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Abstract

We present a novel and flexible method to optimize the phase response of reflective metasurfaces towards a desired scattering

profile. The scattering power is expressed as a spin-chain Hamiltonian using the radar cross section formalism. For metasurfaces

reflecting an oblique plane wave, an Ising Hamiltonian is obtained. Thereby, the problem of achieving the scattering profile is

recast into finding the ground-state solution of the associated Ising Hamiltonian. To rapidly explore the configuration states,

we encode the Ising coefficients with quantum annealing algorithms, taking advantage of the fact that the adiabatic evolution

efficiently performs energy minimization in the Ising model. Finally, the optimization problem is solved on the D-Wave 2048-

qubit quantum adiabatic optimizer machine for binary phase as well as quadriphase reflective metasurfaces. Even though

the work is focused on the phase modulation of metasurfaces, we believe this approach paves the way to fast optimization of

reconfigurable intelligent surfaces that are mod- ulated in both amplitude and phase for multi-beam generation in and beyond

5G/6G mobile networks.
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Charles Ross, Student Member, IEEE, Gabriele Gradoni, Member, IEEE, Qi Jian Lim, Student Member, IEEE,
and Zhen Peng, Senior Member, IEEE

Abstract—We present a novel and flexible method to optimize
the phase response of reflective metasurfaces towards a desired
scattering profile. The scattering power is expressed as a spin-
chain Hamiltonian using the radar cross section formalism.
For metasurfaces reflecting an oblique plane wave, an Ising
Hamiltonian is obtained. Thereby, the problem of achieving
the scattering profile is recast into finding the ground-state
solution of the associated Ising Hamiltonian. To rapidly explore
the configuration states, we encode the Ising coefficients with
quantum annealing algorithms, taking advantage of the fact that
the adiabatic evolution efficiently performs energy minimization
in the Ising model. Finally, the optimization problem is solved
on the D-Wave 2048-qubit quantum adiabatic optimizer machine
for binary phase as well as quadriphase reflective metasurfaces.
Even though the work is focused on the phase modulation of
metasurfaces, we believe this approach paves the way to fast
optimization of reconfigurable intelligent surfaces that are mod-
ulated in both amplitude and phase for multi-beam generation
in and beyond 5G/6G mobile networks.

Index Terms—Electromagnetic metamaterials, Ising model,
reflective metasurfaces, quantum annealing, wireless communi-
cation, 6G.

I. INTRODUCTION

THE study of wave propagation mediated by metamaterials
and metasurfaces (MSs) has been a longstanding topic

in applied physics and modern engineering [1]–[8]. They
offer a range of advantageous responses in beam steering [9],
wavefront shaping [10], anomalous reflection/refraction [11],
spatial processing [12] and computation [13], with practical
applications in sensing, imaging, and wireless communica-
tion [14]. It has been shown that it is possible to control
the reflection phase of metasurface groups of subwavelength
elements accurately and flexibly to realize digital coding MSs.
More recently, reconfigurable intelligent surfaces (RISs) have
been widely studied in the wireless communication com-
munity [14]–[17]. While MSs are typically passive surfaces
whose patterns are engineered to achieve a specific reflec-
tive/transmissive behavior, RISs are reconfigured via software
to control the electromagnetic (EM) propagation dynamically,
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where the desired far-field wavefront can be achieved by
tuning the local reflection phase of the elements.

Researchers have devoted substantial efforts in understand-
ing how to devise pattern optimization methods to achieve
a specific scattering profile, including genetic algorithms
[18]–[20], impedance-based synthesis [21], electromagnetic
inversion [22], statistical learning [23], as well as dynamical
optimization via switching across profile states [24], [25].
Wavefront shaping has been demonstrated in the minimal
case of binary reflection phase control, where a phase delay
of either 0 or π can be impressed in the locally reflected
field re-radiated by the metasurface element. For a square
metasurface with N elements per dimension, a total number of
N2 degrees of freedom (DOFs) produce 2N

2

possible phase
configurations. A key question arises on how to efficiently
select the phase configuration that matches the desired scat-
tering profile. In other words, the enormous parameter space
in metamaterial optimization needs to be explored quickly.
Combinatorial exploration has been proposed in [26], [27],
which flips a few elements at a time and test the improvement
in the scattering profile to decide whether to keep or bring the
phase back to the original state.

In this work, we propose to find the optimal phase config-
uration by a physics-based approach inspired by the quantum
mechanical physics of spins. The Ising model is widely used
in statistical mechanics to describe the spin state of arrays
of quantum particles [28]. The formal analogy with the Ising
Hamiltonian has been exploited fruitfully in protein folding
[29], electromechanics [30] and photonics [31]. The latter case
in particular associates the particle spin to the reflection phase
of pixels in spatial light modulators (SLMs). Here, we dwell on
this analogy and develop an Ising model for the metasurface
array with prescribed scattering profile. The scattered wave
energy is used to calculate the EM free-field Hamiltonian,
which is found to configure as an Ising Hamiltonian. Thereby,
the global solution of the problem, i.e., the values of the
local reflection phases across the MSs/RISs, is obtained by
computing the ground state of the equivalent Hamiltonian.

Another interesting aspect of this work is to leverage
quantum computing (QC) to speed up the optimization of
derived Ising Hamiltonian. In recent years, interests in QC
have grown substantially [32]–[34]. By exploiting fundamental
properties of quantum mechanics, these QC systems have
potential to deliver many orders of magnitude speedup against
conventional computing hardware. In this study, we explore
the quantum annealer (QA) [35]–[38], a specialized analog
computer in the Noisy Intermediate-Scale Quantum (NISQ)
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era, to efficiently search the ground state of Ising Hamiltonian
model. The Ising coefficients are embedded into the physical
grid of qubits on an advanced QA hardware, the D-Wave 2000-
qubit (DW2Q) quantum adiabatic optimizer machine [39].
Interestingly, the QA has been recently employed in bulk
metamaterial design [40].

The rest of paper is organised as follows: In section II,
we present relevant notations for the analysis of plane-wave
scattering from a rectangular surface array. Secondly, we
propose suitable Ising Hamiltonians that are used to represent
the problem of achieving the desired scattering profile from
the surface array. Based on the mathematical representation of
Ising models, we introduce the quantum annealing algorithm
to find the ground-state solution of Ising Hamiltonian, and
discuss a generalization to larger-scale problem and higher-
order modulated reflecting surfaces. In section III, we apply
the proposed work on various problem sizes and prescribed
scattering angles to evaluate the optimised solution and com-
putational performance. Numerical results verify that the pro-
posed framework promises a computationally efficient, general
tool for the design and configuration of EM reflective surfaces.
Finally, we draw some conclusions and future perspectives.

II. METHODOLOGY

A. Problem Statement

Metasurfaces are artificial structures engineered with desired
properties to control and manipulate EM waves. The specific
structure considered in this work is a large planar metasurface
array with configurable phase response in the element reflec-
tion coefficient. For the purpose of illustration, we start with
the binary phase shift metasurface, in which the array elements
exhibit 0 or π phase responses [3], [4], [19], [41], [42]. The
extension to optimize higher order phase quantization will be
discussed in Section II.E .

A generic problem statement of reflective metasurface in
wireless application is illustrated in Fig. 1, including a trans-
mitter (Tx), a receiver (Rx) and a passive reflecting meta-
surface array. Consider the case that the direct-link between
Tx and Rx is blocked by an obstacle, the metasurface can
be used to create a virtual line-of-sight link with enhanced
signal reflection [43]. Assume a far-away Tx radiates a TE
polarized uniform plane wave on the metasurface array with
incident angle θi. The size of the surface element is d × d
and the total number of elements is M ×N . Assuming a unit
magnitude for brevity, the incident electric and magnetic fields
can be expressed as:

Ei =
(
ŷ cos θi + ẑ sin θi

)
e−jk(y sin θi−z cos θi) (1)

Hi = x̂
1

η
e−jk(y sin θi−z cos θi) (2)

By using the physical optics (PO) approximation, we obtain
the induced electric current on the element (m,n):

Js (m,n) = ŷ
2

η
e−jky

′ sin θiejψ(m,n) (3)

where ψ (m,n) ∈ [0, π] is the phase of the reflection coeffi-
cient, and the reflection amplitude is assumed to be 1. There

Fig. 1: A TE-polarized plane wave incident on the metasurface.

is a considerable literature on the design of such 1-bit binary
elements. Interested readers are referred to [19], [44]–[46].

The total scattered fields are calculated using the Stratton-
Chu representation formulas, and they can be expressed as:

Esθ =C (r) Esθ
(
θs, φs, θi

)
As (θs, φs) (4)

Esφ =C (r) Esφ
(
θs, φs, θi

)
As (θs, φs) (5)

and

C (r) =− j kd
2

2π

e−jkr

r
(6)

Esθ
(
θs, φs, θi

)
= cos θs sinφs sinc X sinc Y (7)

Esφ
(
θs, φs, θi

)
= cosφs sinc X sinc Y (8)

As
(
θs, φs, θi

)
=

M∑
m=1

N∑
n=1

ejψ(m,n)ejkxmdejkynd (9)

where

kx =k sin θs cosφs

ky =k
(
sin θs sinφs − sin θi

)
X =kd sin θs cosφs/2

Y =kd
(
sin θs sinφs − sin θi

)
/2

It is thereby clear that the C (r) depends on the radial distance
to the observation point, Esθ/Esφ and As refer to the attributes
of metasurface element factor and array factor, respectively.

Based on the scattered fields of Eqs. (4) and (5), the radar
cross section (RCS) can be written as:

σ
(
θs, φs, θi

)
= lim
r→∞

[
4πr2 |Es|2

|Ei|2

]
=

4πd4

λ2

(
|Esθ |2 + |Esφ|2

)
|As|2 =

4πd4

λ2
|Es|2|As|2 (10)

From Equation (10), we observe that the RCS is a product
of single element scattering pattern |Es|2 = |Esθ |2 + |Esφ|2,
and the power pattern due to the array factor |As|2. Note
that a rudimentary PO approximation of patch scattering is
used for the sake of completeness in the RCS derivation. The
goal of the study is to optimize the element-wise phase profile
distribution, ψ (m,n), across the metasurface, such that the
maximum scattered wave is directed towards the receiver.
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B. Ising Hamiltonian Model

At this stage, we focus on the optimization of binary
metasurfaces with 0 or π phase response. The array factor
in Eq. (9) can be rewritten as:

As
(
θs, φs, θi

)
=

M∑
m=1

N∑
n=1

smne
jkxmdejkynd (11)

where the discrete variable smn = ±1 corresponding to the
0/π element phase modulation, and the subscript indicates the
element index (m,n). The scattering intensity of the array
factor is obtained as:

|As|2 = As
(
θs, φs, θi

)
·
(
As
(
θs, φs, θi

))∗
=

M∑
m=1

N∑
n=1

M∑
i=1

N∑
v=1

smnsive
j[kx(m−i)d+ky(n−v)d] (12)

The expression in Eq. (12) naturally reminds us of the
classical Ising spin lattice model, which has been originally
introduced as a mathematical model for understanding ferro-
magnetism in statistical mechanics. The Ising model consists
of discrete variables that describe the magnetic moments of
atomic spins. Each spin can take one of two possible states:
+1 for spin up and -1 for spin down. In the Ising model, the
energy of the system is conveniently expressed as an effective
Hamiltonian function. In what follows, we will discuss how
to construct the target EM energy Hamiltonian for achieving
the desired scattering profile from the metasurface array.

1) Desired Signal Maximization: One typical application
of reflecting metasurfaces in wireless communication is the
directional signal enhancement at the Rx. Namely, a judicious
selection of element coefficients s∗∗ leads to a constructive
beamforming in the desired direction towards the Rx, thus im-
proving the data transmission performance. The corresponding
mathematical representation is:

ŝ11, · · · , ŝMN = argmax
s11,··· ,sMN

∫∫
Sr
dΩ|Es|2|As|2 (13)

where the power patterns of element factor |Es| and array fac-
tor As are functions of (θs, φs, θi). The solid angle integration
in Eq. (13) is defined as:∫∫

Sr
dΩ =

∫ φr+∆φ

φr−∆φ

dφs
∫ θr+∆θ

θr−∆θ

dθs sin θs (14)

in which the desired direction is denoted by φr and θr, and ∆φ

and ∆θ are introduced to account for the finite beamwidth. We
will utilize the 3-dB beamwidth derived in [47]. The maximum
optimization in Eq. (13) is equivalent to finding the ground-
state solution of the effective Hamiltonian:

Hr =

M∑
m=1

N∑
n=1

M∑
i=1

N∑
v=1

i×N+v>m×N+n

smnsivJ rmniv (15)

In the analogy with Eq. (12), the variable s∗∗ takes values
of +1 or −1, which can be interpreted as the spin value in

the Ising model. The spin-spin interaction strength, J rmniv , is
defined as:

J rmniv=−C
∫∫

Sr
dΩ|Es|2 cos [kx(i−m)d+ky(v−n)d] (16)

with C > 0 a positive constant. Here we choose C = 1/Sr to
normalize the energy Hamiltonian. Note that we have included
a minus sign in Eq. (16) such that the lowest energy state
of Ising Hamiltonian corresponds to the maximum scattered
power. The extension to the case of multiple Rx destinations
is rather straightforward by incorporating multiple solid angle
integrations in Eq. (14).

2) Interference Suppression: Often in practice, wireless
communication scenarios require the scattered wave to avoid
certain areas or angular domains, in order to suppress the co-
channel interference from nearby base stations, or to protect
safety critical electronic devices. These attributes can be recast
into an argmin optimization problem:

ŝ11, · · · , ŝMN = argmin
s11,··· ,sMN

∫∫
Sc
dΩ|Es|2|As|2 (17)

The solid angle integration in Eq. (17) is defined as:∫∫
Sc
dΩ =

∫ φch

φcl

dφs
∫ θch

θcl

dθs sin θs (18)

where [φcl , φ
c
h] and [θcl , θ

c
h] specifies the angular domain where

the destructive beamforming is desired.
The optimization in Eq. (17) can be recast into finding the

ground-state solution of the effective Hamiltonian:

Hc =

M∑
m=1

N∑
n=1

M∑
i=1

N∑
v=1

i×N+v>m×N+n

smnsivJ cmniv (19)

The spin-spin interaction strength, J cmniv , is defined as:

J cmniv=C

∫∫
Sc
dΩ|Es|2 cos [kx(i−m)d+ky(v−n)d] (20)

In the most general case, we may combine both effects of
desired signal maximization and interference suppression, thus
leading to a preferred signal hotspot as well as interference-
free zone [43]. This can be solved with an energy functional
consisting of two components:

H = Hr +Hc (21)

where Hr and Hc are defined in Eqs. (15) and (19), re-
spectively. The ground-state solution (lowest energy) of the
Hamiltonian (21) will satisfy both requirements.

C. Quantum Annealing Optimization

1) Introduction to Quantum Annealing: So far, we have
recast the problem of achieving the desired scattering profile
into finding the ground-state solution of Ising Hamiltonian
for a M × N spin system. The spin-like degrees of freedom
are offered by the discrete phase values achievable by the
tunable metasurface element. Clearly, due to the enormous
design space, 2MN for M ×N Ising spins, finding the optimal
solution with classical computational algorithms can be very
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challenging. This is where the quantum annealing becomes an
appealing way forward.

The essential concept of quantum annealing (QA) is to
harness the natural evolution of quantum states to solve the
energy minimization problem represented by the Ising spin
glass model [48], or equivalently, the quadratic unconstrained
binary optimization (QUBO) problem [49]. The QA starts
from the quantum-mechanical superposition of all possible
states (candidate states). Then the system evolves according
to the time-dependent Schrodinger equation. Physically, this
is realized by introducing a controllable electric transverse-
field term into the Hamiltonian that decreases adiabatically.
Thus, the range of sampled solutions shrinks as the field
strength decreases over time until the target Hamiltonian is
reached. Compared to classical simulated (thermal) annealing
(SA) [50], the QA utilizes the cooperative quantum tunneling
effect to escape local minima, instead of the thermal activation
used in the SA. Thereby, it has a high probability of finding
the approximate global optimal solution.

2) Embedding Ising into QA Hardware: To achieve the
ground state efficiently, we have compiled the Ising models
in Eqs. (15) and (19) into a physical QA hardware, the D-
Wave 2000Q (DW2Q) quantum annealer device. The DW2Q
has 2048 functional quantum bits (qubits) represented by
circulating currents in superconducting loops.

It is worth noting that the qubits of D-Wave quantum
processing unit (QPU) are not fully connected. Instead, the
interconnection of qubits is represented by a topology known
as the Chimera graph. The Chimera graph comprises of a
16 × 16 two-dimensional lattice of unit cells. Each unit cell
consists of four horizontal qubits and four vertical qubits.
The couplings among qubits within a unit cell are denoted as
internal couplers, while the couplings between different unit
cells are referred to as external couplers. A cropped view of
2× 2 grid of unit cells in Chimera graph is illustrated in Fig.
2, from which we can see that any given qubit is connected
with at most six other qubits.

Fig. 2: A 2 × 2 grid of unit cells in Chimera graph. Internal
couplers are colored in green, and external couplers are colored
in purple and blue, respectively.

Recognizing that the Ising variables in Eqs. (15) and (19)
are almost all-to-all connected, thus, a process of mapping the
fully connected graph of our Ising problem into the Chimera
graph is required. This is achieved by embedding each Ising
variable (hereafter denoted as logic qubits) onto a connected
chain of physical qubits presented in the Chimera graph [51].

These multiple physical qubits within a chain are constrained
to have the same value, thus acting like a single logical qubit.

Consider a metasurface with 8 Ising variables as an exam-
ple. A uniform triangle embedding [52] of the fully connected
graph with 8 logic qubits to the Chimera graph is depicted in
Fig. 3. Each logic qubit in the complete graph is represented
by a chain of 3 physical qubits in the Chimera graph.

(a) Complete graph (b) Chimera graph

Fig. 3: Embedding of a fully connected graph with 8 Ising
variables into the Chimera graph used in D-Wave architecture.
The colored node is introduced to reflect the mapping from
one logical qubit to three physical qubits.

Note that due to the constrained connection in Chimera
graph, the chain length will increase accordingly with the size
of the fully connected graph. For the case of N Ising variables,
the length of the chain needs to be (N/4 + 1), thereby a total
number of

(
N2/4 +N

)
physical qubits are required in the

embedding process. Since the maximum available physical
qubits in DW2Q is 2048, a straightforward calculation shows
that the largest size of fully connected graph can be solved by
the Chimera architecture is 65 using the triangle embedding.

D. Further Technical Discussion

1) Converting into Non-zero Bias Ising Model: As we
compare Eqs. (15) and (19) to typical Ising problems in statis-
tical mechanics, they appear to have only quadratic coupling
coefficients, denoted by the spin-spin interaction strength J .
The linear coefficients (so-called biases) for Ising spins are all
zero. Such zero-bias problems are known to be harder to solve
since there are many degenerate states [53]. As an example, for
any ground-state solution, we would obtain the same energy
state by reversing the spin value of all Ising variables.

We present an easy way to convert Eqs. (15) and (19) into
non-zero bias Ising models. For the purpose of elucidation, we
use a M -element linear metasurface array along the x̂-axis as
an example. The Hamiltonian in Eq. (15) will reduce to:

Hr =

M∑
m=1

M∑
i=m+1

smsiJ rmi (22)

The first step is to fix the spin value of a random Ising variable.
Without loss of generality, we set the 1st Ising variable to be
1. Then the Hamiltonian in Eq. (22) can be rearranged as:

Hr =

M−1∑
m=1

smJ r1(m+1) +

M−1∑
m=1

M−1∑
i=m+1

smsiJ r(m+1)(i+1) (23)
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where J r1(m+1) are the biases and J r(m+1)(i+1) are the cou-
plings between spins. Equation (23) thereby becomes a stan-
dard non-zero-bias Ising problem, whose ground state solution
is same as Eq. (22).

2) Two-Level Optimization for Large Array: Due to the
mismatch of the fully connected graph generated from our
Ising models and the very sparse Chimera graph in D-Wave
QPU hardware, the size of Ising problems can be solved is
relatively small (around 65 Ising variables). On the other hand,
a realistic 2D metasurface may have hundreds or thousands of
Ising variables. To overcome this QPU hardware limitation,
we will discuss a two-level QA optimization for larger-scale
metasurface problems.

The idea is inspired from the subarray concept in modern
phased array systems, in which antenna elements are grouped
into subarrays and then subarrays form the entire array. Con-
sider the M by N metasurface shown in Fig. 1, the Ising
Hamiltonian of desired signal maximization was presented in
Eq. (15). Instead of optimizing the total number of M · N
Ising variables in a single step, we first write the Hamiltonian
of a M (1) by N (1) subarray configuration:

H(1) =

M(1)∑
m=1

N(1)∑
n=1

M(1)∑
i=1

N(1)∑
v=1

i×N(1)+v>m×N(1)+n

pmnpivJ (1)
mniv (24)

where pmn and piv are spin variables, and the spin-spin
interaction is a weighted integral by the angle-dependent,
element scattering intensity, same as the one given in Eq.
(16). By utilizing the QA algorithm described in the previous
subsection, an optimized sequence of Ising spin variables,
p̂11, · · · , p̂M(1)N(1) , can be obtained.

Subsequently, we can write the optimized subarray scatter-
ing intensity |Ẽs|2 as:

|Ẽs|2= |Es|2
M(1)∑
m=1

N(1)∑
n=1

M(1)∑
i=1

N(1)∑
v=1

p̂mnp̂ive
j[kx(m−i)d+ky(n−v)d] (25)

The next task is to superimpose the M (2) by N (2) sub-
arrays to achieve a desired signal maximization. Note that
M = M (1) ·M (2) and N = N (1) · N (2). Each subarray can
take one of two possible states: spin up (+1) or spin down (-1).
Accordingly, we can write the Hamiltonian for those subarray
contributions as:

H(2) =

M(2)∑
m=1

N(2)∑
n=1

M(2)∑
i=1

N(2)∑
v=1

i×N(2)+v>m×N(2)+n

qmnqivJ (2)
mniv (26)

where the spin-spin interaction among those subarrays is
calculated as:

J (2)
mniv=−C

∫∫
Sr
dΩ|Ẽs|2cos[kx(i−m)Dx+ky(v−n)Dy] (27)

where the Dx and Dy are subarray center-to-center spacing
along the x̂-axis and ŷ-axis.

After the optimized sequence of subarray spin variables,
q̂11, · · · , q̂M(2)N(2) , is obtained, the final Ising variable for in-
dividual array element can be determined by ŝmn = p̂mn · q̂mn
in a post-processing step.

3) Extension to Quadriphase Modulation: So far, the dis-
cussion of this paper is focused on the binary modulated
metasurface array, where individual elements have 0 or π
phase responses in the reflection. Such binary elements have
been widely studied in the literature due to the low hardware
complexity and cost. Nevertheless, the low resolution in the
phase response also restricts the maximum achievable direc-
tivity of RCS pattern [54]. In this subsection, we will extend
the proposed work to the quadriphase modulation.

Recall that the construction of Ising Hamiltonian starts
by representing the reflection coefficients with Ising spin
variables. Consider the metasurface element with four phase
responses, ψ (m,n) ∈ {0, π/2, π, 3π/2}. The complex reflec-
tion coefficients Γ(m,n) = ejψ(m,n) are given in Table 1.

ψ (m,n) 0 π/2 π 3π/2

ejψ(m,n) 1 + 0j 0 + j −1 + 0j 0− j

TABLE I: Reflection coefficient for quadriphase elements.

It is clear that both real and imaginary parts of Γ(m,n) have
three states {−1, 0, 1}. The direct implementation requires a
linear combination of four Ising spin variables. Nevertheless,
we can rewrite the reflection coefficient as:

Γ(m,n) = ejψ̃(m,n)e−j
π
4 =

(
sRe
mn + jsIm

mn

)
e−j

π
4

√
2

2
(28)

where only two Ising spin variables sRe
mn ∈ ±1 and sIm

mn ± 1
are used to represent the four phase states in the reflection
coefficient. The detailed mapping is given in Table II.

ψ̃ (m,n) π/4 3π/4 5π/4 7π/4

ejψ̃(m,n)
√
2
2

+
√
2
2
j −

√
2

2
+

√
2

2
j −

√
2

2
−

√
2
2
j

√
2

2
−

√
2

2
j

sRe
mn 1 −1 −1 1

sImmn 1 1 −1 −1

TABLE II: Reflection coefficient for quadriphase elements.

By substituting Equation (28) into Eq. (9), we obtain the
scattering intensity of the array factor as:

|As|2 = As
(
θs, φs, θi

)
·
(
As
(
θs, φs, θi

))∗
=

1

2

M∑
m=1

N∑
n=1

M∑
i=1

N∑
v=1

sRe
mns

Re
iv e

j[kx(m−i)d+ky(n−v)d]

− j
2

M∑
m=1

N∑
n=1

M∑
i=1

N∑
v=1

sRe
mns

Im
iv e

j[kx(m−i)d+ky(n−v)d]

+
j

2

M∑
m=1

N∑
n=1

M∑
i=1

N∑
v=1

sIm
mns

Re
iv e

j[kx(m−i)d+ky(n−v)d]

+
1

2

M∑
m=1

N∑
n=1

M∑
i=1

N∑
v=1

sIm
mns

Im
iv e

j[kx(m−i)d+ky(n−v)d]

(29)

As indicated by Eq. (29), the power pattern of array factor
is now expressed as a quadratic polynomial of Ising spin
variables. In the case of desired signal maximization in Eq.
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(13), we can transform the argmax into the equivalent Ising
form with the Hamiltonian defined by:

Hr =

M∑
m=1

N∑
n=1

M∑
i=1

N∑
v=1

i×N+v>m×N+n

(sRe
mns

Re
iv J RR

mniv + sRe
mns

Im
iv J RI

mniv

+sIm
mns

Re
iv J IR

mniv + sIm
mns

Im
iv J II

mniv)

(30)

The spin-spin interaction strengths are determined by:

J RR
mniv=−C

∫∫
Sr
dΩ|Es|2 cos [kx(i−m)d+ky(v−n)d] (31)

J RI
mniv=C

∫∫
Sr
dΩ|Es|2 sin [kx(i−m)d+ky(v−n)d] (32)

J IR
mniv=−C

∫∫
Sr
dΩ|Es|2 sin [kx(i−m)d+ky(v−n)d] (33)

J II
mniv=−C

∫∫
Sr
dΩ|Es|2 cos [kx(i−m)d+ky(v−n)d] (34)

Compared to the binary phase configuration, the total number
of Ising variables is increased by a factor of 2, namely, 2M ·N
for a M by N metasurface array. After the optimized value of
Ising spin variables ŝRe

mn and ŝIm
mn are obtained, the metasurface

element phase response can be retrieved by:

ψ (m,n) = arg
(
ŝRe
mn + jŝIm

mn

)
− π/4 (35)

III. NUMERICAL EXPERIMENTS

The main goal of this section is twofold: to validate
the effectiveness of Ising Hamiltonian for achieving desired
scattering profiles, and to study the performance of quantum
annealing to find global optimization in a large search space.
The section starts with the optimization of binary phase shift
metasurfaces for linear and rectangular arrays. Subsequently,
we present results for quadriphase metasurfaces, after which,
the performance of quantum annealing is evaluated with regard
to generic success metrics and problem scaling. The validation
with the full-wave simulation of a square patch metasurface
is presented to conclude the section.

A. Binary Linear Array Configuration

The first experiment is performed for a N -element linear
metasurface array. The size of the array element is d = 1λ.
The N elements are placed along the ŷ-axis. The TE polarized
plane wave is normally incident upon the array.

We would like to optimize the phase profile of the meta-
surface array, such that the scattering power towards a desired
direction θr is maximized. Concerning a linear array of size
N = 8, the QA optimized Ising spin values for various
preferred angles, θr = 10o, 20o, 30o are presented in Table III.
The results using the brute force search are also supplied for
comparison. As is evident, the QA optimization successfully
found all optimal solutions corresponding to the ground-state
solution of the Hamiltonian. Next, we plot the RCS pattern as
a function of the scattered angle θs in Fig. 4. We can see that,
by using the optimized Ising spin values as the metasurface
phase profile, the main beam of the RCS pattern indeed is
directed towards the preferred direction. The results validate

θr QA result Brute-force search
10o 11000111 11000111

11100011 11100011
20o 10110110 10110110

10010010 10010010
30o 10101010 10101010

TABLE III: Optimized Ising spin values for various preferred
angles. 0 refers to Ising spin value −1.

Fig. 4: RCS pattern as a function of the scattered angle θs
where the size of the linear array N = 8.

the effectiveness of the proposed Ising Hamiltonian for desired
signal maximization.

Next, we keep the same metasurface element setting, and
vary the array size by N = 6, 8, 10. The optimized Ising
spin values in comparison with the brute-force search results
are shown in Table IV. Again, the same optimal solutions are
found. The resulting RCS patterns are depicted in Fig. 5. We
observe that the increased array size leads to a narrower, more
directional main beam towards the desired direction θr = 20o.

N QA result Brute-force search
6 101101 101101
8 10110110 10110110

10010010 10010010
10 1001001001 1001001001

TABLE IV: Optimized Ising spin values for various array size
where the desired direction θr = 20o.

B. Binary Rectangular Array Configuration

The second example considered here is a 4 by 4 rectangular
array with binary phase response in the element reflection
coefficient. We choose a relatively small array in the study
such that a bruce-force search approach is afforded for com-
parison. Same as the linear array case, we set the size of the
array element as d = 1λ, and the TE polarized plane wave is
normally incident upon the array.

Figures 6 and 7 show the RCS pattern and optimized Ising
spin value for the desired direction θr = 20o, φr = 40o,
and θr = 30o, φr = 150o, respectively. In both cases, the
scattered power is maximized at the desired direction. The
optimal sequence of Ising spin values are provided in Table
V, in comparison to the bruce-force search results. The results
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Fig. 5: RCS pattern for the desired direction θr = 20o where
the array size N = 6, 8, 10.

verify the effectiveness of our Ising Hamiltonian model and
QA optimization algorithm in 2D planar array configurations.

θr, φr QA result Brute-force search
20o, 40o 1100100100110110 1100100100110110

1001001101101100 1001001101101100
30o, 150o 1001011000111100 1001011000111100

1100001110010110 1100001110010110

TABLE V: Optimized Ising spin values for rectangular meta-
surface array. The Ising values are numbered row-wise.

(a) RCS pattern

(b) Optimized Ising spin value

Fig. 6: The RCS pattern and optimized Ising spin value for
θr = 20o, φr = 40o.

(a) RCS pattern

(b) Optimized Ising spin value

Fig. 7: The RCS pattern and optimized Ising spin value for
θr = 30o, φr = 150o.

So far, we have validated the Ising model for desired signal
maximization. As discussed in Section II. B(2), we may also
incorporate the argmin Hamiltonian accounting for the need
of interference suppression. Taking Fig. 7 as an example, we
see that there are noticeable side-lobes in addition to the main
beam. Assuming the destructive beamforming is desired at the
angular domain [θcl , θ

c
h] = [10o, 20o], [φcl , φ

c
h] = [40o, 60o], we

can include the argmin Hamiltonian using Eqs. (19) and (21).
In Fig. 8(a), we plot the RCS heatmap using Ising Hamiltonian
for desired signal maximization at θr = 30o, φr = 150o.
The result after incorporating the interference suppression in
the energy Hamiltonian is shown in Figure 8(b). We clearly
observe that the scattered power is significantly smaller in the
prescribed interference-free angular domain.

C. Quadriphase Array Configuration

We now consider reflective metasurface arrays with quad-
riphase element response. The element reflection coefficient
has four quantized phase states with a π/2 phase increment,
therefore it is often referred to as 2-bit reflecting element. The
construction of the quadriphase Ising Hamiltonian has been
discussed in details in Section II. D(3). Note that 2 Ising spin
variables per element are required in this case, and the element
phase response can be retrieved using Eq. (35).

Figure 9 shows the RCS pattern of a 1D 2-bit metasurface
array for desired signal maximization at θr = 20o, where the
results of the binary (1 bit) metasurface array are also included
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(a) RCS heatmap for Hr

(b) RCS heatmap for Hr +Hc

(c) Optimized Ising spin value

Fig. 8: Study of the energy Hamiltonian for a 4 by 4 metasur-
face array. (a) Using Hamiltonian for desired signal maximiza-
tion θr = 30o, φr = 150o; (b) Using Hamiltonian for desired
signal maximization θr = 30o, φr = 150o and interference
suppression [θcl , θ

c
h] = [10o, 20o], [φcl , φ

c
h] = [40o, 60o]; (c)

optimized Ising spin values for the configuration (b).

for a quantitative comparison. We notice that the quadriphase
configuration significantly increases the maximum achievable
scattering power at the desired direction.

Next, we perform the experiment on a 4 by 4 quadriphase
metasurface array for the desired direction θr = 20o, φr =
40o. The RCS pattern and optimized phase profile are shown
in Fig. 10(a). Comparing to the result of binary array in Fig.
6, more than two times more scattered power is observed with
the quadriphase array. Finally, we keep the same array setting,
but change the incident angle from normal incidence θi = 0
to oblique incidence θi = 30o. In a wireless communication
setting, this corresponds to the case that the Tx has moved to a

new location while the Rx is stationary. The results are shown
in Fig. 10(b), as it is clear the main beam of the scattered
power is directed towards the desired direction.

Fig. 9: RCS pattern of a linear metasurface array for the
desired direction θr = 20o.

(a) Normal incidence: θi = 0o

(b) Oblique incidence: θi = 30o

Fig. 10: The RCS pattern and optimized phase profile of the 4
by 4 quadriphase array for θr = 20o, φr = 40o. The colormap
from black, dark gray, light gray to white corresponds to the
element phase state ψ (m,n) = 0, π/2, π, and 3π/2.
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D. Performance Study of Quantum Annealing

As compared to universal gate-model quantum computers,
the D-Wave quantum annealer hardware belongs to the adia-
batic quantum computing (AQC) regime, which is specialized
in solving NP-hard combinatorial optimization problems. Due
to the undesired noise on the quantum processors, it is dif-
ficult to fulfill the precise adiabaticity condition in practice.
Therefore, there is no theoretical guarantee to find the ground
state (i.e. an optimal solution) for every single run. But the
global optimality may be reached with high probability.

Given the probabilistic nature of quantum annealing, we
will evaluate the performance with respect to two metric: 1)
the probability of producing an optimal solution in a single-
instance run, and 2) the time-to-solution (TTS) required to find
the ground state at least once with some desired probability.

1) Metric in terms of Success Probability: To evaluate
the single-run success probability of the QA algorithm, we
repeatedly run the annealing procedure many times, collect the
return energy sample from each independent run, and then plot
the discrete probability distribution of the energy samples. The
default parameters in the D-Wave quantum annealer (annealing
time = 20µs, chain strength=1.0, heuristic minor-embedding,
etc.) are used in the study. Figure 11 shows the probability
distribution for the energy samples collected from 400 runs
of a N=8 linear metasurface array problem. The ground state
energy is referred to as Eg and the energy sample is denoted
by E. The probability of reaching the ground state (global
optimal solution) is around 95%, which is often referred to as
the success probability of a single-instance run, Ps [55], [56].

Optimal solution

Fig. 11: Probability distribution for the ensemble of energy
samples in 400 runs (problem instance: N=8 linear metasur-
face array with θr = 20o).

We then repeat the experiment for the 4 by 4 binary
metasurface array with energy Hamiltonian Hr + Hc as in
Fig. 8(b). The probability distribution is depicted in Fig. 12.
The success probability of finding the global optimal solution
is around 75%. In addition, we notice that there are some QA
runs settle at near-ground states, which may be referred to as
near-optimal feasible solutions. The probability of success in
finding these feasible solution is around 95%. This may be an
appealing feature for applications where an approximate global
optimum is desired instead of a precise global optimality.

Optimal 
solution Feasible 

solution

Fig. 12: Probability distribution for the ensemble of energy
samples in 400 runs (problem instance: a 4 by 4 binary
metasurface array with Hamiltonian Hr +Hc in Fig. 8(b)).

Finally, we perform the experiment for the 4 by 4 quad-
riphase array as shown in Fig. 10(b). The results are pre-
sented in Fig. 13. We note that the probability of success
of reaching the ground state is almost 1. Generally speaking,
the problem-dependent success probability is related to the
energy landscape of the Ising Hamiltonian. If the energy gap
between near-ground states and ground state is small, there is
a moderate possibility that the QA algorithm returns a near-
optimal solution, as shown in Fig. 12. Whereas for the case of
distinguishable low energy states, the QA can find the ground
state solution with very high probability.

Optimal solution

Fig. 13: Probability distribution for the ensemble of energy
samples in 400 runs (problem instance: a 4 by 4 quadriphase
array for θr = 20o, φr = 40o and θi = 30o).

2) Metric in terms of Time-to-Solution: In this subsection,
we are interested in studying the performance of QA algorithm
over a range of problem sizes (# Ising variables). As is
well known, the combinatorial optimization task becomes
increasingly complex as the number of Ising variables grows,
since each additional Ising variable doubles the number of
states over which the energy landscape is defined.

The linear binary metasurface array is used as the test
problem. To account for the problem-dependent energy land-
scape, we create three problem instances corresponding to
θr=10o, 20o, 30o, collect energy samples from 400 runs of



10

each problem instance, and then calculate the average success
probability. The results for varied array sizes from N = 10
to N = 50 are depicted in Fig. 14. The success probability
of finding the ground-state solution in a single run, Ps(N),
decreases sub-linearly as the problem size increase. Note
that if we are interested in finding the ground state at least
once with some desired probability Pd, we can calculated the
required number of runs by:

R(N) =
ln(1− Pd)

ln(1− Ps(N))
(36)

Taking the problem N=10 as an example, with 5 independent
runs we can achieve 99.99% probability of finding the ground
state solution. The other results are shown in Fig. 14.

Fig. 14: The success probability as a function of problem size.

We can then define the time-to-solution (TTS) metric for a
given target probability Pd as: T (N) = tsR(N), where the ts
is the computation time required for a single run, and R(N) is
the required number of runs as introduced in Eq. (36). During
our access to the D-Wave quantum processor, we record the
computation time per run ts, including anneal time (20µs),
readout time (198µs) and delay time (21µs). Note that we
have ignored times such as initialization, programming and
postprocessing since they are one-time cost and not associated
with the problem scaling. As is seen in Fig. 15, the TTS grows
sublinearly with increasing problem size, which is an encour-
aging result using the QA optimization for metasurfaces.

Fig. 15: The QPU time-to-solution for increasing problem size.

E. Full-wave Simulation as Validation

We conclude the section of numerical experiments with the
full wave simulation of a square patch metasurface. As shown
in Fig. 16, each metasurface element consists of 7 by 7 metallic
patches printed on a dielectric substrate above a metallic
ground plane. The thickness of the substrate is h = 2mm with
relativity permittivity of 4.0. The size of the sub-wavelength
unit cell a = 5mm. Thereby the metasurface element has the
size of d = 35mm, which is equal to one wavelength at the
operating frequency 8.57GHz. By controlling the size of the
metallic patch, p, we can achieve the desired quadriphase shift
in the element reflection coefficient, as illustrated in Table VI.

(1,1) (1,2) ⋯ (1,𝑁)

(2,1) (2,2) ⋯ (2,𝑁)

⋯ ⋯

(𝑀, 1) (𝑀, 2) (𝑀,𝑁)

𝑥

𝑦1

2

𝑀

1 2 𝑁

𝑑
𝑑

Fig. 16: Configuration of the square patch metasurface.

p 4.9mm 4.525mm 4.12mm 3.35mm

ψ (m,n) 0o 90o 180o 270o

TABLE VI: Shift of phase responses for square patch meta-
surface elements at 8.57GHz. p: upper metallic patch size.

The experiment is performed on a 8 by 8 quadriphase
metasurface array with the normal incident plane wave and
the desired direction θr = 20o, φr = 20o. Since the number
of Ising variables, 128, exceeds largest fully connected graph
solvable in the Chimera hardware, we have used the two-level
optimization approach detailed in Sec. II.D. The problem is
decomposed into 2 by 2 subarrays and each subarray includes
4 by 4 array elements. The QA optimized phase profile and
RCS pattern are shown in Fig. 17(a) and 17(b). It is clearly
seen that the scattered power is maximized at the desired
direction. We proceed with the full-wave simulation of the
same metasurface array using the geometry-aware domain
decomposition method [57], [58]. The computed RCS is
depicted in Fig. 17(c), where a similar pattern is observed
comparing to Fig. 17(b). Note that the absolute scattering
power of the main beam is a bit smaller due to the non-
ideal element-scattering amplitude. Still, the results validate
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the applicability and potential of proposed work for practical
reflective metasurfaces.

(a) Optimized phase profile

RCS Heatmap

(b) RCS pattern using Eq. (10)

RCS Heatmap

(c) RCS pattern using full-wave simulation

Fig. 17: The optimized phase profile and RCS patterns of the 8
by 8 quadriphase array for θr = 20o, φr = 20o. The colormap
from black, dark gray, light gray to white corresponds to the
element phase state ψ (m,n) = 0, π/2, π, and 3π/2.

IV. CONCLUSION

Over the last few years, we have witnessed an extensive
and growing interest in leveraging reconfigurable intelligent

surfaces towards smart wireless environments. One key ques-
tion arises on how efficiently to select the phase configuration
that produces a scattered field matching the desired scattering
profile. This is of paramount importance when a solution to
the optimization problem is not available in closed-form, and
thus constitutes a substantial computational task.

Whereas recent researches focus on artificial intelligence
and deep learning, this paper takes another direction aiming
to leverage the power of quantum computers to overcome the
computational optimization complexity. The scattered wave
power is expressed as an Ising Hamiltonian: a common
mathematical abstraction employed in statistical mechanics to
describe the spin state of arrays of quantum particles. An
analogy can be made between the discrete meta-atom state and
the spin degree of freedom in order to design the reflection
phase mask of metasurfaces and RISs.

The results show a viable way forward for analyzing and
controlling the interaction of large reconfigurable surfaces
and complex radio environments. This work constitutes the
first step towards including quantum computation within EM
optimization tools for the next generation of wireless mobile
networks. Future work includes multi-level spin optimization
for multi-phase RISs, joint optimization of reflection amplitude
and phase modulation as well as the incorporation of mutual
coupling effects between array elements.
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[24] N. Kaina, M. Dupré, M. Fink, and G. Lerosey, “Hybridized resonances
to design tunable binary phase metasurface unit cells,” Opt. Express,
vol. 22, no. 16, pp. 18 881–18 888, Aug 2014.

[25] O. Tsilipakos, A. C. Tasolamprou, A. Pitilakis, F. Liu, X. Wang, M. S.
Mirmoosa, D. C. Tzarouchis, S. Abadal, H. Taghvaee, C. Liaskos,
A. Tsioliaridou, J. Georgiou, A. Cabellos-Aparicio, E. Alarcn, S. Ioan-
nidis, A. Pitsillides, I. F. Akyildiz, N. V. Kantartzis, E. N. Economou,
C. M. Soukoulis, M. Kafesaki, and S. Tretyakov, “Toward intelli-
gent metasurfaces: The progress from globally tunable metasurfaces
to software-defined metasurfaces with an embedded network of con-
trollers,” Advanced Optical Materials, vol. 8, no. 17, p. 2000783, 2020.

[26] J.-B. Gros, P. del Hougne, and G. Lerosey, “Tuning a regular cavity to
wave chaos with metasurface-reconfigurable walls,” Phys. Rev. A, vol.
101, p. 061801, Jun 2020.

[27] J.-B. Gros, G. Lerosey, F. Mortessagne, U. Kuhl, and O. Legrand,
“Uncorrelated configurations and field uniformity in reverberation cham-
bers stirred by tunable metasurfaces,” arXiv preprint arXiv:1905.12757,
2019.

[28] S. Suzuki, J.-i. Inoue, and B. K. Chakrabarti, Quantum Ising Phases and
Transitions in Transverse Ising Models. Springer Berlin Heidelberg,
1996.

[29] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, and
A. Aspuru-Guzik, “Finding low-energy conformations of lattice protein
models by quantum annealing,” Scientific Reports, vol. 2, p. 571, Aug.
2012.

[30] I. Mahboob, H. Okamoto, and H. Yamaguchi, “An electromechanical
ising hamiltonian,” Science Advances, vol. 2, no. 6, p. e1600236, Jun
2016.

[31] D. Pierangeli, G. Marcucci, and C. Conti, “Large-scale photonic ising
machine by spatial light modulation,” Phys. Rev. Lett., vol. 122, p.
213902, May 2019.

[32] C. McGeoch, “Adiabatic quantum computation and quantum annealing:
Theory and practice,” in Synthesis Lectures on Quantum Computing,
2014, pp. 1–93.

[33] A. Perdomo-Ortiz, M. Benedetti, J. Realpe-Gmez, and R. Biswas,
“Opportunities and challenges for quantum-assisted machine learning
in near-term quantum computers,” Quantum Science and Technology,
vol. 3, no. 3, p. 030502, Jun 2018.

[34] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quan-
tum, vol. 2, p. 79, Aug 2018.

[35] Y. Wang, S. Wu, J. Zou, and G. Student, “Quantum Annealing with
Markov Chain Monte Carlo Simulations and D-Wave Quantum Com-
puters,” Statistical Science, vol. 31, no. 3, pp. 362–398, 2016.

[36] E. M. Inack and S. Pilati, “Simulated quantum annealing of double-well
and multiwell potentials.” Physical review. E, Statistical, nonlinear, and
soft matter physics, vol. 92 5, p. 053304, 2015.

[37] M. Kim, D. Venturelli, and K. Jamieson, “Leveraging quantum annealing
for large MIMO processing in centralized radio access networks,” Pro-
ceedings of the ACM Special Interest Group on Data Communication,
Aug 2019.

[38] C. C. Chang, A. Gambhir, T. S. Humble, and S. Sota, “Quantum
annealing for systems of polynomial equations,” Scientific Reports,
vol. 9, no. 1, Jul 2019.

[39] “Introduction to Quantum Annealing: a D-Wave System Documentation
documentation.” [Online]. Available: https://docs.dwavesys.com/docs/
latest/c gs 1.html

[40] K. Kitai, J. Guo, S. Ju, S. Tanaka, K. Tsuda, J. Shiomi, and R. Tamura,
“Designing metamaterials with quantum annealing and factorization
machines,” Physical Review Research, vol. 2, no. 1, pp. 1–10, 2020.

[41] C. D. Giovampaola and N. Engheta, “Digital metamaterials.” Nature
materials, vol. 13 12, pp. 1115–21, 2014.

[42] M. Moccia, S. Liu, R. Y. Wu, G. Castaldi, A. Andreone, T. J. Cui,
and V. Galdi, “Coding metasurfaces for diffuse scattering: Scaling laws,
bounds, and suboptimal design,” Advanced Optical Materials, vol. 5,
no. 19, p. 1700455, 2017.

[43] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment:
Intelligent reflecting surface aided wireless network,” IEEE Communi-
cations Magazine, vol. 58, no. 1, pp. 106–112, 2020.

[44] H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto,
“60-GHz electronically reconfigurable large reflectarray using single-
bit phase shifters,” IEEE Transactions on Antennas and Propagation,
vol. 59, no. 7, pp. 2524–2531, 2011.

[45] E. Carrasco, M. Barba, and J. A. Encinar, “X-band reflectarray antenna
with switching-beam using pin diodes and gathered elements,” IEEE
Transactions on Antennas and Propagation, vol. 60, no. 12, pp. 5700–
5708, 2012.

[46] M. Zhang, S. Gao, Y. Jiao, J. Wan, B. Tian, C. Wu, and A. Farrall,
“Design of novel reconfigurable reflectarrays with single-bit phase
resolution for ku-band satellite antenna applications,” IEEE Transactions
on Antennas and Propagation, vol. 64, no. 5, pp. 1634–1641, 2016.
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