis of different deployment options.

that of Option 3 is the highest. The difference of the cost
between the options increases when the unit installation cost
becomes higher. Compared to Option 2, Option 1 has higher
installation cost. This is due to the fact that while the CFNs
keep providing stable computing service at their corresponding
clusters, VFNs can only provide the computing service when
they pass through the clusters along their driving routes. In
order to substitute the capacity supply of a CFN, much more
VFNs are required to present at the times and places with
higher demand. Compared to Option 3, Option 1 significantly
reduces the installation cost. Therefore, it is more feasible to
install the VFNs on part of the buses and schedule for them,
instead of installing them on all the buses.

Operational cost: Fig. 9b shows the operational cost versus
operational time using the three options. The operational cost
of Option 1 and Option 3 coincide with each other, since
the selection of the bus journeys are the same. Compared
to Option 2, Option 1 has lower operational cost, and the
difference of the cost increases when the operational time
becomes longer. The deployment of VFNs reduces the idle
state of the computing resources, thus saves the operational
cost compared to using CFNs only.

Overall cost: Fig. 9c shows the overall cost using Option
1 and Option 2. Considering Option 3 has much higher
cost compared to the other options, it is not plotted. In the
figure, the x-axis is the unit installation cost, and the y-axis
is the operational time. The cost estimation of Option 2 is
represented as the blue plane of z = 0, and the cost estimation
of Option 1 is represented as the orange plane. In the shaded
area, the z-value of the orange plane is positive, meaning that
Option 1 is more cost-effective than Option 2. When the unit
installation cost becomes cheaper, or when the operational
time becomes longer, Option 1 will have higher potential for
cost saving compared to Option 2. So VFC is more suitable
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TABLE II: Service rates of different deployment options under
various latency requirements in peak and off-peak scenarios.

Off-peak Scenario Peak Scenario
rnetwork 50ms 100ms 150ms 50ms 100ms 150ms
Option i 84.0% 92.0% 98.0% 69.3% 88.7% 95.3%
Option ii 80.0% 92.0% 98.0% 60.0% 87.3% 94.7%
Option iii 88.0% 92.0% 98.0% 75.3% 92.7% 96.0%

for the cases where the operational cost has greater weight
compared to the installation cost.

Long-term saving of operational cost: from the above anal-
ysis, we already know that the deployment of VFNs saves
the operational cost at the expense of adding installation cost.
In order to estimate the saving of operational cost between
different times and places, we compared them in Fig. 9d.
The results show the saving of operational cost is lager in
the city downtown than the city suburb, and larger during
the weekdays than the weekends. Additionally, when the
operational time becomes longer, the saving of operational
cost becomes more significant. Therefore, we can conclude
that the saving potential of operational cost is greater in the
times and areas with higher traffic density in the long run, due
to the dense deployment of VFNs.

E. Service Provision

In this subsection we analyse the actual service rate, i.e.
the percentage of users that can be served with a given
deployment option. The network dynamics (e.g. available
bandwidth, communication range, etc.) play a major role on
the actual service rate of a deployment option. We used a VFC
simulator to measure the service rate of different deployment
options.

In our simulation, we assume that the execution time for
vehicular tasks is negligibly small. Therefore, the latency
constraints are modeled to reflect only the network latency.
The time is discretized and divided into time slots, i.e. TTIs.
The total simulation horizon is set to be 2000 TTIs where 1
TTI set to be 10 milliseconds. During each TTI, the positions
of the client vehicles and buses are updated. We assume
that the vehicles can have at most one active task. The
air interface used in the simulation is 5G NR n78 with a
3500MHz frequency band and a 20MHz channel bandwidth.
The dominant path model is used for estimating the signal-
to-interference-plus-noise ratio (SINR) of the users at each
TTI. Each user is assigned to the cell with the maximum
SINR. To simulate different traffic scenarios, we consider
two scenarios, one with 50 client vehicles (off-peak scenario)
and another with 150 client vehicles (peak scenario). Three
network latency requirements are set, namely 50ms, 100ms,
and 150ms, and the service rate is measured under each
requirement.

We compare the service rate of three deployment options:
Option i: Using both CFNs and VFNs with fixed network
capacity (i.e. capnetwork).
Option ii: Using only CFNs with fixed network capacity (i.e.
capnetwork).
Option iii: Using only CFNs with extended network capacity
(i.e. 1.67× capnetwork).

Among the above options, Option i corresponds to VFC, while
the Option ii and Option iii are used for comparison. The CFNs
are co-located with 12 base stations, and the VFNs are carried
by 8 bus journeys, so the overall network capacity is equal in
Option i and Option iii.

The service rates of different deployment options under
various network and traffic scenarios are shown in Table
II. The presented results are averaged over 20 independent
instances. Table II shows that the service rate is generally
higher during the off-peak scenario than the peak scenario. The
increasing latency constraint causes an average 20.6% drop
in the service rate. Comparing different deployment options,
Option i performs better (up to 9.3%) compared to Option ii
and slightly worse (less than 6%) than Option iii.

Considering the relatively small performance difference
between Option i and Option iii, it is possible to argue that the
deployment strategy’s applicability depends on the economical
feasibility. From the economic perspective, upgrading the
network capacity in both ways means additional investment
in the infrastructure. However, the mobility of VFC allows
smart scheduling of the resources. Therefore, VFC can save
long-term operational costs and thus more cost-efficient than
stationary deployment.

VIII. DISCUSSION

In this section, we will discuss the computational com-
plexity of the capacity planning model, the limitations of the
current work and the future directions.

A. Computational Complexity
The demand estimation module can be solved in polynomial

time using the algorithm explained in Section IV-C. The
computational complexity of the cost minimization and the
bus scheduling modules are evaluated for various data sizes.
We use a commercially available computer equipped with an
Intel Core i7-7700K at 4.2 GHz frequency CPU, where one
thread out of eight is used during the measurements. The
measurements are done for 20 independent instances and the
presented results in Fig. 10 are averaged over this 20 instances.
It can be seen that for the cost minimization module, the
execution time increases linearly with the number of clusters
and time stamps. And the execution time increases a bit faster
than the linear relationship with the number of total journeys.
For the bus scheduling model, the execution time increases
quadratically with the number of selected journeys.

These linear and quadratic growth in complexity can be
acceptable in real-world scenarios due to two reasons. First,
the capacity planning is a long-term decision problem (i.e.,
in the order of months or years), therefore, there is no real-
time constraints in the model. Secondly, even under stricter
time constraints, it is possible to use high-power computing
resources to decrease the execution time. In our experiments
for Helsinki downtown area, the average execution time of
demand estimation for each vehicular application combination
is about 3 seconds. The average execution time of cost
minimizing and bus scheduling are around 283 seconds and 9
seconds respectively when we consider 6 clusters, 1440 time
stamps, and 5189 total journeys.
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(a) Cost minimization execution time
versus number of clusters (with 10
time stamps and 10 journeys).

(b) Cost minimization execution time
versus number of time stamps (with
10 clusters and 10 journeys).

(c) Cost minimization execution time
versus number of total journeys (with
10 clusters and 10 time stamps).

(d) Bus scheduling execution time ver-
sus number of selected journeys.

Fig. 10: Execution time versus size of data, where blue points
represent the mean values, and the cyan lines represent the variations.

B. Limitations and Future Directions

In this work, we assume that the traffic in near future follows
the same spatio-temporal distribution. Since the distribution
may change in the future, especially when more autonomous
vehicles are taken into use [19], we will update our traffic
models with the ones that take into account the new changes
in traffic patterns. For example, the regression-based solution
we use can be replaced with deep learning based algorithms
for predicting future traffic flows, such as Long Short-Term
Memory network (LSTM) [20] and Graph Convolutional Net-
work (GCN) [21]. And the capacity planning model will be
updated accordingly to taken the uncertainty of the demand
into consideration. Apart from this, we consider commercial
fleets like buses to be the VFNs. In the future, the concept of
VFN will be generalized. In another word, we will consider
using taxis, drones, or other vehicles to serve as VFNs.

IX. RELATED WORK

In this section, we listed the recent works of spatio-temporal
traffic modeling, resource management and capacity planning
in edge/fog environment, and compare them with our work.

The current research in traffic modeling focuses on finding
the spatio-temporal patterns (i.e. traffic status, interaction
among road segments, changing trend) of the daily vehicular
traffic. Zhang et al. employed the dictionary-based compres-
sion theory to detect the anomaly behavior in road networks by
analyzing the multi-dimensional traffic data [22]. Zhang et al.
proposed a multi-agent system to analyze the spatio-temporal
characteristics of the traffic data, as well as the cooperation
and workflow among them [23]. Our work aims to quantify the
spatio-temporal traffic flow and establish the traffic models that
are embedded with the above-mentioned patterns for demand
estimation.

For resource management in edge/fog computing environ-
ment, Sahni et al. proposed a data-aware multi-stage greedy
adjustment algorithm to jointly schedule task and network
flows to achieve low latency [24]. Gu et al. designed a
distributed and context-aware task assignment mechanism to
reduce overall energy consumption while satisfying the het-
erogeneous delay requirements [25]. Wang et al. proposed a
latency-aware heterogeneous mobile edge computing system
where the data that cannot be timely processed at the edge are
allowed be offloaded to the upper-layer servers, and finally to
the cloud center [26]. Mai et al. proposed a reinforcement
learning approach that utilizes the evolution strategies for
real-time task assignment among fog nodes to minimize the
total latency during a long-term period [27]. These works
are focused on managing the stationary resources to meet the
computing demand with lower latency. However, in VFC, the
problem becomes more challenging due to the mobility of the
vehicles including the ones generating computing demand as
well as the ones carrying the computing resources.

For resource management in VFC environment, Zhu et
al. proposed a latency and quality optimized task allocation
solution where a dynamic task allocation framework is built to
adapt to the mobility of VFNs [7]. Shi et al. developed a deep
reinforcement learning based algorithm for maximizing both
the expected reward and the entropy of policy, while simulta-
neously evaluating the service availability of the vehicles that
are incentivized to be the VFNs [28]. Zhou et al. proposed
a two-stage VFC framework which consists of a contract
theory based vehicular computational resource management
mechanism, and a matching-learning based task offloading
mechanism [29]. The works above are more focused on task
allocation strategies based on latency or quality requirements,
whereas our work is more focused on where to deploy the fog
nodes and how much computing capacity is required to meet
the demand.

For the capacity planning in edge/fog computing environ-
ment, Chiu et al. proposed an ultra-low latency cooperative
task computing algorithm to simultaneously decide the number
of fog nodes with proper communication resource allocation
and computing task assignment [30]. Zhang et al. proposed
the planning of fog computing networks that incorporate fog
nodes planning, resources allocation, and offloading strategies
to optimize the trade-off between the capital expenditure and
the network delay [31]. Haider et al. proposed a mathematical
model to simultaneously determine the optimal location, the
capacity, the number of fog nodes, as well as the connection
between the fog nodes and the cloud to minimize the delay in
the network and the traffic to the cloud [32]. Stypsanelli et al.
proposed an optimal capacity planning solution of fog comput-
ing infrastructures under probabilistic delay guarantees aiming
to save the energy and operations costs [33]. Noreikis et al.
proposed a capacity planning solution for edge computing that
satisfying the QoS requirements while minimizing the number
of required edge computing nodes [8]. The works above are
also focused on the fog nodes deployment to meet the QoS
requirement while minimizing the cost or amount of resources.
However, they cannot be applied to VFC, since they did not
consider the spatio-temporal dynamics of vehicular traffic.
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For capacity planning in Vehicular environment, Hussain
et al. proposed an Integer Linear Programming model for
calculating the optimal location and capacity of fog nodes to-
wards minimal overall network delay and energy consumption
[34]. It focused on capacity planning of network resources
instead of computing resources, and considered only station-
ary deployment of fog nodes. Premsankar et al. proposed a
mixed integer linear programming formulation to minimize
the deployment cost of edge devices by jointly satisfying a
target level of network coverage and computational demand
of vehicular applications in smart cities [35]. Our work differs
from their work from two perspectives. Firstly, our work
considers the deployment of both stationary and mobile fog
nodes, rather than stationary ones alone. Secondly, we follow
the data-driven approach and use real-world data for capacity
planning, whereas they used random vehicular traces generated
by a traffic simulator and synthetic application profiles.

X. CONCLUSION

This work proposes a data-driven capacity planning frame-
work that optimizes the deployment of stationary and mobile
fog nodes. Taking into account the spatio-temporal changes of
demand, the installation and operational costs are minimized
under the QoS requirements. The spatio-temporal distribu-
tion of vehicular traffic is modeled, the dynamic computing
resource demand is estimated based on the traffic model
and the resource consumption of the vehicular applications,
and integer linear programming is used to find the cost-
optimal solution. Real-world vehicular traffic data and vehic-
ular applications are used to validate the proposed framework.
Compared with the solution that only deploys fog nodes on
base stations, the experimental results prove the potential to
reduce costs by deploying fog nodes on cellular base stations
and buses. The results show the deployment of mobile fog
nodes saves operational costs at the expense of additional
installation costs. Moreover, in the long run, more operational
costs will be saved in the times and areas with higher traffic
density due to the dense deployment of VFNs.
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