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Abstract

This document provides a formal proof and supple- mentary information of the paper: Class-Incremental Learning for Wireless

Device Identification in IoT. The original paper focuses on providing a novel and efficient incremental learning algorithm. In this

document, we explicitly explain why the mem- ory representations (latent device fingerprints in our application) in Artificial

Neural Networks approximate orthogonality with insights for the invention of our Channel Separation Incremental Learning

algorithm.
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Abstract—This document provides a formal proof and supple-
mentary information of the paper: Class-Incremental Learning
for Wireless Device Identification in IoT [1]. The original paper
focuses on providing a novel and efficient incremental learning
algorithm. In this document, we explicitly explain why the mem-
ory representations (latent device fingerprints in our application)
in Artificial Neural Networks approximate orthogonality with
insights for the invention of our Channel Separation Incremental
Learning algorithm.

Index Terms—Internet of Things, Cybersecurity, Big Data
Analytics, Non-cryptographic identification, Zero-bias Neural
Network, Deep Learning, Memory orthogonality.

We reused the existing proofs and formulas in the original
class-incremental learning paper but with a slightly modified
expression to be more generalizable and explicit.

We use the term memory representations to replace the
specific term device fingerprints [2]. The decisional memory
representations usually exist within the last dense layer of
neural networks. And in this document, we do not consider
the bias neurons and amplificative attentions, because we
have proved that such a simplification will not impair the
performance of neural networks [3], [4].

I. SEPARATION OF FINGERPRINTS AT CONVERGING POINT

Intuitively, if the memory representations (the devices’
fingerprints), are distantly separated in the latent space, we
will have less chance to confuse different concepts (wireless
devices). To quantify the separation, the sum of the mutual
cosine distances of all memory representations (devices’ fin-
gerprints) in a classification model can be defined as:

TD(f1, · · · ,fC) =

C∑
i=1,j<i

CosineDistance(fi,fj)

=

C∑
i=1,j<i

x
(1)
i x

(1)
j + x

(2)
i x

(2)
j + · · ·+ x

(N1)
i x

(N1)
j (1)

where fi = (x
(1)
i , x

(2)
i , · · · , x(N1)

i ) and fj =

(x
(1)
j , x

(2)
j , · · · , x(N1)

j ) are devices’ fingerprint vectors.
Suppose we have C devices with N1-D fingerprint vectors.
Noted that the fingerprints have been normalized into unit
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vectors. Therefore, if we need to find the optimal value of
TD(·), we need to incorporate the constraints:

∀i, g(fi) =
∑N1
d=1(x

(d)
i )2 − 1 = 0 (2)

Equation 1 has now become a constrained optimization prob-
lem. We solve this constrained optimization problem with the
Lagrange Multiplier as:

L(f1, · · · ,fC , λ1, · · · , λC)

= TD(f1, · · · ,fC)−
∑C
i=1 λig(f i) (3)

And we need to solve:

∇
x
(1)
1 ···x

(N1)
1 ,··· ,x1

C
···xN1

C
,λ1···λi

L(f1 · · ·fC , λ1 · · ·λC) = 0 (4)

Which results in a linear system of equations. For each kth
(k = 1 · · ·N1) dimension of memory representation vectors
x
(k)
1 , · · · , x(k)C , we have:

∂L

x
(k)
1

= −2λ1x
(k)
1 +

∑C
i=1,i6=1 x

(i)
1 = 0

... · · ·
... (5)

∂L

x
(k)

C

= −2λCx
(k)
C +

∑C
i=1,i6=C x

(i)
C = 0

This is a homogeneous system of equations, and it is unlikely
that it only has a trivial solution (zeros). Hence, λ1 = λ2 =
· · · = λC = −0.5 and Equation 5 can be converted into one
equation: ∑C

i=1 x
(k)
i = 0 (6)

We square Equation 6 and expand it. According to Multino-
mial Theorem [5] we have:∑C

i=1(x
(k)
i )2 + 2

∑C
n=1,m<n x

(k)
n x

(k)
m = 0 (7)

Given that k = 1 · · ·N1, we have N1 Equations with an
identical form of Equation 7. By summing them up, we have:

N1∑
k=1

C∑
i=1

(x
(k)
i )2 + 2

N1∑
k=1

C∑
n=1,m<n

x(k)n x(k)m = 0 (8)

On the left of Equation 8, the first part is the sum of the
magnitude of fingerprint vectors. And its value is C. The
second part is exactly two times TD(f1, · · · ,fC) in Equation
1. Now, we have:
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Remark 1. The sum of the mutual cosine distances of memory
representations (device fingerprints) of DNN at a converging
point is a predictable constant:

TD(f1, · · · ,fC) = −C
2

(9)

When such a value is reached, the separation of memory
representations are maximized in the latent space, indicating
the lowest degree of conflict. Here, conflict can be expressed
as interference in neuroscience. We will use the term Degree
of Conflict (DoC) to describe the characteristic of the zero-bias
DNN. Noted that the range of DoC is from −C2 to C(C−1)

2 .
The maximum value is reached when all fingerprints collide
into one single vector.

II. ORTHOGONALITY APPROXIMATION

We define that the averaged cosine distance between N1

classes is D̄0, according to Remark 1, after initial training we
have:

N1(N1 − 1)

2
D0 = −N1

2
and D0 = − 1

N1 − 1
(10)

If N1 becomes larger, we will have:

D0 ≈ −0 (11)

And the averaged cosine distance between device fingerprints
or memory representations approximates 90 degrees, thus
orthogonal. Apparently, if all memory representations (device
fingerprints) are orthogonally distributed, then D0 will directly
approximate zero.

III. INSIGHTS TO THE INVENTION OF NEW INCREMENTAL
LEARNING ALGORITHMS

If the newly added memory representations are orthogonal
to the existing ones, there will not be any conflicts or in-
terference introduced. This is the most essential finding that
motivates the invention of Channel Separation Incremental
Learning, in which memories of different learning stages
are organized into orthogonally separated spaces. And the
biological evidence of our work has been revealed in the most
recent advancement of neuroscience [2], but with a totally
different roadmap.
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