Towards a Hybrid Approach to Protect Against Memory Safety
Vulnerabilities

Ahmed Bhayat !, Lucas Cordeiro !, Giles Reger 2, Fedor Shmarov !, Konstantin Korovin !,

Tom Melham !, Kaled Alshamrany !, Mustafa A. Mustafa !, and Pierre Olivier !

! Affiliation not available
2The University of Manchester

October 30, 2023

Abstract

Memory corruption bugs continue to plague low-level systems software generally written in unsafe programming languages. In
order to detect and protect against such exploits, many pre- and post-deployment techniques exist. In this position paper,
we propose and motivate the need for a hybrid approach for the protection against memory safety vulnerabilities, combining
techniques that can identify the presence (and absence) of vulnerabilities pre-deployment with those that can detect and
mitigate such vulnerabilities post-deployment. Our hybrid approach involves three layers: hardware runtime protection provided
by capability hardware, software runtime protection provided by compiler instrumentation, and static analysis provided by
bounded model checking and symbolic execution. The key aspect of the proposed hybrid approach is that the protection offered
is greater than the sum of its parts — the expense of post-deployment runtime checks is reduced via information obtained during

pre-deployment analysis. During pre-deployment analysis, static checking can be guided by runtime information.

Towards a Hybrid Approach to Protect Against
Memory Safety Vulnerabilities

Kaled Alshmrany*, Ahmed Bhayat*, Lucas Cordeiro*, Konstantin Korovin*,
Tom Melham!, Mustafa A. Mustafa*, Pierre Olivier*, Giles Reger*, Fedor Shmarov*
*The University of Manchester, TUniversity of Oxford

Abstract—Memory corruption bugs continue to plague low-
level systems software generally written in unsafe programming
languages. In order to detect and protect against such exploits,
many pre- and post-deployment techniques exist. In this position
paper, we propose and motivate the need for a hybrid approach
for the protection against memory safety vulnerabilities, com-
bining techniques that can identify the presence (and absence)
of vulnerabilities pre-deployment with those that can detect
and mitigate such vulnerabilities post-deployment. Our hybrid
approach involves three layers: hardware runtime protection
provided by capability hardware, software runtime protection
provided by compiler instrumentation, and static analysis pro-
vided by bounded model checking and symbolic execution. The
key aspect of the proposed hybrid approach is that the protection
offered is greater than the sum of its parts — the expense of post-
deployment runtime checks is reduced via information obtained
during pre-deployment analysis. During pre-deployment analysis,
static checking can be guided by runtime information.

I. INTRODUCTION

Memory errors in low-level systems software written in
unsafe programming languages such as C or C++ represent one
of the main problems in computer security [1]. In particular,
in the MITRE ranking [2], the top ten vulnerabilities include
four types of memory errors. Microsoft reports that around
70% of all security updates in their products address memory
issues [3], and Google reports a similar number regarding bugs
in the Chrome Browser [4].

Techniques to detect memory errors can be broadly classi-
fied in two categories: detecting and removing vulnerabilities
before deployment [5]-[8], or detecting and mitigating them
post deployment [9]-[17]. Post-deployment techniques neces-
sarily run as part of the executed code, i.e., at runtime. Pre-
deployment techniques are more diverse, including runtime
techniques designed to be used as part of testing and static
techniques that directly analyze the source code. Runtime
techniques are exact because they check a set of concrete
behavior defined by a set of given inputs. Conversely, static
techniques aim to check all possible program behaviors but
necessarily approximate this due to a lack of context and
the well-known state-explosion problem (i.e., scalability lim-
itations). Compared to static techniques, runtime techniques
can be more generally applicable, but they may still introduce
unacceptable overhead for post-deployment.

The result is a set of techniques with varying coverage and
performance profiles (summarised in Section II). In this posi-
tion paper, we present an experimental analysis (Section III)
that demonstrates that these techniques (or at least some tools
representing them) are complementary in the sense that no tool

captures all vulnerabilities. We then propose a hybrid frame-
work (Section IV) that aims to combine techniques but also,
most interestingly, provides an opportunity for cooperation.
Our goal is to combine techniques that (i) work with legacy
code, (ii) do not require modification to the source code, and
(iii) provide a low barrier to adoption. This goal guides our
choice of memory protection techniques in this work.

II. MEMORY PROTECTION TECHNIQUES

There are two main approaches to detecting memory errors
pre-deployment — runtime techniques that aim to identify
potential errors with a high overhead restricting them to pre-
deployment test runs, as well as static techniques that explore
the possible behaviors of the program without executing it.
The main approach to providing protection post-deployment
is to check memory accesses to ensure that they are safe —
this may be via compiler-level instrumentation or via hardware
support with new technologies that go beyond the traditional
page table-based protection (e.g., Intel MPX [18], MPK [19],
or hardware capabilities [17]). Post-deployment usually pro-
vides strong assurance against vulnerabilities but discovery of
vulnerabilities (or false positives) at the post-deployment stage
can lead to considerable disruptions. Below we outline the
main techniques for runtime and static analysis.

A. Runtime Analysis

Checking memory access at runtime requires additional
work. There is a trade-off between the amount of security
provided and the level of overhead required. Often, techniques
with large overheads are deemed incompatible with post-
deployment except in the most security-critical settings.

Runtime checks may occur in the software or hardware. In
software, such checks are typically inserted by the compiler.
However, how this is performed and the overhead/coverage
profile varies between tools. Alternatively, checks may be
supported by unique hardware mechanisms. In this work, we
initially consider three runtime analysis techniques:

o AddressSanitizer (ASAN) [6]: This tool uses a com-
bination of shadow memory and so-called red zones
with poisoning to detect spatial errors and a special
memory allocator that provides address quarantine to
detect temporal errors (with extra checks behind options).
Developers suggest that ~ 2x slowdown is standard.

o SoftBoundCETS' (SB) [9], [20]: This tool tracks point-
ers’ metadata (e.g., base, bound) using shadow space

! Available on GitHub, https:/github.com/santoshn/softboundcets-34

https://github.com/santoshn/softboundcets-34

inspired mechanisms (instead of fat pointers) and uses
this to insert checks into LLVM IR code to detect spatial
and temporal errors. Experimental results [20] report
average ~ 2.16x slowdown (up to 4x).

o PureCap [17]: The CHERI model implements memory
access capabilities enforced by the hardware. A capability
is a token giving access to a particular area of the virtual
address space. In the PureCap model, each pointer of a
C/C++ program is represented by a capability that carries
metadata about the buffer bounds, access rights, etc. One
of the advantages of PureCap is that it provides protection
at the hardware level rather than intermediate levels
that rely on correct implementation of compilers/machine
code translation. Limitations include the need for spe-
cialised hardware and an increase in pointer sizes (~ 2x)
and corresponding increase in memory consumption.

A limitation of runtime techniques for pre-deployment
checking is the need for concrete inputs. One method for
addressing this is fuzzing [21], which attempts to find inputs
that produce specific behaviors.

B. Static Analysis

Static techniques analyze the source code itself, searching
the possible set of execution traces. There are, broadly, two
main approaches: breadth-first bounded-model checking [22]
unrolls the program, representing the reachability of a partic-
ular state by any path as a verification condition; and depth-
first path-based symbolic execution [23] encodes a single path
through the program as a set of symbolic constraints. Memory
safety is cast as reachability of an unsafe state, and a satisfying
assignment to the produced verification condition represents a
counter-example, e.g., a set of inputs that leads to the error. In
this work, we initially consider two static analysis tools since
they achieved first place in the Cover-Error category (i.e., find
a test that covers a bug) at the 3rd International Competition
on Software Testing (Test-Comp 2021) [24]:

e« ESBMC [8], [25]: This is a bounded-model checker uti-
lizing Clang to transform C programs into an intermediate
GOTO language. This is then symbolically executed,
producing verification conditions for SMT solvers.

e FuSeBMC [26], [27]: This is a white-box fuzzer that
injects labels into C programs and then use a combination
of ESBMC and a path-based symbolic execution tool
called Map2check [28] to find inputs that reach those
labels (while checking for vulnerabilities).

III. EXPERIMENTAL ANALYSIS

We perform an experimental analysis’ with the selected
tools using benchmarks taken from the 2021 memory safety
category of SV-COMP [29], which contain various open-
source applications, e.g., bftpd, which is an FTP server for
Unix systems. We aim to demonstrate and explore their
complementary nature. We begin by highlighting existing
evidence; for example, the results of the most recent SV-
COMP competitions [30] show that different techniques find

2Scripts and data available at https:/github.com/scorch-project/analysis.

TABLE I
SV-COMP21 BENCHMARKS WITH NO REQUIRED INPUTS.

[Technique [[Correct | Incorrect [Timeout]
ASAN 159 13 6
SB 152 20 6
PureCap 145 24 9
ASAN + SB 166 6 6
ESBMC 130 5 43
FuSeBMC 133 4 41
Runtime (combined) 166 6 6
Static (combined) 132 5 41

different errors. We split our experimental analysis between
benchmarks with given inputs and those without given inputs
as the appropriate tools differ.

A. Programs with No Required Input

We run all tools on the 178 memory-safety benchmarks
from SV-COMP 2021, where no input is required. We set
the time limit of each run to 900 seconds (the SV-COMP
time limit). These benchmarks are representative of a broad
cross-section of essential vulnerabilities. They vary in size
and complexity but are generally small, focusing on the vital
vulnerability while being indicative of real-world scenarios.

The results are in Table I. The first thing to note is that
every tool detects a different set of vulnerabilities. Runtime
techniques detect more than static techniques, which is unsur-
prising as there is only a single behavior to analyze. However,
static techniques detect some vulnerabilities, which runtime
techniques miss to detect. One interesting case is a potential
stack-use-after-scope vulnerability that is not triggered in the
program but presents a future vulnerability detected by static
techniques but not by runtime techniques.

Combining all three runtime tools (by taking the maximum
set of reported bugs) produces six incorrect verdicts. The in-
teresting cases are false negatives (existing bugs not reported)
due to ASAN failing to detect invalid memory cleanup (SB
and PureCap do not handle memory leaks) and a false positive
(from SoftBoundCETS) falsely reports a bug due to a lack of
support for the C library function memcpy.

As complementary, ASAN detects nine bugs that SB and
PureCap do not detect, and for SB this number is 6. In contrast,
PureCap did not detect any unique vulnerabilities (but should
ultimately have a better performance profile).

In terms of performance, the current PureCap implemen-
tation used in the analysis is a prototype software model
(emulated capability hardware) that does not give realistic
performance numbers. Therefore, we compare the runtime
overhead of ASAN and SB. The mean overhead for ASAN
was 4.10x and for SB it was 4.46x but there was significant
variance - 27.91 for ASAN and 96.23 for SB. We note that
the amount of overhead introduced in safe benchmarks is sig-
nificantly lower (2.33x£0.28 for ASAN and 1.01z £ 0.04 for
SB) than the unsafe ones (7.54x464.4 and 12.27x+226.29).
This is due to the relatively short runtime of the evaluated
benchmarks (0.11s 4 0.23s and 0.14s + 0.255s) in comparison
to the overhead introduced by the termination procedure after
finding a vulnerability.

https://github.com/scorch-project/analysis

TABLE II
SV-COMP21 BENCHMARKS WITH INPUTS.
Technique Correct | Incorrect | Timeout
ESBMC 107 2(1) 17
FuSeBMC 116 2 9
Combined 116 2 9

The static techniques demonstrated significantly more time-
outs even though each program had a single path. In 5
cases, ESBMC produced incorrect answers: in one case, it
could not detect a comparison of freed pointers, and in the
remaining four, it reported a bug in a safe code (it wrongly
identified dereference of a NULL pointer). FuSeBMC repeated
4 (including the comparison of freed pointers) out of these five
incorrect verdicts.

B. Programs Requiring Input

We run ESBMC and FuSeBMC on the 127 unsafe bench-
marks from SV-COMP 2021, where input is required for 900
seconds. We do not run Map2Check directly as it performed
very poorly outside of the FuSeBMC setup. The results are
in Table II. Both FuSeBMC and ESBMC returned incorrect
verdicts for two benchmarks (undetected memory leaks). At
the same time, ESBMC reached the timeout in 8 more cases
(17 vs 9). For the unsafe verdicts, both ESBMC and FuSeBMC
produced counter-examples (i.e., inputs) violating memory
safety. Such inputs can be introduced into the original code
(and possibly combined with the described runtime verification
techniques) for further testing.

C. Vulnerability Analysis

We have identified vulnerabilities that cannot be detected
by at least one of the selected tools during experiments and
our exploration. These are summarized in Table III and briefly
discussed below.

a) Subobject-buffer-overflow: ASAN and SB do not
track subobject bounds, so do not detect these vulnerabilities.
PureCap has an additional option (requiring extra checks) that
can detect subobject bounds. However, in some cases, this
leads to more false positives, e.g., when performing pointer
arithmetic on a pointer to a subobject [31].

b) Use-after-free: PureCap cannot detect this vulnerabil-
ity as the current stable release only supports spatial safety.
There is an experimental release based on CHERIvoke [32],
which quarantines freed memory, but (for specific performance
reasons) this does not handle use-after-free, rather the more
specific use-after-reallocate vulnerability.

c) Stack-use-after-return: PureCap explicitly does not
handle stack exploits, which would require complex (and
expensive) revocation mechanisms. ASAN does not support
this by default, although some versions (not the one we used)
provide an option for additional checks.

d) Stack-use-after-scope: PureCap cannot handle these
stack-based vulnerabilities. SB cannot detect this as the scop-
ing information is not handled during its instrumentation phase
at the intermediate level of the LLVM compiler.

l

clang
Use static properties
torefineruntime ., g
checks ‘

v
program.

Pre-Deployment

back-end -

CHERI C

[

Program
L 7 Spatial memory safety

Temporal memory safety

J

Custom assertions
(ASAN/SB)

dynamic
linking

exe

Post-Deployment

|
|
:
FuSeBMC ~ ASAN/SB ° ! I I
1 : ' ~_ Isolate
' . ! n I external
ESBMC - —Map2Check I 1 libraries
|]
| I I> Remove
E u assertions in
! | | |] safe areas
iPartial Bug Report | Memory safety violations
‘certificate (Test Case) »

Fig. 1. Proposed Hybrid Framework.

e) Double-free: This is an example of a temporal mem-
ory safety vulnerability that the Cornucopia [33] extension of
PureCap could detect, but the stable version does not.

f) Memory-leaks: SBC and PureCap do not explicitly
track memory and cannot detect this class of vulnerability.

g) Unions: PureCap does not support some program
features. For example, due to separating pointers from other
data and the larger pointer sizes, PureCap can incorrectly
report buffer-overflow when unions are used.

h) Library Functions: It is worth noting that all mecha-
nisms require access to the source code of any library functions
in some way. SB and ESBMC provide mechanisms that allow
the behavior of library calls to be emulated. SB, ASAN,
and PureCap require external code to be compiled with the
appropriate checks to provide coverage (and PureCap requires
compatibility due to the different pointer sizes). ESBMC will
over-approximate the behavior of library calls, but this can
lead to many spurious false positives.

D. Summary

Our experimental analysis supports the motivation that
runtime and static techniques can complement each other for
pre- and post-deployment protection. Interestingly, PureCap
provides a subset of safety guarantees that are expected to be
very cheap, suggesting a hybrid setup where PureCap handles
these cheap checks. In contrast, the rest are handled by in-
software checks — this is what we propose next.

IV. PROPOSED HYBRID FRAMEWORK

Our proposed hybrid framework is illustrated in Fig. 1. This
combines static and runtime protection mechanisms to offer
protection at both pre- and post-deployment stages. Whilst
combining techniques is not a new idea (e.g. [34]), our focus
is on the combination across different deployment stages.

TABLE III
FEATURES SUPPORTED BY DIFFERENT PROTECTION METHODS.

[Feature [ASAN | SB

[

PurcCap (RISC-V) || ESBMC | FuSeBMC |

Spatial Memory Safety
Subobject buffer overflow | mo [mno] no/yes [yes] yes
Temporal Memory Safety
Use-after-free yes yes no yes yes
Stack use after return no/yes yes no yes yes
Stack use after scope yes no no yes yes
Double free yes yes no yes yes
Memory leaks yes no no yes yes
Program Features
Unions yes yes yes/no yes yes
Library functions yes/no | yes/no yes/no yes/no yes/no

The framework utilizes the LLVM toolchain for (i) the
insertion of assertions, (ii) the translation of C code for
static analyzers, and (iii) the compilation to PureCap ISA.
Conveniently, the selected tools already use this toolchain.
The goal is to provide an architecturally independent set of
memory safety guarantees with a minimal performance impact.
Therefore, to maximize our framework’s adoption, compilation
to PureCap will be optional, with runtime checks performed
by compiler-inserted assertions for non-capability hardware.

By combining techniques, we aim to provide the union
of protection coverage as ‘cheaply’ as possible, selecting the
cheapest way to provide each check (noting that some methods
are incompatible with some compiler optimizations). Further,
we are convinced that the hybrid approach can achieve more
than this. Below we outline the main directions in which the
cooperation of different techniques can lead to a framework
that provides greater protection than the union of its parts.

A. Isolating Libraries

As previously discussed, a problematic issue for all tech-
niques is the interaction with external libraries. We assume
various methods to compartmentalize the program and isolate
the protected code from external libraries that are not subject to
memory safety protection. Hardware memory capabilities [35]
are one of the most efficient technologies to achieve that, pro-
viding exception-less security domain transitions and efficient
cross-compartment communication through capabilities.

Many other compartmentalization abstractions can be used
for platforms that do not support hardware capabilities, relying
on various isolation mechanisms. These can be process-based
isolation leveraging page tables [36], [37]; VM-based isolation
using hardware-assisted virtualization [38], [39]; trusted exe-
cution environments [40], [41] and other ISA extensions such
as Intel MPK [42]-[45]; and finally software-only solutions
such as SFI [46]. These techniques offer various security/per-
formance trade-offs and generally require a particular porting
effort to manage data shared between compartments.

B. Certifying the Removal of Assertions

As well as detecting bugs, static tools can certify the absence
of specific bugs in some or all of the code to achieve partial
or complete certification. Here, k-induction [47], [48] can
be used to prove a safety property ¢ for any given depth

of the program’s state space. The main idea is to use an
iterative deepening approach and check, for each step k up to a
maximum value, that ¢ holds with in all states reachable within
k iterations and that if ¢ holds for k iterations, it holds for
the subsequent unfolding of the system. The main challenge
of this approach relies on computing and strengthening loop
invariants, which must be inductive (and not just invariant)
to check the corresponding verification conditions [49]. Such
certificates will be used to identify runtime checks that are no
longer necessary and can be removed. We will also explore the
leverage of (cheap) assurances from PureCap in this process
i.e. explore whether (software-based) runtime checks can be
removed when assuming the protection offered by PureCap.

C. Safe under Assumptions

Combining the two previous ideas and isolating unknown
code, we will also explore the isolation of safe code, e.g.,
where some safe code is statically shown safe under certain
assumptions (typically at entry) or invariants, we will insert
runtime checks to check those assumptions or invariants. We
may also be able to prove safety under additional assumptions,
e.g., replace a series of expensive runtime checks with fewer,
cheaper ones. Finally, information about isolation can be used
within the static analysis to modularise the checking process
to (partially) address the state-explosion issue.

D. Static Analysis to Support Capability Revocation

One of the main limitations of capability-based hardware
within the context of temporal memory safety is the need to
revoke permissions and the overhead this requires. We propose
using static analysis methods to identify when capabilities
should be revoked and insert these directly into the code.
For example, this should increase the number of use-after-free
bugs detectable by the CHERIvoke [32] extension of PureCap.

V. CONCLUSION

This paper motivates and describes a proposed hybrid
framework for memory safety protection. We analyze some
techniques and tools for providing memory safety protection
and identify areas in which they complement. We then propose
a hybrid framework that aims to achieve joint coverage as
cheaply as possible. Finally, we identify further research
directions to take advantage of the potential cooperation of
the combined techniques.

ACKNOWLEDGEMENT

This work was undertaken as part of the SCorCH: Secure
Code for Capability Hardware project funded by EPSRC and
Innovate UK as part of the Digital Security by Design (DSbD)
challenge.

[1]

[2]
[3]

[4

=

[5]

[6

=

[7]
[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in 2013 IEEE Symposium on Security and Privacy. IEEE,
2013, pp. 48-62.

MITRE, “Mitre’s top 25 cwe,” 2020, https://cwe.mitre.org/top25/archive/
2020/2020_cwe_top25.html.

C. Cimpanu, “Microsoft: 70 percent of all security bugs are
memory safety issues,” 2019, https://www.zdnet.com/article/
microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/.
Google, “https://www.chromium.org/home/chromium-security/memory-
safety,” 2020, https://www.chromium.org/Home/chromium-security/
memory-safety.

N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” ACM Sigplan notices, vol. 42, no. 6,
pp. 89-100, 2007.

K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker,” in 2012 USENIX Annual Tech.
Conf. (ATC’12), 2012, pp. 309-318.

T. Kremenek, “Finding software bugs with the clang static analyzer,”
Apple Inc, 2008.

L. C. Cordeiro, B. Fischer, and J. Marques-Silva, “SMT-based bounded
model checking for embedded ANSI-C software,” IEEE Transactions
on Software Engineering, vol. 38, no. 4, pp. 957-974, 2012.

S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound:
Highly compatible and complete spatial memory safety for c,”
SIGPLAN Not., vol. 44, no. 6, p. 245-258, Jun. 2009. [Online].
Available: https://doi.org/10.1145/1543135.1542504

G. C. Necula, S. McPeak, and W. Weimer, “Ccured: Type-safe
retrofitting of legacy code,” in In 29th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, 2002, pp. 128—139.
P. Wagle, C. Cowan et al., “Stackguard: Simple stack smash protection
for gee,” in Proceedings of the GCC Developers Summit. Citeseer,
2003, pp. 243-255.

N. Burow, X. Zhang, and M. Payer, “Sok: Shining light on shadow
stacks,” in 2019 IEEE Symposium on Security and Privacy (SP). 1EEE,
2019, pp. 985-999.

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Tran. on
Inf. and System Security (TISSEC), vol. 13, no. 1, pp. 1-40, 2009.

M. Castro, M. Costa, and T. Harris, “Securing software by enforcing
data-flow integrity,” in Proceedings of the 7th symposium on Operating
systems design and implementation, 2006, pp. 147-160.

G. Novark and E. D. Berger, “Dieharder: securing the heap,” in Pro-
ceedings of the 17th ACM conference on Computer and communications
security, 2010, pp. 573-584.

S. Silvestro, H. Liu, C. Crosser, Z. Lin, and T. Liu, “Freeguard: A
faster secure heap allocator,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp.
2389-2403.

J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The cheri
capability model: Revisiting risc in an age of risk,” in ACM/IEEE 41st
Int. Symposium on Computer Architecture (ISCA), 2014, pp. 457—468.
0. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer, “Intel
mpx explained: A cross-layer analysis of the intel mpx system stack,”
Proceedings of the ACM on Measurement and Analysis of Computing
Systems, vol. 2, no. 2, pp. 1-30, 2018.

S. Park, S. Lee, W. Xu, H. Moon, and T. Kim, “libmpk: Software
abstraction for intel memory protection keys (intel {MPK}),” in 2019
USENIX Annual Tech. Conf. (USENIX ATC 19), 2019, pp. 241-254.
S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic,
“Cets: Compiler enforced temporal safety for c,” SIGPLAN Not.,
vol. 45, no. 8, p. 31-40, Jun. 2010. [Online]. Available: https:
//doi.org/10.1145/1837855.1806657

M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force vulnerability
discovery. Pearson Education, 2007.

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, And Tools, 2nd ed. Addison-Wesley Longman Publishing
Co., Inc., 2006.

J. C. King, “Symbolic Execution And Program Testing,” Communica-
tions of the ACM, vol. 19, no. 7, pp. 385-394, 1976.

D. Beyer, “Status report on software testing: Test-comp 2021, in
24th International Conference Fundamental Approaches to Software
Engineering (FASE), ser. LNCS, vol. 12649, 2021, pp. 341-357.

M. Y. R. Gadelha, F. R. Monteiro, J. Morse, L. C. Cordeiro, B. Fischer,
and D. A. Nicole, “ESBMC 5.0: an industrial-strength C model checker,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering ASE. ACM, 2018, pp. 888-891.

K. M. Alshmrany, R. S. Menezes, M. R. Gadelha, and L. C. Cordeiro,
“FuSeBMC: A white-box fuzzer for finding security vulnerabilities in
C programs (competition contribution),” in 24th Int. Conf. Fundamental
Approaches to Software Engineering (FASE), ser. LNCS, vol. 12649,
2021, pp. 363-367.

K. M. Alshmrany, M. Aldughaim, A. Bhayat, and L. C. Cordeiro,
“FuSeBMC: An energy-efficient test generator for finding security
vulnerabilities in ¢ programs,” TAP, 2021, awaiting Publication.

H. Rocha, R. Menezes, L. C. Cordeiro, and R. S. Barreto, “Map2check:
Using symbolic execution and fuzzing - (competition contribution),” in
26th Int. Conf. Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), ser. LNCS, vol. 12079, 2020, pp. 403-407.

D. Beyer, “Software verification: 10th comparative evaluation (SV-
COMP 2021),” in 27th Int. Conf. on Tools and Algorithms for Construc-
tion and Analysis of Systems (TACAS), vol. 12652, 2021, pp. 401-422.
——, “Software verification: 10th comparative evaluation (sv-comp
2021),” Tools and Algorithms for the Construction and Analysis of
Systems, vol. 12652, p. 401, 2021.

B.D.J.B.D.C.J.C.N.F. S. W. M. E. N. P. S. Robert N. M. Watson,
Alexander Richardson and P. G. Neumann, “”cheri c/c++ programming
guide, technical report ucam-cl-tr-947”,” Computer Laboratory, Cam-
bridge, Tech. Rep., June 2020.

H. Xia, J. Woodruff, S. Ainsworth, N. W. Filardo, M. Roe, A. Richard-
son, P. Rugg, P. G. Neumann, S. W. Moore, R. N. Watson et al.,
“’cherivoke”: Characterising pointer revocation using cheri capabilities
for temporal memory safety,” in 52nd Annual IEEE/ACM Int. Symposium
on Microarchitecture, 2019, pp. 545-557.

N. W. Filardo, B. F. Gutstein, J. Woodruff, S. Ainsworth, L. Paul-
Trifu, B. Davis, H. Xia, E. T. Napierala, A. Richardson, J. Baldwin
et al., “Cornucopia: Temporal safety for cheri heaps,” in 2020 IEEE
Symposium on Security and Privacy (SP). 1EEE, 2020, pp. 608-625.
D. Beyer and H. Wehrheim, “Verification artifacts in cooperative veri-
fication: Survey and unifying component framework,” in International
Symposium on Leveraging Applications of Formal Methods. Springer,
2020, pp. 143-167.

R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,
D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie et al., “Cheri: A
hybrid capability-system architecture for scalable software compartmen-
talization,” in IEEE Symp. on Security and Privacy, 2015, pp. 20-37.
R. N. Watson, J. Anderson, B. Laurie, and K. Kennaway, “Capsicum:
Practical capabilities for unix.” in USENIX Security Symposium, vol. 46,
2010, p. 2.

C. Reis and S. D. Gribble, “Isolating web programs in modern browser
architectures,” in Proceedings of the 4th ACM European conference on
Computer systems, 2009, pp. 219-232.

R. Nikolaev and G. Back, “Virtuos: An operating system with kernel
virtualization,” in Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, 2013, pp. 116-132.

H. Lefeuvre, V.-A. Badoiu, S. Teodorescu, P. Olivier, T. Mosnoi,
R. Deaconescu, F. Huici, and C. Raiciu, “Flexos: Making os isolation
flexible,” in The 18th Workshop on Hot Topics in Operating Systems
(Hot0S’21), 2021.

V. Costan and S. Devadas, “Intel sgx explained.” JACR Cryptol. ePrint
Arch., vol. 2016, no. 86, pp. 1-118, 2016.

S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive
survey,” ACM Computing Surveys (CSUR), vol. 51, pp. 1-36, 2019.

S. Park, S. Lee, W. Xu, H. Moon, and T. Kim, “libmpk: Software
abstraction for intel memory protection keys (intel {MPK}),” in 2019
USENIX Annual Tech. Conf. (USENIX ATC 19), 2019, pp. 241-254.
A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler, P. Dr-
uschel, and D. Garg, “{ERIM}: Secure, efficient in-process isolation
with protection keys ({MPK}),” in 28th USENIX Security Symposium
(USENIX Security 19), 2019, pp. 1221-1238.

https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.chromium.org/Home/chromium-security/memory-safety
https://www.chromium.org/Home/chromium-security/memory-safety
https://doi.org/10.1145/1543135.1542504
https://doi.org/10.1145/1837855.1806657
https://doi.org/10.1145/1837855.1806657

[44]

[45]

[46]

[47]

[48]

[49]

M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L. Scott, K. Shen,
and M. Marty, “Hodor: Intra-process isolation for high-throughput data
plane libraries,” in USENIX Annual Tech. Conf., 2019, pp. 489-504.
M. Sung, P. Olivier, S. Lankes, and B. Ravindran, “Intra-unikernel
isolation with intel memory protection keys,” in 16th ACM SIGPLAN
Int. Conf. on Virtual Execution Environments, 2020, pp. 143-156.

R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in Proceedings of the fourteenth ACM
symposium on Operating systems principles, 1993, pp. 203-216.

M. Y. R. Gadelha, H. I. Ismail, and L. C. Cordeiro, “Handling loops in
bounded model checking of C programs via k-induction,” Int. J. Softw.
Tools Technol. Transf., vol. 19, no. 1, pp. 97-114, 2017.

M. Y. R. Gadelha, F. R. Monteiro, L. C. Cordeiro, and D. A. Nicole,
“ESBMC v6.0: Verifying C programs using k-induction and invariant
inference - (competition contribution),” in Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), ser. LNCS, vol. 11429,
2019, pp. 209-213.

A. R. Bradley and Z. Manna, The Calculus of Computation: Decision
Procedures with Applications to Verification. ~ Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2007.

	Introduction
	Memory Protection Techniques
	Runtime Analysis
	Static Analysis

	Experimental Analysis
	Programs with No Required Input
	Programs Requiring Input
	Vulnerability Analysis
	Summary

	Proposed Hybrid Framework
	Isolating Libraries
	Certifying the Removal of Assertions
	Safe under Assumptions
	Static Analysis to Support Capability Revocation

	Conclusion
	References

