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Abstract

Recent studies have shown that physiological signals can be remotely captured from human faces using a portable color camera

under ambient light. This technology, namely remote photoplethysmography (rPPG), can be used to collect users’ physiological

status who are sitting in front of a camera, which may raise physiological privacy issues. To avoid the privacy abuse of the

rPPG technology, this paper develops PulseEdit, a novel and efficient algorithm that can edit the physiological signals in facial

videos without affecting visual appearance to protect the user’s physiological signal from disclosure. PulseEdit can either

remove the trace of the physiological signal in a video or transform the video to contain a target physiological signal chosen

by a user. Experimental results show that PulseEdit can effectively edit physiological signals in facial videos and prevent

heart rate measurement based on rPPG. It is possible to utilize PulseEdit in adversarial scenarios against some rPPG-based

visual security algorithms. We present analyses on the performance of PulseEdit against rPPG-based liveness detection and

rPPG-based deepfake detection, and demonstrate its ability to circumvent these visual security algorithms.
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Abstract—Recent studies have shown that physiological signals
can be remotely captured from human faces using a portable
color camera under ambient light. This technology, namely
remote photoplethysmography (rPPG), can be used to collect
users’ physiological status who are sitting in front of a camera,
which may raise physiological privacy issues. To avoid the privacy
abuse of the rPPG technology, this paper develops PulseEdit,
a novel and efficient algorithm that can edit the physiological
signals in facial videos without affecting visual appearance to
protect the user’s physiological signal from disclosure. PulseEdit
can either remove the trace of the physiological signal in a
video or transform the video to contain a target physiological
signal chosen by a user. Experimental results show that PulseEdit
can effectively edit physiological signals in facial videos and
prevent heart rate measurement based on rPPG. It is possible
to utilize PulseEdit in adversarial scenarios against some rPPG-
based visual security algorithms. We present analyses on the
performance of PulseEdit against rPPG-based liveness detection
and rPPG-based deepfake detection, and demonstrate its ability
to circumvent these visual security algorithms.

Index Terms—Remote photoplethysmography (rPPG), privacy
protection, visual security, video editing, video forgery.

I. INTRODUCTION

V IDEO-CAPTURING devices are ubiquitous in our daily
life. These devices greatly facilitate us to share our life

with friends and communicate online with others. Yet have
we realized whenever a person appears in front of a camera,
not only can people recognize his/her identity based on the
facial appearance, but also monitor some aspects of his/her
physiological status such as cardiac activity?

Recent research has shown that contact-free measurement
of human physiological signals from facial videos is feasible
through computer vision algorithms [1]–[4]. For instance,
remote photoplethysmography (rPPG) technology has attracted
a growing amount of R&D interests, which is capable of
capturing the subtle color changes of the skin caused by
heartbeats in facial videos under ambient light. We can further
infer heart rate (HR) [5]–[10], respiration rate (RR) [11],
[12], and heart rate variability (HRV) [13] from extracted
rPPG signals. This promising technology can be leveraged to
build systems for remote monitoring stress and fatigue during
computer tasks [14] and sports training [15].

Recalling the question we have raised at the very begin-
ning, we recognize that this emerging technology may cause
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Fig. 1. PulseEdit can edit rPPG signal in a facial video to conceal the person’s
true physiological status, without visual distortion of his/her appearance. We
impose negligible additive perturbation onto the facial region in the video, and
successfully modify the HR extracted by the rPPG algorithm. In this example,
HR is edited from 66 to 120 beats per minute (bpm) to avoid the disclosure
of the user’s true heart rate in the video.

concerns about physiological privacy. Video-capturing devices
not only record a person’s appearance but also his/her cardiac
activity and physiological status simultaneously. This kind of
physiological information intrinsically present in facial videos
may be abused to collect and analyze a person’s physiological
features secretly with ulterior motives. For example, your
opponents can read your physiological status and analyze
your psychological activities, to gain an advantage in mission-
critical negotiation conferences. In daily life, one person’s
certain health conditions may be revealed unawares by a party
without his/her explicit consent, leading to potential privacy
concerns.

To address the above physiological privacy issue, it is
important to investigate how to effectively protect the physi-
ological signals from disclosure in facial videos. To this end,
we propose PulseEdit illustrated in Fig. 1, a novel method
that edits rPPG signals in facial videos by superimposing
specifically designed perturbation of small amplitude onto the
input videos. Our method outputs a video that is visually
the same but has its rPPG signal either removed completely
or transformed to a target HR based on the user’s choice.
Processed by PulseEdit, the users’ rPPG signals are protected
from disclosure in the facial videos.
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To make PulseEdit effective in practical use, we consider
the following requirements when designing and evaluating the
algorithm:

• Invisibility: the editing on the face should be negligible
without obvious appearance distortion.

• Universality: the protection should be valid on the face
globally and locally. The processed video should no
longer contain the user’s true rPPG signal and the edited
rPPG signal can be detected from the whole face, as well
as local skin regions.

• Generality: the protection should be able to conceal a
person’s true rPPG signal against various rPPG algo-
rithms in the literature. In other words, the edited rPPG
signal can be measured by various rPPG algorithms.

• Resistance: an advanced requirement is that the editing
on the face can be resistant to forensic analysis.

In addition to privacy protection, PulseEdit can impact other
applications where rPPG is employed. More specifically, rPPG
signal has been demonstrated as a useful and discriminative
feature in various visual security tasks, such as liveness detec-
tion [16]–[18] and deepfake detection [19], because real/live
videos and fake/synthetic videos have different representations
in rPPG signals extracted from the facial regions. Empowered
by PulseEdit, we can edit the rPPG signals in facial videos and
circumvent the above rPPG-based visual security algorithms.
It is not difficult to see that PulseEdit is a potential threat
to invalidate these algorithms, providing a direction to revise
them and improve the confidence of their output decisions.

Our main contributions are summarized as follows:

• We develop PulseEdit, a novel algorithm that can edit
rPPG signals in a facial video to conceal a person’s
true cardiac activity and physiological status, without
introducing noticeable visual distortion in the video.

• We demonstrate that PulseEdit can provide effective
privacy protection under various rPPG extraction algo-
rithms in the literature and robustly edit rPPG signals
in global and local facial regions. We further investigate
the forensic detectability of PulseEdit against forensic
steganalysis.

• We analyze the effectiveness of PulseEdit in circum-
venting rPPG-based liveness detection and rPPG-based
deepfake detection. We show that PulseEdit is promising
in circumventing these rPPG-based algorithms, which
suggests that more research efforts are needed to improve
these rPPG-based visual security algorithms from this
adversarial perspective.

In the rest of the paper, we first introduce the prior work
related to rPPG technology and its application in visual
security tasks in Section II. Section III describes the proposed
PulseEdit to edit rPPG signals in facial videos. We carry out
comprehensive performance analysis on the PulseEdit algo-
rithm for removing/modifying rPPG signals in facial videos in
Section IV, and explore its feasibility as a potential adversary
against rPPG-based liveness detection and deepfake detection
algorithms in Section V. Finally, Section VI holds a related
discussion and Section VII concludes the paper.

II. RELATED WORK

A. rPPG Technology

Monitoring cardiac activity is essential for understanding a
person’s health status and is actively used in clinical practices
and home care. Conventional methods require contact-based
sensors attached to the human skin, such as electrocardiogram
leads, a pulse oximeter, or a fitness tracker.

Recently, rPPG enables contact-free HR measurement using
color cameras. The principle of rPPG is that the blood volume
changes under the skin influence the intensity and color of the
reflected light from the skin, whose pattern is consistent with
heartbeat cycles. Although such subtle momentary changes in
the reflected light from the facial skin are not detectable by
the human eyes, they can be captured by a color camera [1].
The method of Eulerian video magnification [20] can amplify
and visualize the subtle color changes in a facial video
caused by the blood flow. Independent component analysis
(ICA) [13], chrominance mapping (CHROM) [2], and plane-
orthogonal-to-skin (POS) [4] were proposed to extract robust
rPPG features from three color channels. Li et al. [5] applied
adaptive filtering to handle environmental illumination and
voluntary motion issues in remote HR measurement. Tulyakov
et al. [6] proposed self-adaptive matrix completion to denoise
rPPG features and offer robust HR estimation. The challenging
fitness scenario [21], [22] has also been studied to improve the
robustness of the rPPG technology. End-to-end models [7], [9]
employing deep learning were also introduced to estimate HR
from videos.

B. Biometric Privacy Protection

Biometric privacy protection [23], [24] aims to conceal a
person’s privacy in biometric data and prevent possible thefts
and misuses of this information. Traditional biometric privacy
protection algorithms were proposed to de-identify a person’s
identity from these biometric features, including face [25],
[26], iris [27], and fingerprint [28]. Deep learning has been
introduced to protect privacy in multimodal biometrics [29].

Recently, as many methods have been proposed in the recent
decade to extract physiological signals from facial videos,
concerns are raised concurrently on the privacy issues of
physiological information in videos. This information may
be misused to collect and analyze a person’s physiological
features with ulterior motives. Chen et al. [30] applied motion
elimination in facial videos to remove subtle motion induced
by pulse on the subjects’ faces to avoid the disclosure of
the rPPG signal. The experimental results show that the
rPPG signals are successfully removed without appearance
distortion. Nevertheless, the work only studied the steady case
in the research. When the subject performs voluntary motion
(e.g., talking, head translation, and rotation) in video recording,
it is hard for Chen’s method to remove pulse-induced subtle
motion but maintain the subject’s voluntary motion.

In this paper, we propose to edit the rPPG signals that are
intrinsically presented in facial videos by perturbing the skin
pixels on the face and conduct experiments on motion cases
as well as steady cases. Compared with the prior art, not only
is our work capable of removing the rPPG signal in a facial
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video, but also transforming it to a target one if desired by the
user.

C. rPPG Feature in Visual Security Tasks

rPPG signal has been employed as a discriminative feature
to tackle several visual security tasks involving face videos,
such as liveness detection against spoofing and deepfake detec-
tion. Liveness detection is crucial to protect face recognition
systems from spoofing attacks, including printing a face on
paper, replaying a facial video on a digital device, wearing
a 3D face mask, and other approaches by adversaries. Liu et
al. [16], [17] used the cross-correlation of rPPG features in
multiple facial regions to classify live faces vs. spoofed faces.
Hernandez et al. [18] proposed to analyze the signal quality
of rPPG extracted from faces to discriminate live faces and
spoofed faces.

“Deepfake” refers to the technologies for a computer to
transform a person’s face to another’s in images and videos.
Since deepfake videos circulated in social media have brought
serious concerns such as through celebrity pornographic
videos, fake news, hoaxes, and financial fraud, which largely
impairs the integrity of social media, deepfake detection has
attracted a lot of attention in the recent computer vision
research. In terms of the roles of rPPG for deepfake detection,
FakeCatcher [19] explored the discriminative features of rPPG
signals extracted from facial videos and utilized them for
deepfake detection.

III. PROPOSED METHOD

PulseEdit has three main steps as shown in Fig. 2. We
first detect the facial region in the video and extract skin
intensity signals from multiple subregions on the face. We
then obtain the perturbation signal via an optimization problem
that transforms the rPPG signal in the video to a target signal.
Finally, we manipulate the skin pixels in the video according to
the perturbation signal, so that the PulseEdit video successfully
removes the rPPG signal, or if desired, transforms the rPPG
signal to a target rPPG signal. We refer to the two modes
as “removal” and “modification”, respectively, for short. In
the removal mode, the target signal can be white Gaussian
noise; and in the modification mode, the target signal can be
a simulated sinusoid with the frequency of a target HR or the
rPPG signal extracted from a reference video of the user’s
choice.

A. rPPG Extraction

Similar to the prior art in rPPG research, we first track
the subject’s face in the video to extract rPPG signal. We
apply the facial landmark detector by Dlib [31] to locate
and track 68 facial landmarks, from which we define the
facial region of interest (ROI) shown with the green dots
in the video frame in Fig. 2. To facilitate rPPG extraction
from multiple subregions [6], the ROI is normalized to a
rectangle using piecewise linear geometric transformation, and

skin color pixels are masked by a Gaussian skin color model
in chrominance space [32]:

p(x) = exp
(
− 1

2
(x−m)TΣ−1(x−m)

) skin
≷

non-skin
pt, (1)

where x = [cb, cr]T , and m and Σ are the mean and covariance
matrix of the Gaussian skin color model. Within the masked
rectangle facial ROI, we use a rectangle of a quarter size to
uniformly select M subregions (subregions can have overlap
with their neighbors). We compute the spatial average of the
skin pixels in each subregion to form the skin intensity signal
R ∈ RM×3×N , for M subregions, 3 color channels, and N
frames in the video. In the subsequent discussions, we refer
to the subscripts i and c as subregion i and color channel
c, respectively. For example, Ri,c denotes the skin intensity
signal in subregion i and color channel c.

B. rPPG Editing

In this module, our goal is to find a suitable perturbation on
the skin intensity signals to change the rPPG in videos to the
target signal given by users. We first detrend the skin intensity
signal Ri,c,∀i, c, to eliminate the illumination interference in
the environment. In the detrending process, we use l1 trend
filtering [33] to obtain the signal trend and subtract the trend
from the skin intensity signal. The whole process can be
described as

min
Si,c

1

2
||Si,c||22 + µ||D(Ri,c − Si,c)||1,∀i, c, (2)

where S ∈ RM×3×N denotes the corresponding detrended
signal, the subscripts i and c denotes the subregion and
the color channel, and D ∈ R(N−2)×N is the second-order
difference matrix

D =


−1 2 −1

−1 2 −1 0. . . . . . . . .

0 −1 2 −1
−1 2 −1

 . (3)

We denote δ ∈ R3×N as the additive perturbation imposed
onto the detrended skin intensity signal S, which gives rise
to the edited signal S̃ ∈ RM×3×N , i.e. S̃i,c = Si,c + δc,∀i, c,
where δc denotes the perturbation in the color channel c.

Next, we set up the target rPPG signal T ∈ R3×N . To
ensure the output video contains the target rPPG signal T , we
maximize the similarity between the edited signals S̃ and the
target signal T using the Pearson correlation coefficient:

P =
1

M

∑
i,c

ρ(S̃i,c, Tc) =
1

M

∑
i,c

ρ(Si,c + δc, Tc). (4)

For an edited facial video, we require that the person in the
video has negligible perceptual distortion. Thus, we regularize
the perturbation signal δ with L2 loss to control the perturba-
tion budget in the facial video:

E =
1

N
||δ||22. (5)
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Fig. 2. Pipeline of PulseEdit system. We first extract skin intensity signals from multiple facial subregions in the video. Then, we compute the perturbation
signal that can change the rPPG signals in the video to the target rPPG signal. Finally, we edit the skin pixels in the video, and the rPPG signal extracted
from the video processed by PulseEdit is successfully transformed to the target signal.

Combining the above two terms, we obtain the perturbation
signal δ by solving the optimization problem:

min
δ

− 1

M

∑
i,c

ρ(Si,c + δc, Tc) + λ
1

N
||δ||22. (6)

We can use a gradient-based solver (e.g., the Adam solver [34])
to solve the optimization problem in (6).

C. Skin Pixel Adjustment

The goal of this module is to map the perturbation signal
δ ∈ R3×N in time series to the spatial-temporal perturbation
frames ∆ ∈ Rh×w×3×N , where h and w refers to the height
and width of the frames in pixel count. We denote δc(n) as
the perturbation of the color channel c in the n-th frame.
One simple and intuitive approach to edit the pixels on the
face is to directly add δ(n) to every skin pixel on the facial
region in the n-th frame of the input video. Due to the integer
quantization of pixel values in video frames, the decimal part
of δ(n) needs special consideration in order to ensure the pixel
values collectively are changed by the expected amount.

We adopt randomized dithering to skin pixels to achieve
decimal perturbation in a statistical sense. Specifically, for the
color channel c in the n-th frame, we adjust the skin pixels
in an amount of either bδc(n)c with probability p or dδc(n)e
with probability 1− p, where p should be chosen so that

δc(n) = bδc(n)cp+ dδc(n)e(1− p). (7)

Equation (7) yields p = dδc(n)e−δc(n). Algorithm 1 presents
the detailed procedure of skin pixel adjustment to generate the
final PulseEdit video.

Algorithm 1 Skin Pixel Adjustment
Input: Original video I containing N frames, I =
[I1, I2, ..., IN ], (frame dimension h × w × 3); perturbation
signal δ (dimension 3×N ).
Output: PulseEdit video Ĩ.

1: ∆← ZEROLIKE(I) . memory allocation
2: for n = 1→ N do
3: Rface ← FACESKINPIXEL(In) . detect skin pixels
4: for c = 1→ 3 do . each color channel
5: for all (x, y) ∈ Rface do . each skin pixel
6: p← RAND(0, 1)
7: if p < dδc(n)e − δc(n) then
8: ∆n(x, y, c)← bδc(n)c
9: else

10: ∆n(x, y, c)← dδc(n)e
11: end if
12: end for
13: end for
14: end for
15: Ĩ ← I + ∆

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results on the PURE
dataset [35] to demonstrate the effectiveness and robustness
of PulseEdit in editing rPPG signals in facial videos. To
further validate the forensic undetectability of PulseEdit when
being used as a potential attack, we test the PulseEdit videos
against digital forensic analysis. Lastly, we compare PulseEdit
with the prior art of rPPG removal method [30] and study
the influence of different subject motion settings in video
recordings on the performance of rPPG removal.
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We set the target HR = 120 bpm in rPPG modification task. The x-axis and y-axis denote the time and heart rate (30 bpm to 180 bpm), respectively. The
red lines in the spectrograms of original video indicate the reference HR from pulse oximeter and the black dash lines in spectrograms of rPPG modified
videos indicate the target HR = 120 bpm.

channels. To simulate the noise condition of rPPG signals, we
added white Gaussian noise with −10 dB, −0 dB, and −10
dB in red, green, and blue channels, respectively, since the
green channel generally contains the strongest level of PPG

signal among all three channels [1]. We used the whole face
region in rPPG analysis to estimate HR from facial videos.

We study the influence of different λ = {0, 0.1, 0.5, 1, 2, 5}
on the performance of PulseEdit. To investigate the robustness

60

90

180

150

120

180

150

120

90

60

30

180

150

120

90

60

30

180

150

120

90

60

30

180

150

120

90

60

30

180

150

120

90

60

30

30

60

90

180

150

120

30

60

90

180

150

120

30

60

90

180

150

120

30

60

90

180

150

120

30

60

90

180

150

120

30

60

90

180

150

120

Fig. 3. Exemplary face crop from the videos and spectrograms of the rPPG extracted from the videos with three rPPG methods: ICA, CHROM, and POS.
We set the target HR = 120 bpm in rPPG modification mode. The x-axis and y-axis denote the time and heart rate (30 bpm to 180 bpm), respectively. The
red lines in the spectrograms of the original video indicate the reference HR from pulse oximeter and the black dash lines in the spectrograms of the rPPG
modified videos indicate the target HR = 120 bpm.

In the paper, we set M = 6×6 = 36 and use Adam [34] to
solve (6) with the learning rate 0.1 and the number of iterations
200.

A. Performance on PURE dataset

The PURE dataset [35] contains 60 facial video recordings
of 640 × 480 pixel resolution and 30 frames per second
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Fig. 4. Performance of PulseEdit on the PURE dataset with different λ: (a) HR estimation error in the rPPG removal mode, (b) HR estimation error in the
rPPG modification mode, and (c) average frame-level PSNR.

(fps) in well-lit rooms from 10 subjects. Each subject was
recorded in 6 different setups: steady, talking, slow translation,
fast translation, small rotation, and medium rotation. The
videos were stored without lossy compression. To validate
the effectiveness of PulseEdit in editing rPPG signals in
facial videos, we analyzed the PulseEdit outputs of the PURE
videos with three highly-cited rPPG algorithms: ICA [13],
CHROM [2], and POS [4]. We extracted rPPG signal from the
whole facial region in this part of the experiments to estimate
HR, and evaluated the performance using mean absolute error
(MAE). For the rPPG removal mode, we computed the error
between the estimated HR from the video and the reference
HR from pulse oximeter provided by the dataset. For the
rPPG modification mode, we computed the error between the
estimated HR from the video and the target HR.

We applied PulseEdit on the PURE videos for both the
removal and modification modes. In the removal mode, we
generated white Gaussian noise as the target rPPG signal T to
remove the intrinsic rPPG signal in the original video. In the
modification mode, we aimed at changing the rPPG signal to
HR = 120 bpm as an example. We generated a sinusoid of
frequency 120 bpm as the target rPPG signal T for all the color
channels. To simulate the noise condition of rPPG signals, we
added white Gaussian noise with −10 dB, −0 dB, and −10
dB in red, green, and blue channels, respectively, since the
green channel generally contains the strongest level of PPG
signal among all three channels [1]. We used the whole face
region in rPPG analysis to estimate HR from facial videos.

We study the effect of different λ = {0, 0.1, 0.5, 1, 2, 5} on
the performance of PulseEdit, which governs the perturbation
budget in the facial video. To investigate the robustness of
PulseEdit against video lossy compression, we compressed the
edited frames by MPEG-4 format at the average bitrate of
around 500 kbps. Fig. 3 shows the qualitative comparison of
the video frames and the corresponding rPPG spectrograms
with different λ. Fig. 4(a) and (b) present the performance
of HR estimation before and after PulseEdit in removal and
modification modes, respectively.

In the removal mode, we aim to increase the error of HR
estimation with respect to reference HR, and Fig. 4(a) shows
that the error increases as λ decreases. When λ is less than
0.5, the rPPG-removed videos have a very large estimation

error (i.e., > 10 bpm), indicating the successful removal of
the intrinsic rPPG signal by PulseEdit. In the modification
mode, our goal is to reduce the error of HR estimation with
respect to target HR, and Fig. 4(b) shows that the error is
reduced as λ decreases. When λ is less than 0.5, the rPPG-
modified videos have HR estimations very close to the target
HR, with an error no more than 1 bpm for uncompressed
videos and 10 bpm for MPEG-4 videos. This suggests that
PulseEdit can effectively transform the rPPG signal in a video
to a target HR. From Fig. 3, we observe that when λ increases
from 0 to 5, the original rPPG signals gradually appear in the
spectrograms of the edited videos. This indicates that we need
to spend enough editing expense (smaller λ) in the video to
successfully conceal the original rPPG signal.

Since lossy compression may attenuate the rPPG signal
on the face, it is expected that the HR error is larger in
MPEG-4 videos than in uncompressed videos. Specifically,
in the rPPG modification mode, the HR error with respect
to target HR is larger in the MPEG-4 video than in the
uncompressed one. Nevertheless, the modified rPPG signal
of target HR can still be detected by the rPPG methods
within an acceptable error range, when we choose λ < 0.5.
In comparison, lossy compression has less impact on the
rPPG removal mode. On the whole, these results indicate
that although lossy compression can weaken the manipulations
introduced by PulseEdit, the privacy protection of the intrinsic
rPPG signal remains effective when choosing a proper λ.

An important observation is that the three rPPG methods
have similar HR estimation performance on the PulseEdit
videos, indicating that PulseEdit is effective to various rPPG
algorithms. This satisfies the “generality” requirement.

Fig. 4(c) shows the objective image quality assessment
for the PulseEdit videos within the facial ROI with a size
of 300 × 300. Since λ governs the editing strength in the
video, frame-level PSNR increases when λ increases. By
vision examination, we can hardly notice the distortion on
the person’s appearance shown in Fig. 3.

Running time. Overall, PulseEdit runs efficiently. On average,
the step of rPPG extraction runs at around 10 fps, the step
of rPPG editing reaches 170 fps, and the step of skin pixel
adjustment runs at around 100 fps. These running times were
measured using a single-core Python implementation on a PC
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Fig. 5. HR estimation of PulseEdit videos on multiple face subregions with different λ using three rPPG methods: (a) ICA, (b) CHROM, (c) POS in the
rPPG removal mode, and (d) ICA, (e) CHROM, (f) POS in the rPPG modification mode.

Fig. 6. Illustration of the three facial subregions: forehead (red), left cheek
(green), and right cheek (blue). The regions are detected automatically
according to the facial landmarks.

with an Intel Core i5-4440 processor. As the step of rPPG
extraction is highly dependent on the speed of facial landmark
detection, the running time can be further reduced if facial
landmark detection is optimized.

B. rPPG Analysis on Multiple Facial Subregions

To examine the universality of PulseEdit, we analyze the
presence of rPPG signals in three facial subregions: forehead,
and left and right cheek, shown in Fig. 6. The regions
are detected automatically according to the facial landmarks.
Fig. 5 presents the performance of HR estimation from three
facial subregions using three rPPG algorithms. Since a larger
size of ROI generally gives a better average quality of rPPG
extraction [36], we expect a reduced accuracy of HR estima-

tion from facial subregions alone, compared with using the
whole face region.

From Fig. 5, we observe that HR error from the three facial
subregions has a similar trend as that from the whole face
region under different λ values. For the rPPG-removed videos,
the error is much larger than the original videos, when λ is
less than 0.5. This suggests that the intrinsic rPPG signals
are completely erased in all three facial subregions. For the
rPPG-modified videos, the HR error with respect to the target
HR is in an acceptable range, when λ is less than 0.5. We
can see that the rPPG signals in all three facial subregions
are successfully transformed to the target HR. In summary,
these results indicate that PulseEdit can effectively edit the
rPPG signals not only in the global facial region but also
in local facial subregions, which satisfies the “universality”
requirement.

C. PulseEdit against Forensic Analysis

From the previous performance analysis on PulseEdit, we
can see that PulseEdit is effective in editing the intrinsic rPPG
signals in facial videos for privacy protection. As motivated
in Section I, it is possible to utilize PulseEdit in adversarial
scenarios by forgers. In this subsection, we examine the effect
of forensic analysis tools to help us understand the strengths
and limitations of PulseEdit.

PulseEdit perturbs the skin pixels by a small amount in the
video frames to edit rPPG signals, which is similar to how
steganography manipulates the images. Based on this point
of view, we examine the forensic detectability of PulseEdit
against two representative steganalysis methods: spatio–color
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TABLE I
RESULT OF PULSEEDIT WITH λ = 0.5 ON HR ERROR, PERCEPTUAL DISTORTION, AND FORENSIC ANALYSIS

rPPG removal rPPG modification
Uncompressed MPEG-4 Uncompressed MPEG-4

Original Edited Original Edited Original Edited Original Edited
M

A
E

of
H

R
es

tim
at

io
n

(b
pm

) ICA

Face 1.91 13.70 7.36 13.41 53.75 0.03 57.63 1.12
Forehead 1.41 11.68 10.12 11.67 53.36 1.23 58.09 6.23

Left cheek 3.11 14.09 11.28 13.91 55.67 7.81 60.70 11.21
Right cheek 2.21 9.80 10.28 15.19 53.47 0.03 59.50 3.41

CHROM

Face 0.47 17.14 9.47 15.72 52.68 0.03 54.22 5.68
Forehead 0.26 11.69 11.55 13.05 52.71 1.22 58.44 6.75

Left cheek 0.52 22.46 10.80 16.03 52.57 0.03 55.95 5.51
Right cheek 0.18 18.40 11.39 19.44 53.24 0.03 56.53 3.09

POS

Face 0.47 12.33 4.00 13.34 52.84 0.03 55.79 0.03
Forehead 0.29 8.91 7.41 12.01 52.67 1.22 55.73 5.18

Left cheek 0.58 11.64 8.56 14.98 52.64 0.03 57.02 1.17
Right cheek 0.42 12.35 5.18 16.01 52.84 0.03 55.23 2.44

PSNR (dB) n/a 57.81 n/a 48.01 n/a 58.14 n/a 48.12

SCRM [37] (AUC) n/a 1.00 n/a 0.58 n/a 1.00 n/a 0.56

WISERNet [38] (AUC) n/a 1.00 n/a 0.78 n/a 1.00 n/a 0.76
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Fig. 7. Performance of PulseEdit against forensic analysis in MPEG-4 videos.

rich model (SCRM) [37] with ensemble training [39], and
WISERNet [38] based on deep learning. Since PulseEdit only
edits the facial regions, we cropped facial ROI with a size of
300 × 300. We set the original video frames as negative and
the PulseEdit video frames as positive, and used 5-fold cross-
validation to evaluate the performance. For deep models, we
changed the size of feature maps in the intermediate layers
accordingly to cater to the input size of 300× 300.

We observe that the steganalysis models are most effective
on uncompressed video frames as their detection performance
has an area under curve (AUC) of 0.99+ for every λ value.
They can almost perfectly differentiate the original video
frames and the edited video frames by PulseEdit. Without
incorporating additional constraints, the randomized pixel ad-
justment in Section III-C perturbs the skin pixels indepen-
dently in the frame, introducing artificial changes among local
neighboring pixels that are not presented in the direct output
of video cameras. This kind of unconstrained distortion can

be easily extracted by various image forensic models and
discriminative to natural images and edited images [40]–
[42]. Fig. 7 presents the steganalysis results on the lossily
compressed videos. Compared with the uncompressed videos,
the steganalysis result of the MPEG-4 videos degrades in
a noticeable amount. For the two steganalysis models, the
deep model has a better ability to detect the manipulation
trace in the lossily compressed videos than the classic model.
We also find that the steganalysis performance on the lossily
compressed videos decreases significantly in both forensic
methods as λ increases. This suggests that lossy compression
can alleviate the detectability of the manipulation traces in
videos introduced by PulseEdit.

In the current form, PulseEdit focuses on altering the
rPPG information for privacy protection and has not explicitly
concealed the traces of manipulation. As such, the presence of
perturbation can be detected from the uncompressed frames by
such forensic tools as steganalysis. Because of the limitation
of such forensic analysis for lossy compressed frames and
the small and random perturbation of PulseEdit by design,
a lossy compression on PulseEdit videos can evade forensic
steganalysis and remain effective in concealing/modifying the
intrinsic rPPG information. It is possible to further include
various forensic undetectability into the algorithm, to gain
insights on the ability of PulseEdit as an antiforensic tool and
the competing direction of detecting the manipulations made
by PulseEdit.

D. Performance Summary of PulseEdit

Taking into consideration HR estimation error in PulseEdit
videos, perceptual distortion, and resistance against forensics,
we choose λ = 0.5 in PulseEdit and use it for the follow-
ing experiments. We summarize the experimental results of
PulseEdit with λ = 0.5 in Table I. The first three macro-
rows show MAE of HR estimation (unit: bpm), using different
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Fig. 8. Performance comparison between PulseEdit and Chen’s method in different subject motion settings with three rPPG methods: (a) ICA, (b) CHROM,
and (c) POS. The motion settings are steady, talking, slow translation (ST), fast translation (FT), small rotation (SR), and medium rotation (MR).

rPPG algorithms. Note that, we compute MAE between the
estimated HR and the reference HR from pulse oximeter in
rPPG removal mode, and compute MAE between the esti-
mated HR and the target HR= 120 bpm in rPPG modification
mode. The next row shows frame-level perceptual distortion
analysis within the facial ROI between original videos and
edited videos. The last two rows present the forensic analysis
on PulseEdit.

Table I shows that the error of HR estimation with respect
to reference HR from the facial video increases after PulseEdit
in rPPG removal mode; the error of HR estimation with
respect to target HR decreases significantly after PulseEdit
in rPPG modification mode. This indicates that the proposed
PulseEdit can effectively remove/modify rPPG information
both in the whole face sense and in the local subregion
sense, tested by various rPPG methods. High PSNR index
suggests that PulseEdit hardly introduces perceptual distortion
on the subject’s appearance. Comparing the HR estimation
error between the uncompressed and MPEG-4 videos, we
can see that lossy compression can weaken the manipulation
applied in the facial videos, but PulseEdit can still edit the
rPPG signals to some extent. From the angle of antiforensics,
the AUC index reduces more than 0.4 in the SCRM and
more than 0.2 in the WISERNet. This indicates that lossy
compression can greatly help PulseEdit videos defend forensic
analysis.

E. Comparison with Prior Art

We compare the proposed PulseEdit in rPPG removal mode
with the prior art Chen’s method [30]. We report the estimated
HR error from the facial videos using the three rPPG methods,
ICA, CHROM, and POS. The performance is evaluated on
the uncompressed videos. Fig. 8 presents bar plots of perfor-
mance comparison between the proposed PulseEdit and Chen’s
method. We study the influence of 6 motion settings on the
rPPG-removing methods: steady, talking, slow translation, fast
translation, small rotation, and medium rotation.

From Table II, we can see that the three rPPG methods
can accurately estimate HR from the original videos. Given
the fact that we can extract rPPG signals accurately from
the original videos, Chen’s methods and PulseEdit, in average
performance, can both amplify the HR estimation error and

TABLE II
PERFORMANCE COMPARISON OF RPPG REMOVAL METHODS

MAE of HR estimation (bpm)
PSNR (dB)

ICA CHROM POS

Original 1.91 0.47 0.47 n/a

Chen et al. [30] 6.23 6.29 4.00 47.01

PulseEdit (proposed) 13.70 17.14 12.33 57.81

our method can remove the intrinsic rPPG signal more com-
pletely, leading to larger amplification of HR error. The PSNR
index indicates that the proposed PulseEdit has less distortion
than Chen’s method on the video frames. When we analyze
different motion settings in the video recordings from Fig. 8,
we can observe that Chen’s method has similar performance
to our method in the steady case but does not perform well
in the talking, head translation, and head rotation cases. This
suggests that Chen’s method is not effective when dealing with
head motions, and voluntary motions can easily overwhelm
the subtle HR-induced motion in the video. In comparison,
PulseEdit has little variation in the performance among all 6
different motion settings, indicating that our proposed method
is effective in a variety of motion settings.

V. ANALYSIS OF ADVERSARIAL SCENARIOS

Since PulseEdit can edit rPPG signals in videos, we expect
that PulseEdit, as an adversarial operation, can circumvent
rPPG-based liveness detection [16], [18] and rPPG-based
deepfake detection [19]. Thus, we conducted experiments
on the HKBUMARsV1+ dataset [17] for liveness detection
and the Celeb-DFv1 dataset [43] for deepfake detection to
evaluate the effectiveness of PulseEdit on above two aspects,
respectively.

A. Analysis against rPPG-based Liveness Detection

Liveness detection aims at detecting whether a person seen
by a camera is in his/her true live appearance or wearing
a camouflaging mask with different facial appearances, a
profile photo, or a video replay, to prevent face spoofing in
identity authentication. Since live faces and many spoofed
faces often have different characteristics in rPPG features
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Fig. 9. ROC curves of (a) Hernandez’s and (b) Liu’s methods of rPPG-based liveness detection, and (c) FakeCatcher of rPPG-based deepfake detection before
and after PulseEdit

extracted from the facial area, several prior publications have
presented classifiers based on rPPG features. We test two
rPPG-based liveness detection methods, namely, Hernandez’s
method [18] and Liu’s method [16], as a proof-of-concept, to
analyze the performance of PulseEdit on circumventing the
rPPG-based methods.

We conducted experiments on the HKBUMARsV1+
dataset [17], which consists of video recordings of 12 subjects
in flesh and wearing 3D face masks of different appearances.
We set live facial videos as negative and 3D mask videos
as positive. The classifier settings are the same as stated in
[16], [18]. PulseEdit was applied to the 3D mask videos, with
the target rPPG signals generated using the same procedure
as in the rPPG modification mode in Section IV-A. We used
subject-independent 5-fold cross-validation to evaluate the
performance of the detector on the videos before and after
PulseEdit.

We report the equal error rate (EER) and AUC in Table III
to show the impact of PulseEdit on the rPPG-based liveness
detection algorithms. EER refers to the point where false
positive rate and false negative rate are equal. AUC refers
to the area under the receiver operating characteristic (ROC)
curve. Smaller EER and larger AUC indicate better detection
ability. We can see that PulseEdit increases the EER from
0.29 to 0.40 and decreases the AUC from 0.77 to 0.31
for Hernandez’s method [18], and increases the EER from
0.10 to 0.26 and decreases the AUC from 0.94 to 0.73 for
Liu’s method [16]. On average, the 5-fold cross-validation
shows that 96% of correctly classified 3D mask videos in
Hernandez’s method are classified as live videos after we
apply PulseEdit to these videos and 64% in Liu’s method.
These results suggest that the current form of PulseEdit can
already circumvent the rPPG-based liveness detection to some
extent and additional optimization may enhance such evasion
by incorporating information from the existing research of
liveness detection.

B. Analysis against rPPG-based Deepfake Detection

The fast development of deep learning enabled computers
to transform a person’s face to another’s in images and videos.
These “deepfake” videos can spread misinformation and fake

TABLE III
IMPACT OF PULSEEDIT ON PERFORMANCE OF RPPG-BASED VISUAL

SECURITY ALGORITHMS

Method Dataset
w/o PulseEdit w/ PulseEdit
EER AUC EER AUC

Hernandez et al. [18] HKBUMARsV1+ 0.29 0.77 0.40 0.31

Liu et al. [16] HKBUMARsV1+ 0.10 0.94 0.26 0.73

FakeCatcher [19] Celeb-DFv1 0.29 0.76 0.47 0.57

news and impair the integrity of social media, prompting
a strong and urgent need for investigating the detection of
deepfake videos. Recently, FakeCatcher [19] was proposed
to utilize rPPG signals from the video as features to detect
whether the video is real or deepfake. To analyze the effec-
tiveness of PulseEdit, we tested PulseEdit videos using the
FakeCatcher CNN model.

We conducted experiments on the Celeb-DFv1 dataset [43],
which consists of 370 real videos and 733 deepfake videos in
the training set, and 38 real videos and 62 deepfake videos in
the test set. We considered real videos as negative and fake
videos as positive, and trained the FakeCatcher CNN model
in the training set. The CNN architecture is the same as stated
in [19]. As shown in Fig. 9(c) and Table III, FakeCatcher
achieves an EER of 0.29 and an AUC of 0.76 in the test set.

We applied PulseEdit on the deepfake videos in the test set,
with the rPPG signals extracted from the corresponding real
videos as the target rPPG signals. In other words, we tried to
restore the original rPPG signal in the deepfake videos. From
the classification performance of the FakeCatcher on the test
set with PulseEdit, we observe that the EER increases to 0.47
and the AUC reduces to 0.57, indicating that the rPPG signals
inserted by PulseEdit can circumvent FakeCatcher, making
it consider the deepfake videos as trustworthy. Among the
deepfake videos in the test set that are correctly classified by
FakeCatcher as forgery, we find that 49% of these videos are
classified as unforged videos by FakeCatcher after PulseEdit is
applied on them. The above observations show that PulseEdit
can degrade the reliability of the FakeCatcher classifier and
cheat it to make wrong decisions on the deepfake videos.
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VI. DISCUSSIONS

Considering the running time and the HR estimation error
of PulseEdit, the proposed PulseEdit is an effective algorithm
to edit rPPG signal in facial videos. Compared with the prior
art [30] that only focuses on eliminating the rPPG information,
we have designed PulseEdit with two modes: rPPG removal
and rPPG modification. The former mode can remove the
rPPG information and the latter mode can change the rPPG
information to a target HR designed by users. The proposed
algorithm offers the users more options of editing operations
on the physiological signal in facial videos regarding phys-
iological privacy protection. PulseEdit also provides a better
capability to remove the physiological signal from videos with
head motions (i.e., talking, translation, and rotation), more
robust to deal with different practical recording cases.

Considering PulseEdit as an adversarial operation to rPPG
technology, we have studied to what extent PulseEdit can
circumvent rPPG-based visual security algorithms. As a proof-
of-concept, we consider the rPPG-based liveness detection
and deepfake detection algorithms. The experimental results
demonstrate noticeable performance drops between the origi-
nal videos and the PulseEdit videos, indicating that PulseEdit
can successfully mitigate the rPPG-based visual security al-
gorithms. From the perspective of threat modeling for these
visual security algorithms, our PulseEdit research suggests that
it is important to investigate this and other similar vulnerabil-
ities and improve the rPPG-based visual security algorithms
against adversarial operations.

Over the past decade, rPPG technology has been prospering
and it has become feasible to monitor vital signs, such as
HR, using commercial digital cameras in daily life. One
common bottleneck in the R&D of rPPG technology is the
lack of sufficient facial videos with known HR of a wide
range [44]. PulseEdit in rPPG modification mode may be used
to synthesize facial videos with controllable HR to enlarge the
dataset and facilitate the R&D of rPPG technology.

In the current form, a weakness of PulseEdit is that it
focuses on altering the rPPG information in each frame and has
not explicitly considered to conceal the manipulation traces
introduced by itself. Forensic tools such as steganalysis can
detect the presence of perturbation from the uncompressed
frames if available. Nevertheless, we find that lossy video
compression is a feasible approach to improve the resistance
of the edited frames against forensic analysis and retain the
edited rPPG signal in the video. In future work, the inclusion
of various forensic undetectability into the framework of
PulseEdit and the development of new detectors to detect these
manipulations could be two intertwining research directions.
In addition, the current form of PulseEdit perturbs the facial
pixels independently and the algorithm, in the future, can
take spatial and temporal correlations of facial pixels into
consideration for the pixel perturbation to further minimize
the perceptual distortion of facial videos.

VII. CONCLUSION

In this paper, we have proposed PulseEdit, a novel algo-
rithm that can edit the rPPG signal in facial videos without

visible distortion, to protect the physiological information
from disclosure. We design a set of perturbation frames to
add to the input video frames to change a person’s intrinsic
rPPG signal that is presented in the facial region. PulseEdit
can either remove the rPPG signals on the face or change
them to a target heart rate. Extensive experimental results
demonstrate the effectiveness and robustness of PulseEdit in
different facial subregions, and various rPPG algorithms can
no longer detect the accurate heart rate from facial videos after
applying PulseEdit. We also show that PulseEdit can poten-
tially circumvent rPPG-based liveness detection and deepfake
detection, suggesting a direction for improvement in these
areas. In the current form, the traces of PulseEdit can be
detected by forensic steganalysis from the uncompressed video
frames, but lossy video compression can significantly reduce
the forensic performance. We can extend the proposed work
by investigating the inclusion of various forensic detectability
criteria into the algorithm, to gain insights on the ability of
PulseEdit as an antiforensic tool and the competing direction
of detecting the manipulations made by PulseEdit.
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