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Abstract

Recent studies have shown that physiological signals can be remotely captured from human faces using a portable color camera

under ambient light. This technology, namely remote photoplethysmography (rPPG), can be used to collect users’ physiological

status who are sitting in front of a camera, which may raise physiological privacy issues. To avoid the privacy abuse of the

rPPG technology, this paper develops PulseEdit, a novel and efficient algorithm that can edit the physiological signals in facial

videos without affecting visual appearance to protect the user’s physiological signal from disclosure. PulseEdit can either

remove the trace of the physiological signal in a video or transform the video to contain a target physiological signal chosen

by a user. Experimental results show that PulseEdit can effectively edit physiological signals in facial videos and prevent

heart rate measurement based on rPPG. It is possible to utilize PulseEdit in adversarial scenarios against some rPPG-based

visual security algorithms. We present analyses on the performance of PulseEdit against rPPG-based liveness detection and

rPPG-based deepfake detection, and demonstrate its ability to circumvent these visual security algorithms.
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PulseEdit: Editing Physiological Signals in
Facial Videos for Privacy Protection

Mingliang Chen, Member, IEEE, Xin Liao, Senior Member, IEEE, and Min Wu, Fellow, IEEE

Abstract—Recent studies have shown that physiological signals
such as heart beat and breathing can be remotely captured from
human faces using a regular color camera under ambient light.
This technology, referred to as remote photoplethysmography
(rPPG), can be used to collect the physiological status of users
who are in front of a camera, which may raise privacy concerns.
To avoid the privacy abuse of the rPPG technology, this paper
develops PulseEdit, a novel and efficient algorithm that can
edit the physiological signals in facial videos without affecting
visual appearance and thus protect the user’s physiological signal
from disclosure. PulseEdit can either remove the trace of the
physiological signal in a video or transform the video to contain a
target physiological signal chosen by a user. Experimental results
show that PulseEdit can effectively edit physiological signals in
facial videos and prevent heart rate measurement based on rPPG.
It is possible to utilize PulseEdit in adversarial scenarios against
rPPG-based visual security algorithms. We present analyses
on the performance of PulseEdit against rPPG-based liveness
detection and rPPG-based deepfake detection, and demonstrate
its ability to circumvent these visual security algorithms and
its important role in supporting the design of attack-resilient
systems.

Index Terms—Remote photoplethysmography (rPPG), privacy
protection, visual security, video editing, video forgery.

I. INTRODUCTION

V IDEO-CAPTURING devices are ubiquitous in our daily
life. These devices help us share our experiences with

friends and communicate online with others. Yet have we
realized whenever a person appears in front of a camera,
not only can people recognize his/her identity based on the
facial appearance, but also monitor some aspects of his/her
physiological status such as cardiac activities?

Recent research has shown that contact-free measurement
of human physiological signals from facial videos is feasible
through computer vision algorithms [1]–[4]. For instance,
remote photoplethysmography (rPPG) technology has attracted
a growing amount of interests in capturing the subtle color
changes of the skin caused by heartbeats in facial videos
under ambient light. We can further infer heart rate (HR) [5]–
[10], respiration rate (RR) [11], [12], and heart rate variability
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Fig. 1. PulseEdit can edit the rPPG signal in a facial video to conceal
a person’s true physiological status, without visual distortion of his/her
appearance. We introduce negligible additive perturbations onto the facial
region in the video, and successfully modify the HR extracted by the rPPG
algorithm. In this example, HR is edited from 66 to 120 beats per minute
(bpm) to avoid the disclosure of the user’s true heart rate in the video.

(HRV) [13] from the extracted rPPG signals. This promising
technology can facilitate remote monitoring stress and fatigue
during computer tasks [14] and sports training [15].

Recalling the question raised at the very beginning of the
paper, we recognize that this emerging technology may cause
concerns about physiological privacy. With such a technology,
video-capturing devices can record both a person’s appearance
and his/her physiological status such as cardiac activities
simultaneously. This kind of physiological information that is
intrinsically present in facial videos may subject to abuse, such
as secretly collecting and analyzing a person’s physiological
features with ulterior motives. For example, opponents can
read one’s physiological status and analyze his/her conditions
to gain an advantage in mission-critical negotiations. In daily
life, a person’s certain health conditions may be revealed
without his/her explicit consent from a video taken by a party.

To address these physiological privacy issues, it is important
to investigate how to effectively protect the physiological sig-
nals from disclosure in facial videos. To this end, we propose
PulseEdit illustrated in Fig. 1, a novel method that edits rPPG
signals in facial videos by superimposing specifically designed
perturbation of small amplitude onto the input videos. Our
method outputs a video that is visually the same but has its
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rPPG signal either removed completely or transformed to a
target HR based on the user’s choice. Processed by PulseEdit,
the users’ rPPG signals are protected from disclosure in the
facial videos.

To make PulseEdit effective in practical use, we consider
the following requirements when designing and evaluating the
algorithm:

• Invisibility: the editing on the face should be negligible
without obvious distortion in appearance.

• Universality: the protection should be valid on the face
globally and locally. The processed video should no
longer contain the user’s true rPPG signal, and the edited
rPPG signal can be detected from the whole face as well
as local skin regions.

• Generality: the protection should be able to conceal a
person’s true rPPG signal against various rPPG algo-
rithms in the literature. In other words, the edited rPPG
signal can be measured by various rPPG algorithms.

• Resistance: an advanced capability is to make the editing
on the face not detectable under visual forensic analysis.

In addition to privacy protection, PulseEdit can impact other
applications where rPPG is employed. More specifically, rPPG
signal has been demonstrated as a useful and discriminative
feature in various visual security tasks, such as liveness detec-
tion [16]–[18] and deepfake detection [19], because real/live
videos and fake/synthetic videos have different representations
in rPPG signals extracted from the facial regions. Empowered
by PulseEdit, we can edit the rPPG signals in facial videos and
circumvent the above rPPG-based visual security algorithms.
It is not difficult to see that PulseEdit is a potential threat
to invalidate these algorithms, providing a direction to revise
them and improve the confidence of their output decisions.

Our main contributions are summarized as follows:
• We develop PulseEdit, a novel algorithm that can edit

rPPG signals in a facial video to conceal a person’s
true cardiac activity and physiological status, without
introducing noticeable visual distortion in the video.

• We demonstrate that PulseEdit can provide effective
privacy protection under various rPPG extraction algo-
rithms in the literature and robustly edit rPPG signals
in global and local facial regions. We further investigate
the forensic detectability of PulseEdit against forensic
steganalysis.

• We analyze the effectiveness of PulseEdit in circum-
venting rPPG-based liveness detection and rPPG-based
deepfake detection. We show that PulseEdit is promising
in circumventing these rPPG-based algorithms, which
suggests that more research efforts are needed to improve
these rPPG-based visual security algorithms from this
adversarial perspective.

In the rest of the paper, we first introduce the prior work
related to rPPG technology and its application in visual
security tasks in Section II. Section III describes the proposed
PulseEdit to edit rPPG signals in facial videos. We carry out
comprehensive performance analysis on the PulseEdit algo-
rithm for removing/modifying rPPG signals in facial videos in
Section IV and explore its feasibility as a potential adversary

against rPPG-based liveness detection and deepfake detection
algorithms in Section V. Finally, Section VI discusses several
related issues and Section VII concludes the paper.

II. RELATED WORK

A. rPPG Technology

Monitoring cardiac activity is essential for understanding a
person’s health status and is actively used in clinical practices
and home care. Conventional methods require contact-based
sensors attached to the human skin, such as electrocardiogram
leads, a pulse oximeter, or a fitness tracker.

Recently, rPPG enables contact-free HR measurement using
color cameras. The principle of rPPG is that the blood volume
changes under the skin influence the intensity and color of the
reflected light from the skin, whose pattern is consistent with
heartbeat cycles. Although such subtle momentary changes in
the reflected light from the facial skin are not detectable by
the human eyes, they can be captured by a color camera [1].
Eulerian video magnification [20] can amplify and visualize
the subtle color changes in a facial video caused by the blood
flow. Independent component analysis (ICA) [13], chromi-
nance mapping (CHROM) [2], and plane-orthogonal-to-skin
(POS) [4] were proposed to extract robust rPPG features from
three color channels. Li et al. [5] applied adaptive filtering to
handle environmental illumination and voluntary motion issues
in remote HR measurement. Tulyakov et al. [6] proposed self-
adaptive matrix completion to denoise rPPG features and offer
robust HR estimation. The challenging fitness scenario [21],
[22] has also been studied to improve the robustness of the
rPPG technology. End-to-end models [7], [9] employing deep
learning were also introduced to estimate HR from videos.

B. Biometric Privacy Protection

Biometric privacy protection [23], [24] aims to conceal a
person’s privacy in biometric data and prevent possible thefts
and misuses of this information. Traditional biometric privacy
protection algorithms were proposed to de-identify a person’s
identity from these biometric features, including face [25],
[26], iris [27], and fingerprint [28]. Deep learning has been
introduced to protect privacy in multimodal biometrics [29].

In spite of privacy protection at the image perception level,
several researches studied the privacy protection approaches at
the feature representation level. Several facial representation
methods were proposed to eliminate facial expressions [30]
or selected biometric attributes (e.g., age and gender) [31]
in facial feature level. SensitiveNets [32] generates a learned
embedding space that eliminates specific sensitive biometric
information from the existing representation subspace. Ter-
horst et al. [33] proposed a privacy-preserving solution to
suppress biometric attributes in an unsupervised manner. The
privacy-preserving feature representations can improve the
robustness of training models and benefit the fairness in model
inference across biometric attributes.

As many methods have been proposed in the recent decade
to extract physiological signals from facial videos, concerns
are raised concurrently on the privacy issues of physiological
information in videos. This information may be misused to
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collect and analyze a person’s physiological features with
ulterior motives. Chen et al. [34] applied motion elimination
in facial videos to subtract the pulse-induced pixel intensity
variation on the subjects’ faces to avoid the disclosure of
the rPPG signal. The experimental results show that the
rPPG signals are successfully removed without appearance
distortion. As the work only studied the steady case in the
research, it is unclear whether Chen’s method can deal with
the subjects’ voluntary motion (e.g., talking, head translation,
and rotation) in video recording.

In this paper, we propose to edit the rPPG signals that are
intrinsically presented in facial videos by perturbing the skin
pixels on the face and conduct experiments on motion cases
as well as steady cases. Compared with the prior art, not only
is our work capable of removing the rPPG signal in a facial
video, but also transforming it to a target rPPG signal of the
user’s choice.

C. rPPG Feature in Visual Security Tasks
rPPG signal has been employed as a discriminative feature

to tackle several visual security tasks involving face videos,
such as liveness detection against spoofing and deepfake detec-
tion. Liveness detection is crucial to protect face recognition
systems from spoofing attacks, including printing a face on
paper, replaying a facial video on a digital device, wearing
a 3D face mask, and other approaches by adversaries. Liu et
al. [16], [17] used the cross-correlation of rPPG features in
multiple facial regions to classify live faces vs. spoofed faces.
Hernandez et al. [18] proposed to analyze the signal quality
of rPPG extracted from faces to discriminate live faces and
spoofed faces.

“Deepfake” refers to a family of computer technologies to
transform a person’s face to another’s in images or videos.
Since deepfake videos circulated in social media have brought
serious concerns such as through celebrity pornographic
videos, fake news, hoaxes, and financial fraud, which largely
impairs the integrity of social media, deepfake detection has at-
tracted a lot of attention in the recent computer vision research.
For example, FakeCatcher [19] explored the discriminative
features of rPPG signals extracted from facial videos and
utilized them for deepfake detection.

III. PROPOSED METHOD

PulseEdit has three main steps as shown in Fig. 2. We
first detect the facial region in the video and extract skin
intensity signals from multiple subregions on the face. We
then obtain the perturbation signal via an optimization problem
that transforms the rPPG signal in the video to a target signal.
Finally, we manipulate the skin pixels in the video according to
the perturbation signal, so that the PulseEdit video successfully
removes the rPPG signal or transforms the rPPG signal to a
target rPPG signal of the user’s choice. We refer to the two
modes as “removal” and “modification”, respectively, in short.
In the removal mode, the target signal can be white Gaussian
noise; and in the modification mode, the target signal can be
a simulated sinusoid with the frequency of a target HR or the
rPPG signal extracted from a reference video of the user’s
choice.

A. rPPG Extraction
Similar to the prior art in the rPPG research, we first track

the subject’s face in the video to extract rPPG signal. We
apply the facial landmark detector by Dlib [35] to locate
and track 68 facial landmarks, from which we define the
facial region of interest (ROI) shown with the green dots
in the video frame in Fig. 2. To facilitate rPPG extraction
from multiple subregions [6], the ROI is normalized to a
rectangle using piecewise linear geometric transformation, and
skin color pixels are masked by a Gaussian skin color model
in the chrominance space [36]:

p(x) = exp
(
− 1

2
(x−m)TΣ−1(x−m)

) skin
≷

non-skin
pt, (1)

where x = [cb, cr]T , and m and Σ are the mean and covariance
matrix of the Gaussian skin color model. Within the masked
rectangle facial ROI, we use a rectangle of a quarter size to
uniformly select M subregions (subregions can have overlap
with their neighbors). We compute the spatial average of the
skin pixels in each subregion to form the skin intensity signal
R ∈ RM×3×N , for M subregions, 3 color channels, and N
frames in the video. In the subsequent discussions, we refer
to the subscripts i and c as subregion i and color channel
c, respectively. For example, Ri,c denotes the skin intensity
signal in subregion i and color channel c.

B. rPPG Editing
In this module, our goal is to find a suitable perturbation on

the skin intensity signals to change the rPPG in videos to the
target signal given by users. We first detrend the skin intensity
signal Ri,c,∀i, c, to eliminate the illumination interference in
the environment. In the detrending process, we use l1 trend
filtering [37] to obtain the signal trend and subtract it from the
skin intensity signal. The detrending process can be solved by
the optimization problem as

min
Si,c

1

2
||Si,c||22 + µ||D(Ri,c − Si,c)||1,∀i, c, (2)

where S ∈ RM×3×N denotes the corresponding detrended
signal, the subscripts i and c denote the subregion and the color
channel, and D ∈ R(N−2)×N is the second-order difference
matrix

D =


−1 2 −1

−1 2 −1 0. . . . . . . . .

0 −1 2 −1
−1 2 −1

 . (3)

We denote δ ∈ R3×N as the additive RGB perturbation
imposed onto the detrended signal S, which gives rise to the
edited signal S̃ ∈ RM×3×N , i.e. S̃i,c = Si,c + δc,∀i, c, where
δc denotes the perturbation in the color channel c.

Next, we generate the target rPPG signal T ∈ R3×N . To
ensure the output video contains the target rPPG signal T , we
maximize the similarity between the edited signals S̃ and the
target signal T using the Pearson correlation coefficient:

P =
1

M

∑
i,c

ρ(S̃i,c, Tc) =
1

M

∑
i,c

ρ(Si,c + δc, Tc). (4)
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Fig. 2. Pipeline of PulseEdit system. We first extract skin intensity signals from multiple facial subregions in the video. Then, we compute the perturbation
signal that can change the rPPG signals in the video to the target rPPG signal. Finally, we edit the skin pixels in the video, and the rPPG signal extracted
from the video processed by PulseEdit is successfully transformed to the target signal.

For the edited facial video, we require that the person in the
video has negligible perceptual distortion. Thus, we regularize
the perturbation signal δ with L2 loss to control the perturba-
tion budget in the facial video:

E =
1

N
||δ||22. (5)

Combining the above two terms, we obtain the perturbation
signal δ by solving the optimization problem:

min
δ

− 1

M

∑
i,c

ρ(Si,c + δc, Tc) + λ
1

N
||δ||22. (6)

We can use a gradient-based solver, such as the Adam
solver [38], to solve the optimization problem in (6).

C. Skin Pixel Adjustment

The goal of this module is to map the perturbation signal
δ ∈ R3×N in time series to the spatial-temporal perturbation
frames ∆ ∈ Rh×w×3×N , where h and w refers to the height
and width of the frames in pixel count. We denote δc(n) as
the perturbation of the color channel c in the n-th frame. One
simple and intuitive approach to edit the pixels on the face is to
directly add δ(n) to every skin pixel on the facial region in the
n-th frame of the input video. Due to the integer quantization
of pixel values in video frames, the decimal part of δ(n) needs
special consideration in order to ensure the pixel values are
collectively changed by the expected amount.

We adopt randomized dithering to skin pixels to achieve
decimal perturbation in a statistical sense. Specifically, for the
color channel c in the n-th frame, we adjust the skin pixels
in an amount of either bδc(n)c with probability p or dδc(n)e
with probability 1− p, where p should be chosen so that

δc(n) = bδc(n)cp+ dδc(n)e(1− p). (7)

Algorithm 1 Skin Pixel Adjustment
Input: Original video I containing N frames, I =
[I1, I2, ..., IN ], (frame dimension h × w × 3); perturbation
signal δ (dimension 3×N ).
Output: PulseEdit video Ĩ.

1: ∆← ZEROLIKE(I) . memory allocation
2: for n = 1→ N do
3: Rface ← FACESKINPIXEL(In) . detect skin pixels
4: for c = 1→ 3 do . each color channel
5: for all (x, y) ∈ Rface do . each skin pixel
6: p← RAND(0, 1)
7: if p < dδc(n)e − δc(n) then
8: ∆n(x, y, c)← bδc(n)c
9: else

10: ∆n(x, y, c)← dδc(n)e
11: end if
12: end for
13: end for
14: end for
15: Ĩ ← I + ∆

Equation (7) yields p = dδc(n)e−δc(n). Algorithm 1 presents
the detailed procedure of skin pixel adjustment to generate the
final PulseEdit video.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results on the PURE
dataset [39] to demonstrate the effectiveness and robustness
of PulseEdit in editing rPPG signals in facial videos. To
further validate the forensic undetectability of PulseEdit when
being used as a potential attack, we test the PulseEdit videos
against digital forensic analysis. Lastly, we compare PulseEdit
with the prior art of rPPG removal method [34] and study
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Fig. 3. Performance of PulseEdit on the PURE dataset with different λ: (a) HR estimation error in the rPPG removal mode with respect to the reference HR
from pulse oximeter, (b) HR estimation error in the rPPG modification mode with respect to the target HR, and (c) average frame-level PSNR.

the influence of different subject motion settings in video
recordings on the performance of rPPG removal. In the paper,
we set M = 6× 6 = 36 and use Adam [38] to solve (6) with
the learning rate 0.1 and the number of iterations 200.

A. Performance on PURE dataset

The PURE dataset [39] contains 60 facial video recordings
of 640 × 480 pixel resolution and 30 frames per second
(fps) in well-lit rooms from 10 subjects. Each subject was
recorded in 6 different setups: steady, talking, slow translation,
fast translation, small rotation, and medium rotation. The
videos were stored without lossy compression. To validate
the effectiveness of PulseEdit in editing rPPG signals in
facial videos, we analyzed the PulseEdit outputs of the PURE
videos with five representative rPPG algorithms: ICA [13],
CHROM [2], POS [4], HR-CNN [7], and DeeprPPG [9]. The
first three methods are classical signal processing methods
and the last two are deep learning methods. For the HR-CNN
method, we used the model provided by the authors1, which
was trained on the PURE dataset. For the DeeprPPG method,
we re-implemented the rPPG extraction model and trained on
the PURE dataset with an 80/20 split for training and testing.

We extracted rPPG signal from the whole facial region in
this part of the experiments to estimate HR, and evaluated the
performance using mean absolute error (MAE). For the rPPG
removal mode, we computed the error between the estimated
HR from the video and the reference HR from pulse oximeter
provided by the dataset. For the rPPG modification mode, we
computed the error between the estimated HR from the video
and the target HR.

We applied PulseEdit on the PURE videos for both the
removal and modification modes. In the removal mode, we
generated white Gaussian noise as the target rPPG signal T to
remove the intrinsic rPPG signal in the original video. In the
modification mode, we aimed at changing the rPPG signal to
HR = 120 bpm as an example. We generated a sinusoid of
frequency 120 bpm as the target rPPG signal T for all the color
channels. To simulate the noise condition of rPPG signals, we
added white Gaussian noise with −10 dB, 0 dB, and −10 dB
in red, green, and blue channels, respectively, since the green

1Model is available at https://cmp.felk.cvut.cz/%7espetlrad/ecg-fitness/

channel generally contains the strongest level of pulse signal
among all three channels [1]. We used the whole face region
in rPPG analysis to estimate HR from facial videos.

We study the effect of different λ = {0, 0.1, 0.5, 1, 2, 5} on
the performance of PulseEdit, which governs the perturbation
budget in the facial video. To investigate the robustness of
PulseEdit against video lossy compression, we compressed the
edited frames by MPEG-4 format at the average bitrate of
around 500 kbps. Fig. 4 shows the qualitative comparison of
the video frames and the corresponding rPPG spectrograms
with different λ. Fig. 3(a) and (b) present the performance of
HR estimation before and after PulseEdit in the removal and
modification modes, respectively.

In the removal mode, we aim to increase the error of HR
estimation with respect to the reference HR, and Fig. 3(a)
shows that the error increases as λ decreases. When λ is
less than 0.5, the rPPG-removed videos have a very large
estimation error (i.e., > 10 bpm), indicating the successful
removal of the intrinsic rPPG signal by PulseEdit. In the
modification mode, our goal is to reduce the error of HR
estimation with respect to the target HR, and Fig. 3(b) shows
that the error is reduced as λ decreases. When λ is less than
0.5, the rPPG-modified videos have HR estimations very close
to the target HR, with an error no more than 1 bpm for
uncompressed videos and 10 bpm for MPEG-4 videos. This
suggests that PulseEdit can effectively transform the rPPG
signal in a video to a target HR. From Fig. 4, we observe
that when λ increases from 0 to 5, the original rPPG signals
gradually appear in the spectrograms of the edited videos.
This indicates that we need to spend enough editing expense
(smaller λ) in the video to successfully conceal the original
rPPG signal.

Since lossy compression may attenuate the rPPG signal
on the face, it is expected that the HR error is larger in
MPEG-4 videos than in uncompressed videos. Specifically,
in the rPPG modification mode, the HR error with respect
to the target HR is larger in the MPEG-4 video than in the
uncompressed video. Nevertheless, the modified rPPG signal
of the target HR can still be detected by the rPPG methods
within an acceptable error range, when we choose λ < 0.5. In
comparison, lossy compression has less impact on the rPPG
removal mode. Overall, these results indicate that although
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Fig. 3. Exemplary face crop from the videos and spectrograms of the rPPG extracted from the videos with three rPPG methods: ICA, CHROM, and POS.
We set the target HR = 120 bpm in rPPG modification mode. The x-axis and y-axis denote the time and heart rate (30 bpm to 180 bpm), respectively. The
red lines in the spectrograms of the original video indicate the reference HR from pulse oximeter and the black dash lines in the spectrograms of the rPPG
modified videos indicate the target HR = 120 bpm.

In the paper, we set M = 6×6 = 36 and use Adam [34] to
solve (6) with the learning rate 0.1 and the number of iterations
200.

A. Performance on PURE dataset

The PURE dataset [35] contains 60 facial video recordings
of 640 × 480 pixel resolution and 30 frames per second
(fps) in well-lit rooms from 10 subjects. Each subject was
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Fig. 4. Exemplary face crop from the videos and spectrograms of the rPPG extracted from the videos with two classical rPPG methods, ICA and POS, and
one deep learning method, HR-CNN. We set the target HR = 120 bpm in the rPPG modification mode. The x-axis and y-axis denote the time and heart rate
(30 bpm to 180 bpm), respectively. The red lines in the spectrograms of the original video indicate the reference HR from pulse oximeter and the black dash
lines in the spectrograms of the rPPG modified videos indicate the target HR = 120 bpm. The figure is best viewed in color.

lossy compression can weaken the manipulations introduced
by PulseEdit, the privacy protection of the intrinsic rPPG
signal remains effective when choosing a proper λ.

An important observation is that the five rPPG methods

have similar HR estimation performance on the PulseEdit
videos, indicating that PulseEdit is effective to various rPPG
algorithms, including the classical signal processing methods
and the deep learning methods as well. This satisfies the
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Fig. 5. HR estimation of PulseEdit videos with different λ via a motion-based method: (a) rPPG
removal mode and (b) rPPG modificaton mode.

Fig. 6. Illustration of the three facial subregions:
forehead (red), left cheek (green), and right cheek
(blue). The figure is best viewed in color.

“generality” requirement.
Fig. 3(c) shows the objective image quality assessment

for the PulseEdit videos within the facial ROI with a size
of 300 × 300. Since λ governs the editing strength in the
video, frame-level PSNR increases when λ increases. By
vision examination, we can hardly notice the distortion on
the person’s appearance shown in Fig. 4.

Motion-based physiological signal extraction. The prior
art has demonstrated that physiological signals can also be
extracted from facial videos via subtle head motions caused
by ballistocardiogram (BCG). We evaluate how effective
PulseEdit can remove heart rate information extracted using
the motion-based method [3]. Since voluntary head motions
can easily sabotage the subtle involuntary head motions in-
duced by BCG, we analyze the steady cases for fair evaluations
in Fig. 5.

From our intuition, PulseEdit may not perform well against
motion-based methods, because it focuses on altering skin
color and does not deliberately modify the subtle head motions
in the steady facial videos. Nevertheless, we can observe that
PulseEdit can still amplify the HR error estimated by the
motion-based method though it can more effectively remove
heart rate infromation obtained via rPPG extraction methods.
One possible reason is that the imposed perturbation on pixels
influences the estimated optical flow of the facial pixel points
in tracking, degrading the pixel-level trajectory analysis of the
involuntary subtle head motion.

Running time. Overall, PulseEdit runs efficiently. On average,
the step of rPPG extraction runs at around 10 fps, the step of
rPPG editing reaches 170 fps (the detrending runs at 200 fps
and the optimization runs at 1000 fps, respectively), and
the step of skin pixel adjustment runs at around 100 fps.
These running times were measured using a single-core Python
implementation on a PC with an Intel Core i5-4440 processor.

B. rPPG Analysis on Multiple Facial Subregions

To examine the universality of PulseEdit, we analyze the
presence of rPPG signals in three facial subregions: forehead,
and left and right cheek, shown in Fig. 6. The regions
are detected automatically via the facial landmarks. Fig. 7
presents the performance of HR estimation from the three

facial subregions using the five rPPG algorithms. For classical
non-deep learning methods, we apply the algorithms within
the selected subregions; for deep learning methods, we first
warp the polygon regions to regular rectangles with the fitting
input size, and then feed them into the models. Since a
larger size of ROI generally gives a better average quality
of rPPG extraction [40], we expect a reduced accuracy of HR
estimation from facial subregions alone, compared with using
the whole face region.

From Fig. 7, we observe that HR error from the three facial
subregions has a similar trend as that from the whole face
region under different λ values. For the rPPG-removed videos,
the error is much larger than the original videos, when λ is
less than 0.5. This suggests that the intrinsic rPPG signals
are completely erased in all three facial subregions. For the
rPPG-modified videos, the HR error with respect to the target
HR is in an acceptable range, when λ is less than 0.5. We
can see that the rPPG signals in all three facial subregions
are successfully transformed to the target HR. In summary,
these results indicate that PulseEdit can effectively edit the
rPPG signals not only in the global facial region but also
in local facial subregions, which satisfies the “universality”
requirement.

PulseEdit computes the original skin intensity variations
R ∈ RM×3×N (M denotes the number of subregions) from
multiple facial subregions and finds the optimal perturbation in
(6) that can change the heartbeat information in the extracted
local regions. This design can help the perturbation universally
change the heartbeat information in the global face and the
local facial regions.

C. User Study on Perceptual Distortion

We conducted a user study to investigate whether a human
viewer can notice the perceptual distortion introduced by
PulseEdit under different λ. Each question shows two videos,
the original video and the edited video by PulseEdit, and
provides three options: video one, video two, and “cannot
determine”. The respondents were asked to choose the original
video from the two given videos. If they could not distinguish
the two videos, they might select the “cannot determine”
option. Thus, one respondent has three conditions for each
question: select the correct video, cannot determine, or select
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Fig. 7. HR estimation of PulseEdit videos on multiple face subregions with different λ using five rPPG methods: (a) ICA, (b) CHROM, (c) POS, (d) HR-CNN,
(e) DeeprPPG in the rPPG removal mode, and (f) ICA, (g) CHROM, (h) POS, (i) HR-CNN, (j) DeeprPPG in the rPPG modification mode.

the wrong video. We collected 28 responses and present the
survey result in Fig. 8 which illustrates the numerical propor-
tion of the correct answer, the “cannot determine” option, and
the wrong answer under different λ. The user study shows
that more people could not distinguish between the original
video and the edited video and fewer people could select the
original video correctly as λ increases. This indicates that the
large λ can reduce the perceptual distortion in human vision.
There is an abrupt drop of correct answer rate at λ = 0.5,
suggesting that λ = 0.5 is a good choice to balance the editing
performance and the perceptual distortion.

D. PulseEdit against Forensic Analysis

From the previous performance analysis on PulseEdit, we
can see that PulseEdit is effective in editing the intrinsic rPPG
signals in facial videos for privacy protection. As motivated
in Section I, it is possible to utilize PulseEdit in adversarial
scenarios by forgers. In this subsection, we examine the
resistance of PulseEdit against forensic analysis tools to help
us understand its strengths and limitations.

PulseEdit perturbs the skin pixels by a small amount in
the video frames to edit rPPG signals, which is similar to
how steganography [43] manipulates the images. Based on
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Fig. 8. Results of user study on perceptual distortion in (a) the rPPG removal mode and (b) the rPPG
modification mode.
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Fig. 9. Performance of PulseEdit against forensic
analysis in MPEG-4 videos.

TABLE I
RESULT OF PULSEEDIT WITH λ = 0.5 ON HR ERROR, PERCEPTUAL DISTORTION, AND FORENSIC ANALYSIS

rPPG removal rPPG modification
Uncompressed MPEG-4 Uncompressed MPEG-4

Original Edited Original Edited Original Edited Original Edited

M
A

E
of

H
R

es
tim

at
io

n
(b

pm
)

ICA

Face 1.91 13.70 7.36 13.41 53.75 0.03 57.63 1.12
Forehead 1.41 11.68 10.12 11.67 53.36 1.23 58.09 6.23

Left cheek 3.11 14.09 11.28 13.91 55.67 7.81 60.70 11.21
Right cheek 2.21 9.80 10.28 15.19 53.47 0.03 59.50 3.41

CHROM

Face 0.47 17.14 9.47 15.72 52.68 0.03 54.22 5.68
Forehead 0.26 11.69 11.55 13.05 52.71 1.22 58.44 6.75

Left cheek 0.52 22.46 10.80 16.03 52.57 0.03 55.95 5.51
Right cheek 0.18 18.40 11.39 19.44 53.24 0.03 56.53 3.09

POS

Face 0.47 12.33 4.00 13.34 52.84 0.03 55.79 0.03
Forehead 0.29 8.91 7.41 12.01 52.67 1.22 55.73 5.18

Left cheek 0.58 11.64 8.56 14.98 52.64 0.03 57.02 1.17
Right cheek 0.42 12.35 5.18 16.01 52.84 0.03 55.23 2.44

HR-CNN

Face 0.88 21.78 5.77 13.70 57.46 0.44 57.46 1.68
Forehead 1.89 14.65 6.17 18.76 53.11 5.09 56.76 6.75

Left cheek 2.25 19.02 10.93 19.53 60.22 0.44 55.95 3.91
Right cheek 3.60 14.09 9.84 16.25 55.38 0.43 59.99 6.25

DeeprPPG

Face 1.16 21.23 2.52 20.73 49.86 1.28 49.33 5.38
Forehead 0.55 22.70 2.44 17.06 50.74 3.01 51.06 9.52

Left cheek 2.55 27.28 4.33 25.87 46.06 5.13 50.45 11.84
Right cheek 3.70 29.88 6.33 28.09 46.57 2.33 47.96 6.19

PSNR (dB) (Orig. as ref.) ref. 57.81 ref. 48.01 ref. 58.14 ref. 48.12

PSNR (dB) (Uncompr. orig. as ref.) ref. 57.81 33.02 33.04 ref. 58.14 33.02 33.05

SCRM [41] (AUC) n/a 1.00 n/a 0.58 n/a 1.00 n/a 0.56

WISERNet [42] (AUC) n/a 1.00 n/a 0.78 n/a 1.00 n/a 0.76

this point of view, we examine the forensic detectability of
PulseEdit against two representative steganalysis methods:
spatio–color rich model (SCRM) [41] with ensemble train-
ing [44], and WISERNet [42] based on deep learning. Since
PulseEdit only edits the facial regions, we cropped facial ROI
with a size of 300 × 300. We set the original video frames
as negative and the PulseEdit video frames as positive, and
used 5-fold cross-validation to evaluate the performance. For
deep models, we changed the size of feature maps in the
intermediate layers accordingly to cater to the input size of
300× 300.

We observe that steganalysis models are effective on un-
compressed video frames as their detection performance has
an area under curve (AUC) of 0.99+ for every λ value. They
can almost perfectly differentiate the original video frames and
the edited video frames by PulseEdit. Without incorporating
additional constraints, the randomized pixel adjustment in
Section III-C perturbs the skin pixels independently in the
frame, introducing artificial changes among local neighboring
pixels that are not presented in the direct output of video
cameras. This kind of unconstrained distortion can be easily
extracted by various image forensic models and discriminative
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to natural images and edited images [45]–[47]. Fig. 9 presents
the steganalysis results on the lossily compressed videos. Com-
pared with the uncompressed videos, the steganalysis result of
the MPEG-4 videos degrades in a noticeable amount. For the
two steganalysis models, the deep model has a better ability
to detect the manipulation trace in the lossily compressed
videos than the classic model. We also find that the steganal-
ysis performance on the lossily compressed videos decreases
significantly in both forensic methods as λ increases. This
suggests that lossy compression can alleviate the detectability
of the manipulation traces in videos introduced by PulseEdit.

In the current form, PulseEdit focuses on altering the
rPPG information for privacy protection and has not explicitly
concealed the traces of manipulation. As such, the presence of
perturbation can be detected from the uncompressed frames by
such forensic tools as steganalysis. Because of the limitation
of such forensic analysis for lossy compressed frames and
the small and random perturbation of PulseEdit by design,
a lossy compression on PulseEdit videos can evade forensic
steganalysis and remain effective in concealing/modifying the
intrinsic rPPG information. It is possible to further include
various forensic undetectability into the algorithm, to gain
insights on the ability of PulseEdit as an antiforensic tool and
the competing direction of detecting the manipulations made
by PulseEdit.

E. Performance Summary of PulseEdit

Taking into consideration HR estimation error, perceptual
distortion, and resistance of PulseEdit videos against forensics,
we choose λ = 0.5 in PulseEdit and use it for the follow-
ing experiments. We summarize the experimental results of
PulseEdit with λ = 0.5 in Table I. The first five macro-
rows show MAE of HR estimation (unit: bpm), using different
rPPG algorithms. Note that, we compute MAE between the
estimated HR and the reference HR from pulse oximeter in
the rPPG removal mode, and compute MAE between the
estimated HR and the target HR= 120 bpm in the rPPG
modification mode. The next row shows frame-level perceptual
distortion analysis within the facial ROI between original
videos and edited videos. The last two rows present the
forensic analysis on PulseEdit.

Table I shows that the error of HR estimation with respect
to the reference HR from the facial video increases after
PulseEdit in the rPPG removal mode; the error of HR esti-
mation with respect to the target HR decreases significantly
after PulseEdit in the rPPG modification mode. This indicates
that the proposed PulseEdit can effectively remove/modify
rPPG information both in the whole face sense and in the
local subregion sense, tested by various rPPG methods. High
PSNR index suggests that PulseEdit hardly introduces per-
ceptual distortion on the subject’s appearance. Comparing the
HR estimation error between the uncompressed and MPEG-
4 videos, we can see that lossy compression can weaken
the manipulation applied in the facial videos, but PulseEdit
can still edit the rPPG signals to some extent. From the
perspective of antiforensics, the AUC index reduces more than
0.4 in the SCRM and more than 0.2 in the WISERNet. This

TABLE II
PERFORMANCE COMPARISON OF RPPG REMOVAL METHODS

ON UBFC-RPPG DATASET

Original Chen’s [34] PulseEdit

M
A

E
of

H
R

es
tim

at
io

n
(b

pm
)

ICA

Face 0.90 16.78 19.84
Forehead 0.43 15.86 21.48

Left cheek 0.66 14.92 22.79
Right cheek 1.50 16.00 18.51

CHROM

Face 0.96 16.28 20.42
Forehead 0.64 13.63 18.96

Left cheek 1.30 14.84 13.89
Right cheek 0.64 10.70 20.95

POS

Face 0.87 18.17 17.31
Forehead 0.64 16.79 17.53

Left cheek 0.67 16.95 16.10
Right cheek 0.82 15.70 20.84

HR-CNN

Face 1.72 15.44 19.85
Forehead 2.01 17.67 20.09

Left cheek 1.23 14.62 19.25
Right cheek 0.99 17.29 21.62

DeeprPPG

Face 1.44 16.34 19.23
Forehead 3.16 18.76 24.02

Left cheek 1.59 17.11 23.32
Right cheek 1.66 19.85 22.24

PSNR (dB) ref. 43.64 52.83

indicates that lossy compression can greatly help PulseEdit
videos defend forensic analysis.

F. Comparison with Prior Art

We compare the proposed PulseEdit in the rPPG re-
moval mode with the prior art Chen’s method [34]. We re-
implemented Chen’s method and tuned the hyperparameter to
obtain the best performance. We report the HR error from
the facial videos using the five rPPG methods: ICA, CHROM,
POS, HR-CNN, and DeeprPPG. The performance is evaluated
on the uncompressed videos.

Steady case. We compare the rPPG-removing methods under
steady cases using the UBFC-RPPG dataset [48]. From Ta-
ble II, we can see that the five rPPG methods can accurately
estimate HR from the original videos. Given the fact that we
can extract rPPG signals accurately from the original videos,
Chen’s methods and PulseEdit have the comparable capability
to amplify the HR estimation error in steady cases. The PSNR
index indicates that the proposed PulseEdit has less distortion
than Chen’s method on the video frames.

Realistic case. We compare the rPPG-removing methods
under realistic cases using the PURE dataset [39]. Realistic
cases reflect the facial conditions in practical applications,
including steady cases and motion cases. Similarly, we can
see that the five rPPG methods can accurately estimate HR
from the original videos in Table III. Given the fact that we
can extract rPPG signals accurately from the original videos,
PulseEdit has larger amplification of HR error than Chen’s
method in realistic cases, which indicates that PulseEdit has
better editing performance to remove the intrinsic rPPG signal
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Fig. 10. Performance comparison between PulseEdit and Chen’s method in different subject motion settings with five rPPG methods: (a) ICA, (b) CHROM,
(c) POS, (d) HR-CNN, and (e) DeeprPPG. The motion settings are steady, talking, slow translation (ST), fast translation (FT), small rotation (SR), and medium
rotation (MR).

TABLE III
PERFORMANCE COMPARISON OF RPPG REMOVAL METHODS

ON PURE DATASET

Original Chen’s [34] PulseEdit

M
A

E
of

H
R

es
tim

at
io

n
(b

pm
)

ICA

Face 1.91 6.23 13.70
Forehead 1.41 6.32 12.68

Left cheek 3.11 6.38 14.09
Right cheek 2.21 6.04 15.80

CHROM

Face 0.47 6.29 17.14
Forehead 0.26 6.73 16.69

Left cheek 0.52 4.75 22.46
Right cheek 0.18 13.34 18.40

POS

Face 0.47 3.99 11.72
Forehead 0.29 4.57 14.91

Left cheek 0.58 5.36 11.64
Right cheek 0.42 8.34 12.35

HR-CNN

Face 0.88 8.02 17.78
Forehead 1.89 6.76 14.65

Left cheek 2.25 11.31 19.02
Right cheek 3.60 13.50 14.09

DeeprPPG

Face 1.16 7.94 21.23
Forehead 0.55 11.56 22.70

Left cheek 2.55 10.18 22.28
Right cheek 3.70 7.40 21.88

PSNR (dB) ref. 47.01 57.81

in facial videos. The PSNR index indicates that the proposed
PulseEdit has less distortion than Chen’s method on the video
frames.

Fig. 10 presents barplots of performance comparison be-
tween the proposed PulseEdit and Chen’s method regarding
6 motion settings: steady, talking, slow translation, fast trans-
lation, small rotation, and medium rotation. We can observe
that Chen’s method has similar performance to our method in
the steady case but does not perform well in the talking, head
translation, and head rotation cases.

Overall, the two methods have the similar performance
of rPPG removal in steady cases, but Chen’s method is not
effective when dealing with head motions. In comparison,
PulseEdit has little performance variation in steady cases and
motion cases, indicating that our proposed method is effective
in a variety of motion settings.

Chen’s method first estimates the color intensity variations
from pixel level, and then subtracts the pixel-wise intensity
variations from the original video to remove the physiological
signals. The color intensity variation in each facial pixel
is a combined consequence of pulse-induced color variation
and voluntary motion. For head motion cases, the color
intensity variation caused by voluntary motions can easily
overwhelm the pulse-induced color variation in the video. This
could explain the reason why Chen’s method has ineffective
editing performance for motion cases. In contrast, PulseEdit
tracks multiple facial subregions and then extracts the pulse-
induced skin color variations from them. The tracking of facial
subregions can alleviate the interference of color variations
caused by voluntary motions. Also, PulseEdit finds the optimal
perturbation such that the original rPPG signals in multiple
facial subregions can directly transfer to the target rPPG signal.
Hence, PulseEdit can deal with both steady and motion cases.
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Fig. 11. ROC curves of (a) Hernandez’s and (b) Liu’s methods of rPPG-based liveness detection, and (c) FakeCatcher of rPPG-based deepfake detection
before and after PulseEdit

V. ANALYSIS OF ADVERSARIAL SCENARIOS

Since PulseEdit can edit rPPG signals in facial videos, we
expect that PulseEdit, as an adversarial operation, can circum-
vent rPPG-based liveness detection [16], [18] and rPPG-based
deepfake detection [19]. Thus, we conducted experiments
on the HKBUMARsV1+ dataset [17] for liveness detection
and the Celeb-DFv1 dataset [49] for deepfake detection to
evaluate the effectiveness of PulseEdit on above two aspects,
respectively.

A. Analysis against rPPG-based Liveness Detection

Liveness detection aims at detecting whether a person seen
by a camera is in his/her true live appearance or wearing
a camouflaging mask with different facial appearances, a
profile photo, or a video replay, to prevent face spoofing in
identity authentication. Since live faces and many spoofed
faces often have different characteristics in rPPG features
extracted from the facial area, several prior publications have
presented classifiers based on rPPG features. We test two
rPPG-based liveness detection methods, namely, Hernandez’s
method [18] and Liu’s method [16], as a proof-of-concept, to
analyze the performance of PulseEdit on circumventing the
rPPG-based methods.

We conducted experiments on the HKBUMARsV1+
dataset [17], which consists of video recordings from 12
subjects in flesh and wearing 3D face masks of different
appearances. We set live facial videos as negative and 3D
mask videos as positive. The classifier settings are the same
as stated in [16], [18]. PulseEdit was applied to the 3D mask
videos, with the target rPPG signals generated using the same
procedure as in the rPPG modification mode in Section IV-A.
We used subject-based 5-fold cross-validation to evaluate the
performance of the detector on the videos before and after
PulseEdit.

We report the equal error rate (EER) and AUC in Fig. 11
to show the impact of PulseEdit on the rPPG-based liveness
detection algorithms. EER refers to the point where false
positive rate and false negative rate are equal. AUC refers
to the area under the receiver operating characteristic (ROC)
curve. Smaller EER and larger AUC indicate better detection
ability. We can see that PulseEdit increases the EER from

0.29 to 0.40 and decreases the AUC from 0.77 to 0.31 for
Hernandez’s method [18], and increases the EER from 0.10
to 0.26 and decreases the AUC from 0.94 to 0.73 for Liu’s
method [16]. These results suggest that the current form of
PulseEdit can already circumvent the rPPG-based liveness
detection to some extent and additional optimization may
enhance such evasion by incorporating information from the
existing research of liveness detection.

B. Analysis against rPPG-based Deepfake Detection

The fast development of deep learning enables computers
to transform a person’s face to another’s in images and videos.
These “deepfake” videos can spread misinformation and fake
news and impair the integrity of social media, prompting a
strong and urgent need of developing the detection algorithms
for deepfake videos [50]. Recently, FakeCatcher [19] was
proposed to utilize rPPG signals from the video as features
to detect whether the video is real or deepfake. To analyze the
effectiveness of PulseEdit, we tested PulseEdit videos using
the FakeCatcher CNN model.

We conducted experiments on the Celeb-DFv1 dataset [49],
which consists of 370 real videos and 733 deepfake videos in
the training set, and 38 real videos and 62 deepfake videos in
the test set. We considered real videos as negative and fake
videos as positive, and trained the FakeCatcher CNN model
in the training set. The CNN architecture is the same as stated
in [19]. As shown in Fig. 11(c), FakeCatcher achieves an EER
of 0.29 and an AUC of 0.76 in the test set.

We applied PulseEdit on the deepfake videos in the test set,
with the rPPG signals extracted from the corresponding real
videos as the target rPPG signals. In other words, we tried to
restore the original rPPG signal in the deepfake videos. From
the classification performance of the FakeCatcher on the test
set with PulseEdit, we observe that the EER increases to 0.47
and the AUC reduces to 0.57, indicating that the rPPG signals
inserted by PulseEdit can circumvent FakeCatcher, making
it consider the deepfake videos as trustworthy. The above
observations show that PulseEdit can degrade the reliability of
the FakeCatcher classifier and fool it to make wrong decisions
on the deepfake videos.
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C. Comparison with Prior Art

We analyze the prior art, Chen’s method [34], in the
above adversarial scenarios. Based on EER and AUC indices
from Fig. 11, we can see that there is no significant perfor-
mance degradation on rPPG-based visual security algorithms
when we process the fake/synthesized videos using Chen’s
method [34].

The rPPG-based visual security algorithms utilize the fea-
ture discrepancy between the extracted rPPG signals from real
videos and fake/synthesized videos to do the classification.
Typically, the real videos contain meaningful rPPG signals
while the fake/synthesized videos may mainly contain noise.
PulseEdit in the modification mode can synthesize designed
physiological signals for fake/synthesized videos to fool the
rPPG-based visual security algorithms. In constrast, Chen’s
method [34] was mainly designed removing the physiological
signals from the facial videos. Since fake/synthesized videos
do not contain rPPG signals already, removing the rPPG
signals does not change the feature of the extracted rPPG
signal in fake/synthesized videos. This explains why Chen’s
method [34] is not an effective adversarial tool. Overall, our
proposed PulseEdit provides a better adversarial capability to
circumvent rPPG-based visual security algorithms.

VI. DISCUSSIONS

In terms of the running time and the HR estimation error
of PulseEdit, the proposed PulseEdit is an effective algorithm
to edit rPPG signal in facial videos. Compared with the prior
art [34] that only focuses on eliminating the rPPG information,
we have designed PulseEdit with two modes: rPPG removal
and rPPG modification. The former mode can remove the
rPPG information and the latter mode can change the rPPG
information to a target HR of user’s choice. The proposed
algorithm offers the users more options of editing operations
on the physiological signal in facial videos regarding phys-
iological privacy protection. PulseEdit also provides a better
capability to remove the physiological signal from videos with
head motions (i.e., talking, translation, and rotation), more
robust to deal with practical recording scenarios.

Considering PulseEdit as an adversarial operation to the
rPPG technology, we have studied to what extent PulseEdit
can circumvent rPPG-based visual security algorithms. As
a proof-of-concept, we considered the rPPG-based liveness
detection and deepfake detection algorithms. The experimental
results demonstrate noticeable performance drops between the
spoofed videos before and after PulseEdit processes them,
indicating that PulseEdit can successfully mitigate the rPPG-
based visual security algorithms. From the perspective of
threat modeling for these visual security algorithms, our
PulseEdit research suggests that it is important to investigate
this and other similar vulnerabilities and improve the rPPG-
based visual security algorithms against adversarial operations.

Over the past decade, rPPG technology has been prospering
and it is becoming feasible to monitor vital signs, such as HR,
using commercial digital cameras in daily life. One common
bottleneck in the R&D of rPPG technology is the lack of
sufficient facial videos with known HR of a wide range [51].

PulseEdit in the rPPG modification mode may be used to
synthesize facial videos with controllable HR to enlarge the
dataset and facilitate the R&D of rPPG technology.

There are some potential directions to improve the proposed
algorithm. PulseEdit has a hyperparameter λ to balance the
editing performance and the perceptual distortion. For facial
videos with different skin tones and illumination conditions,
the λ for the optimal performance is different. So far, to
find the optimal editing performance for each video, we
can heuristically try λ in ascending order until the optimal
perturbation is less than a maximum intensity threshold or
the perceptual distortion can not be discovered by human
examination. In future research, the adaptive λ method is one
direction to improve the overall performance of PulseEdit.

Our algorithm focuses on altering rPPG information for
physiological privacy protection. Physiological information
can also be extracted from facial videos via BCG or in-
voluntary subtle head motions. It is interesting to develop
BCG editing algorithm to synergically edit the physiological
information from facial videos in parallel with PulseEdit.

In the current form, one limitation of PulseEdit as an
adversarial tool for video forgery is that we have not ex-
plicitly conceal the manipulation traces introduced by itself.
Forensic tools such as steganalysis can detect the presence
of perturbation from the uncompressed frames if available.
Nevertheless, we have found that lossy video compression is
a feasible approach to improve the resistance of the edited
frames against forensic analysis and retain the edited rPPG
signal in the video. In future work, the inclusion of various
forensic undetectability into the framework of PulseEdit and
the development of new detectors to detect these manipulations
may be two intertwining research directions. In addition,
beyond the current form of PulseEdit perturbing the facial
pixels independently, the future algorithm can take spatial and
temporal correlations of facial pixels into consideration for the
pixel perturbation to further minimize the perceptual distortion
of facial videos.

VII. CONCLUSION

In this paper, we have proposed PulseEdit, a novel algorithm
that can edit the rPPG signal in facial videos without visible
distortion, to protect the physiological information from dis-
closure. We design a set of perturbation frames and impose
them onto the input video frames to change a person’s intrinsic
rPPG signal present in the facial region. PulseEdit can either
remove the rPPG signals on the face or change them to a target
heart rate of a user’s choice. Extensive experimental results
demonstrate the effectiveness and robustness of PulseEdit in
different facial subregions, and various rPPG algorithms can
no longer detect heart rate accurately from facial videos after
PulseEdit. We also show that PulseEdit can potentially circum-
vent rPPG-based liveness detection and deepfake detection,
suggesting a direction for improvement in these areas.

Several improvements on PulseEdit can be explored in
future research. Adaptive λ could be better than fixed λ to
optimize the editing performance and the perceptual distortion
in each video. Apart from rPPG editing, BCG editing algo-
rithm can be developed to synergically edit the physiological
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information from facial videos in parallel with PulseEdit. The
inclusion of various forensic detectability criteria into the
algorithm can help gain insights into the ability of PulseEdit as
an antiforensic tool and the competing direction of detecting
the manipulations made by PulseEdit.
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