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Abstract

This paper proposes a novel approach to forecast congestions in high-voltage grids with high shares of distributed photovoltaic

(PV) infeed. The approach is based on a physical PV model using intra-day numerical weather prediction (NWP) input

data. Subsequently, probabilistic forecasts are generated based on Kernel density estimators (KDE) and Copula, describing the

multivariate spatial dependencies for the marginal distributions of forecasting and approximation errors. Finally, a probabilistic

power flow (PPF) using a linearized AC version is proposed, combining the benefits of high accuracy with high computational

performance. To assess and quantify the overall advantages of this approach, a case study is carried out for an existing power

system.
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Abstract--The integration of increasing amounts of volatile 

renewable energy sources (RES) induces a growing demand for 

reliable forecasts of congestion to support renewable curtailment 

and redispatch decisions. Therefore, this paper proposes a novel 

approach to forecast congestions in high-voltage grids with high 

shares of distributed photovoltaic (PV) infeed. This approach is 

based on a physical PV model using intra-day numerical weather 

prediction (NWP) input data. Subsequently, probabilistic 

forecasts are generated based on Kernel density estimators (KDE) 

and Copula, describing the multivariate spatial dependencies for 

the marginal distributions of forecasting and approximation 

errors. Finally, a probabilistic power flow (PPF) using a linearized 

AC version is proposed, combining the benefits of high accuracy 

with high computational performance. To assess and quantify the 

overall advantages of this approach, a case study is carried out for 

an existing power system. To benchmark the proposed approach 

comparisons to standard multivariate normal (MVN) 

distributions (with and without correlations), as well as to AC and 

DC PPFs are compared. Non-parametric probabilistic metrics are 

used for evaluation, comparing accuracy and precision of 

individual marginal distributions, and taking the spatial 

dependency between forecasts at different locations into account. 

 
Index Terms—Congestion, Forecast, Photovoltaic, Copula, 

Spatial Dependency, Probabilistic Power Flow 

I.  INTRODUCTION 

VER the past decades the infeed from renewable energy 

sources into electric power systems all over the world has 

progressed rapidly. For instance, photovoltaic (PV) became one 

of the leading technologies in Germany, comprising more than 

49 GW of installed capacity by 2019. High shares of RES 

contribute obviously to reach decarbonization goals. However, 

most of the RES are decentralized, rather small-scale units, 

connected to the lower voltage levels and providing highly 

volatile infeed. Therefore, system operators are presently facing 

new challenges, especially, in terms of operational tasks such 

as congestion management. One appropriate support to system 

operators to handle these challenges are detailed forecasts 

focusing not only on the infeed patterns but also on the resulting 

power flows in the grid. 
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In terms of forecasting PV generation, various methods 

have been proposed over the past years focusing on different 

application areas [1]. Generally, those methods can be divided 

into deterministic and probabilistic forecasts [2]. In contrast to 

deterministic models, probabilistic forecasts contain additional 

information on the uncertainty of the prediction. However, 

when considering probabilistic forecasts of PV generation 

physical, statistical and hybrid approaches are distinguished, 

using either parametric or non-parametric techniques [2]. In this 

context, statistical approaches for PV modelling provide 

accurate and reliable results, especially when detailed 

information on individual PV plants is not available but 

metering data instead [3]. However, in terms of power system 

operations, e.g., when considering renewable curtailment as 

part of the system operator’s congestion management, detailed 

information on individual RES units is required [4]. Hence, 

physical PV models are beneficial for the system operator, 

predicting the individual probabilistic state of the relevant PV 

units. 

These PV forecasts enable system operators to ensure a 

stable operation of the corresponding power system, i.e., to 

anticipate congestions before their occurrence and take 

countermeasures in advance. In European electricity markets 

these countermeasures comprise in particular redispatching, 

countertrading and renewable curtailment of renewable 

energies [5]. The U.S. wholesale electricity markets instead rely 

on locational marginal pricing (LMP), i.e., taking congestions 

into account during market clearing [6]. Regardless of the 

regulatory framework and market design, it is essential for 

system operators to predict potential congestions at an early 

stage, taking the increasing uncertainties into account, in order 

to derive the necessary countermeasures. 

In this context the probabilistic power flow (PPF) offers the 

possibility to take those uncertainties, e.g., resulting from 

probabilistic forecasts or network approximations, into account. 

In recent years, several methods for PPF have been developed 

and investigated in detail, as discussed by Chen et al. [7]. 

Generally, present investigations in this context focus on new 

mathematical approaches [8], network outages [9], power 
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system stability [10] and computational efficiency [11]. In 

terms of modelling stochastic dependencies of forecasting 

errors and uncertainties [12], either spatial [13] or temporal 

dependencies are considered [14]. In addition, it is rather 

common for power system applications to assume multivariate 

normal distributions when considering such dependencies [15, 

16]. 

Within this paper, a novel approach is proposed for 

probabilistic congestion forecasting in the presence of large 

amounts of renewables, in occurrence PV systems. Thereby a 

hybrid approach is developed to derive multivariate 

probabilistic RES generation forecasts. In a first step a 

deterministic PV forecast is carried out using numerical 

weather prediction (NWP) data, based on a physical PV model 

with pre-processing of site-specific parameters (cf. Section II). 

Subsequently, the marginal distributions of the forecasting and 

approximation errors are simulated (cf. Section III) using kernel 

density estimators (KDE), after introducing a concept for 

eliminating the heteroscedasticity resulting from the temporal 

dependence. Furthermore, a copula approach is used to model 

the spatial dependence between those errors to cope for the 

resulting uncertainty. Therefore, different copulas, namely the 

Gaussian and Student’s t, are applied hereinafter and 

benchmarked to the assumption of multivariate normal 

distribution (with and without spatial dependencies). Finally, 

the PPF is specified (cf. Section IV), including empirically 

validated shift factors for power imbalances to boundary nodes. 

To meet real-world performance requirements, a fully 

linearized version is designed that is benchmarked (cf. Section 

V) to the AC-PPF and the commonly used DC-PPF in terms of 

computational efficiency and accuracy (cf. Section VI). 

II.  PHOTOVOLTAIC POWER FORECASTING 

To forecast the net power injection of photovoltaic (PV) 

units connected to an electric power system, the physical PV 

model introduced by Schinke-Nendza et al. [17] is taken as 

basis. This model uses site-specific hourly NWP data as an 

input and provides hourly forecasts of the power generation of 

individual PV units. The structure of the physical PV model 

used by [17] is depicted in Fig. 1. Using site-specific hourly 

NWP data, the model provides a rather high accuracy on a 

single plant level compared to other approaches, e.g., [18]. 

However, empirical analyses indicate that available data 

regarding some of the model parameters, such as the nominal 

power and the panel orientation of PV units, may be erroneous. 

 
Fig. 1.  Structure of the physical PV model used within this paper. 

Therefore, a nonlinear least squares (NLS) regression is 

used here to obtain the best possible fit of the physical model, 

instead of using a statistical post processing as in [17]. 

III.  MODELING THE SPATIAL INTERDEPENDENCE OF 

FORECASTING ERRORS 

The cumulative net power injection at a certain feed-in 

location, i.e., a node of the underlying power system, can be 

obtained by aggregation of multiple PV power forecasts. The 

relative forecasting error of the PV net power injection at feed-

in locations 𝑘 ∈ 𝒦 = {1,… , 𝐾} during timestep 𝑡 is defined as: 

 ∆𝑝𝑡,𝑘 =
𝑃𝑡,𝑘 − 𝑃̂𝑡,𝑘
𝑃0,𝑘

 (1) 

where 𝑃̂𝑡,𝑘 is the deterministic forecast of the physical model 

using NWP data, 𝑃0,𝑘 is the cumulative rated power, and 𝑃𝑡,𝑘 is 

the actual measured power of the PV units at feed-in location 𝑘. 

A.  Upscaling the PV forecasts 

Considering feed-in location 𝑘, there are |𝑁𝑘| PV units 𝑛 ∈
𝑁𝑘, connected to this node, comprising an actual rated power of 

𝑃0,𝑘. In practice, the available dataset (for measurement and 

NWP data) yet commonly does not include all |𝑁𝑘| PV units, 

but rather a subset 𝑁𝑘
′  of |𝑁𝑘

′ | PV units (with |𝑁𝑘
′| ≤ |𝑁𝑘| and 

𝑃0,𝑘
′ ≤ 𝑃0,𝑘). Therefore, the deterministic forecast 𝑃̂𝑘 of the 

physical model as well as the forecasting error ∆𝑝𝑡,𝑘 need to be 

upscaled to receive reliable forecasts in terms of network 

congestions, taking all connected PV units into account. In 

terms of the deterministic forecast, the upscaling is carried out 

using a linear upscaling coefficient 𝑎𝑘,𝑃0  defined as the ratio of 

the actual cumulative rated power 𝑃0,𝑘 to the rated power of the 

subset 𝑃0,𝑘
′ : 

 𝑃̂𝑡,𝑘 = 𝑃̂𝑡,𝑘
′
𝑃0,𝑘
𝑃0,𝑘
′ = 𝑃̂𝑡,k

′ 𝑎𝑘,𝑃0 (2) 

Considering the relative forecasting error ∆𝑝𝑡,𝑘 at feed-in 

location 𝑘, the question arises to which degree the individual 

forecasting errors of the single PV units are stochastically 

dependent. Our empirical analyses indicate the linear upscaling 

coefficient to perform the best, i.e., assuming a full correlation 

of the forecasting errors of the PV units located at a certain 

node. This assumption of fully correlated forecasting errors 

outperforms both a correlation-based upscaling and the 

independency assumption. 

B.  Elimination of Bias and Heteroscedasticity 

To reduce the modelling effort in terms of the copulas and 

the complexity of the marginal distributions, any bias of the 

forecasts possibly arising from the physical model is quantified 

and eliminated for each hour separately. Therefore, the 

forecasting error is hereinafter assumed to be unbiased (notated 

as ∆𝑝𝑡,𝑘). Yet, a specific heteroscedasticity, i.e., the time 

dependence of the variance, may still be observed in the relative 

forecasting errors ∆𝑝𝑡,𝑘, leading to higher deviations during the 

midday hours, but lower deviations during the morning and 

evening hours [14]. Therefore, a novel approach for reducing 

the heteroscedasticity of the forecasting error is introduced, 

using the extraterrestrial irradiance as a basis for normalization, 

following [19]. The unbiased normalized forecasting error 𝜀𝑡̃,𝑘 

is then obtained as follows: 
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 𝜀𝑡̃,𝑘 = ∆𝑝̃𝑡,𝑘
𝐼𝑡̅,0
𝐼𝑡,𝑒𝑥

≜
𝑃𝑡,𝑘 − 𝑃̃𝑡,𝑘
𝑃0,𝑘

𝐼𝑡̅,0
𝐼𝑡,𝑒𝑥

 (3) 

The spatial dependence for all feed-in locations is hence 

considered hereinafter based on the marginal distributions of 𝜀𝑡̃,𝑘 

using a copula approach. 

C.  Spatial Dependence Structure 

The interdependence of the forecasting errors at multiple 

feed-in locations 𝑘 ∈ 𝒦 = {1,… , 𝐾} can be described using a 

joint distribution function 𝐹(𝜀1̃, … , 𝜀𝐾̃). According to [20] this 

function may also be written as follows: 

 𝐹(𝜀1̃, … , 𝜀𝐾̃) = 𝐶(𝐹1(𝜀1̃),… , 𝐹𝐾(𝜀𝐾̃)) (4) 

where 𝐶: [0,1]𝐾 → [0,1] represents a copula and 𝐹𝑘 describes 

the marginal distribution (cumulative distribution function, 

CDF) of the forecasting error at feed-in location 𝑘. In this 

context, the elements of the input vector can be written as: 

 𝑢𝑘 = 𝐹𝑘(𝜀𝑘̃) (5) 

whereby the elements 𝑢𝑘~𝑈(0,1) are standard uniformly 

distributed. By means of the inverse probability function 𝐹𝑘
−1, 

the copula may be expressed as follows: 

 𝐶(𝑢1, … , 𝑢𝐾) = 𝐹(𝐹1
−1(𝑢1),… , 𝐹𝐾

−1(𝑢𝐾)) (6) 

for all feed-in locations 𝑘 ∈ 𝒦. 

    1)  Gaussian Copula 

The spatial dependence structure of the forecasting errors at 

multiple locations can be modelled, for instance using a 

Gaussian copula, see [21]. Following [22], the copula 

𝐶𝐺𝑎𝑢𝑠𝑠: [0,1]
𝐾 → [0,1] is described as the multivariate normal 

distribution 𝒩(𝟎, 𝑹) in ℝ𝐾 with the density following to: 

 𝒄𝐺𝑎𝑢𝑠𝑠(𝒖|𝑹) =
1

√det𝑹
exp (−

1

2
𝒙𝑇(𝑹−1 − 𝑰)𝒙) (7) 

where 𝑹 ∈ ℝ𝐾×𝐾 is a correlation matrix with diagonal elements 

equal to one, 𝑰 ∈ ℝ𝐾×𝐾 the identity matrix, 𝒙 =

(𝛷−1(𝑢1), … , 𝛷
−1(𝑢𝐾))

𝑇
 the vector of inverse cumulative 

standard normal distribution 𝛷−1, and 𝑢𝑘 the input vector of the 

Gaussian copula according to (5). The correlation matrix can be 

estimated approximately, following [22], giving an estimator 𝑹̂ 

close to the maximum likelihood estimation (MLE). 

    2)  Student’s t Copula 

The spatial interrelation of the forecasting errors at multiple 

locations can also be modelled using a t copula. Following [23], 

this type of copula surpasses symmetrical copulas, such as 

Gaussian copulas, when modelling tail-dependencies of the 

underlying marginal distributions. Based on the multivariate 

Student’s t distribution for a set of random variables 𝒙 =
(𝑥1, … , 𝑥𝐾)

𝑇 ∈ ℝ𝐾, written as 𝒙~𝑡𝐾,𝜈(𝟎, 𝑹), with 𝜈 degrees of 

freedom, a mean vector equal to 𝟎 and a correlation matrix 𝑹 

as introduced above, the density of the t copula is given by: 

 

𝒄𝑡(𝒖|𝑹, 𝜈) =
Γ (
𝜈
2
)
𝐾−1

Γ(
𝜈 + 𝐾
2

)

Γ (
𝜈 + 1
2
)
𝐾

√det𝑹

∙ 

∙ (1 +
𝒙𝑇𝑹−1𝒙

𝜈
)

−
𝜈+𝐾
2

∏(1+
𝑥𝑘
2

𝜈
)

𝜈+1
2

𝐾

𝑘=1

 

(8) 

where Γ(𝑎)is the gamma function, 𝒙 the input vector of the t 

copula with elements 𝑥𝑘 = 𝐹𝑡𝑣
−1 (𝑢𝑘) for 𝑘 ∈ 𝒦 and 𝑢𝑘 

represents the CDF value of the forecasting error at location 𝑘 ∈
𝒦 according to equation (5), see [23]. Following [22], the 

correlation matrix estimator 𝑹̂ can be obtained using Kendall’s 

tau estimates in a first step. In a second step, the remaining 

parameter 𝜈, i.e., the degree of freedoms, can be estimated by 

fixing 𝑹̂ and applying an MLE to maximize the log-likelihood 

function for the pseudo-sample, which is defined as 𝒙𝒏 =

(𝐹𝑡𝑣
−1(𝑢𝑛,1) , … , 𝐹𝑡𝑣

−1(𝑢𝑛,𝐾) )
𝑇
 with 𝑛 ∈ {1, … , 𝑁} and 𝑁 

observations: 

 ln 𝐿(𝜈|𝑹̂, 𝒙)  =∑(ln𝑓𝑡𝐾,𝜈(𝒙𝒏|𝑹̂) −∑ln 𝑓𝑡𝜈(𝑥𝑘,𝑛)

𝐾

𝑘=1

)

𝑁

𝑛=1

 (9) 

D.  Marginal Distributions 

The marginal distributions 𝐹𝑘(𝜀𝑘̃) of the forecast errors at 

the feed-in locations 𝑘 ∈  𝒦, can be estimated using a non-

parametric approach. Subsequently a kernel density estimation 

(KDE) is applied to the marginal distributions, as proposed by 

Chai et al. for the forecasting errors of PV generation [14]. 

Using the sample of the forecasting error 𝜺̃𝒌 = (𝜀𝑘̃,1, … , 𝜀𝑘̃,𝑁) at 

location 𝑘 ∈  𝒦 with 𝑛 ∈ {1, … , 𝑁} and 𝑁 observations, the 

kernel density estimator using a gauss kernel is defined as: 

 𝑓̂𝑘(𝑥) =
1

𝑁ℎ𝑘
∑𝜙(

𝑥 − 𝜀𝑘̃,𝑛
ℎ𝑘

)

𝑁

𝑛=1

 (10) 

where 𝜙 is the density of the standard normal distribution, 𝜀𝑘̃,𝑛 

corresponds to the mean of the 𝑛-th kernel function and ℎ𝑘 is 

the bandwidth of the KDE [24]. The bandwidth ℎ𝑘, representing 

a free parameter of the kernel density estimation, can be 

determined analytically, for instance using the normal 

distribution approximation following [25]. In this case the 

optimal estimator of the bandwidth can be obtained as: 

 ℎ̂𝑘 = (
4

3𝑁
 )

1
5
√
𝜺̃𝒌
 𝑻 𝜺̃𝒌
𝑁 − 1

. (11) 

in case that the forecasting errors are unbiased. 

IV.  PROBABILISTIC POWER FLOW ANALYSIS 

A network consisting of 𝑁𝐵 nodes (not necessarily equal to 

the number of feed-in locations 𝐾) and 𝑀 lines is investigated, 

assuming a perfectly balanced power system, hence focussing 

on a single-phase representation. To determine the power flow 

along the transmission lines of the network, the equations below 

can be used: 

 𝑝𝑖 = 𝑣𝑖∑𝑣𝑗(𝑔𝑖,𝑗 cos 𝛿𝑖,𝑗 + 𝑏𝑖,𝑗 sin𝛿𝑖,𝑗)

𝑁𝐵

𝑗=1

, 𝑖 ∈ 𝑁𝐵 (12) 

 𝑞𝑖 = 𝑣𝑖∑𝑣𝑗(𝑔𝑗,𝑖 sin𝛿𝑖,𝑗 − 𝑏𝑖,𝑗 cos 𝛿𝑖,𝑗)

𝑁𝐵

𝑗=1

, 𝑖 ∈ 𝑁𝐵 (13) 

where 𝑝𝑖  is the net active power injection and 𝑞𝑖 is the net 

reactive power injection, both at node 𝑖 ∈ 𝑁𝐵, 𝑣𝑗 is the voltage 

magnitude, 𝛿𝑖,𝑗 = 𝛿𝑖 − 𝛿𝑗 is the difference of voltage angles 

between node 𝑖 and node 𝑗, and 𝑦𝑖,𝑗 = 𝑔𝑖,𝑗 + 𝑏𝑖,𝑗 is the admittance 

of the line from node 𝑖 to node 𝑗, consisting of the conductance 

𝑔𝑖,𝑗 and the susceptance 𝑏𝑖,𝑗, following [7]. In addition, the line 

parameters are assumed to be time-independent and to not vary 

with the weather conditions (e.g., temperature, wind speed etc.).  
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A.  Network Congestions 

The constraints in a power system for steady-state operation 

typically depend on the values of the current magnitudes 𝑖𝑚 on 

the transmission lines 𝑚 ∈ ℳ and the voltage magnitudes 𝑣𝑗 at 

the nodes 𝑗 ∈ 𝑁𝐵. Assuming the voltages to be uncritical, 

congestions in a power system exclusively depend on the 

transmission line currents. Therefore, the following constraints 

needs to hold: 

 
𝑖𝑚
𝑚𝑎𝑥 ≥ 𝑖𝑚 = √𝑔𝑗,𝑙

2 + 𝑏𝑗,𝑙
2

⏟      
𝑦𝑗,𝑙

√𝑣𝑗
2 + 𝑣𝑙

2 − 2𝑣𝑗𝑣𝑙 cos 𝜃𝑗,𝑙 (14) 

whereby the maximum permissible current 𝑖𝑚
𝑚𝑎𝑥 of line 𝑚 may 

contain some additional security margins. For ease of notation, 

the time index 𝑡 is dropped here and subsequently. 

B.  Modelling Boundary Nodes to External Networks 

To investigate the impact of the forecasting error on the 

congestions in an interconnected network, the effects of 

adjacent networks need to be considered. In case of a 

forecasting error different from zero, the power imbalance is at 

least partly shifted to the boundary nodes 𝑏 ∈ 𝑁𝑇  connecting 

the considered network with external networks. Therefore, a 

multivariate linear regression (MVLR) on available 

measurement data is proposed in this paper. Building on the 

adjustment matrix introduced in [26], it models the dependency 

of power deviations at the boundary nodes from the inner nodes 

that connect decentralized PV units and loads. The MVLR is 

specified as follows: 

 ∆𝑃𝑏 = ∑𝛽𝑏,𝑘∆𝑃𝑘
𝑘∈𝒦

+ 𝜀𝑏 (15) 

where 𝛽𝑏,𝑘 is the adjustment factor at boundary node 𝑏 given 

changes at inner node 𝑘. The adjustment matrix 𝓑 summarizes 

the shifts in power flows at the boundary nodes as a (linear) 

function of the changes at the infeed and load nodes: 

 
(
∆𝑃1
⋮
∆𝑃𝐵

) = (

𝛽1,1 ⋯ 𝛽1,𝐾
⋮ ⋱ ⋮
𝛽𝐵,1 ⋯ 𝛽𝐵,𝐾

)

⏟            
𝓑

(
∆𝑃1
⋮
∆𝑃𝐾

) 
(16) 

Furthermore, the error of this approximation is denoted as 

𝜀𝑏 and described by a time-invariant marginal distribution 

𝐹𝑏(𝜀𝑏). The overall uncertainty 𝜉𝑏 at boundary node 𝑏 given a 

balanced power flow schedule and some PV forecast errors 𝜀𝑘̃ 

can then be described as a superposition of the approximation 

error 𝜀𝑏 and the forecasting errors of the feed-in locations 𝜀𝑘̃ 

weighted by the adjustment factors, respectively: 

 𝜉𝑏 = 𝜀𝑏 + (𝛽𝑏,1 ⋯ 𝛽𝑏,𝐾) (

𝜀1̃𝑃0,1
⋮

𝜀𝐾̃𝑃0,𝐾

)
𝐼𝑒𝑥
𝐼0

 (17) 

To estimate marginal distributions of the approximation 

error 𝜀𝑏 , the changes in power balances between two 

consecutive timesteps are considered. In the event of 

forecasting errors, the same adjustment matrix may be used to 

describe the corresponding changes in the boundary power 

flows, assuming the initial power flow to be known perfectly 

for the expected values of the PV power injection. The 

additional approximation error 𝜀𝑡,𝑏  then comes on top of the 

forecasting errors. Since both types of errors have different 

sources and are derived from different datasets (approximation 

error: time series of observed power flow changes; forecasting 

error: mismatches between prediction and measurement for a 

certain time step) the errors are appropriately deemed to be 

stochastically independent. 

C.  Linearized Power Flow 

The AC power flow defined by equations (12) and (13) 

describes a non-linear problem due to the quadratic dependence 

on the voltage magnitudes and the sinusoidal dependence on the 

voltage angles. To substantially improve the computation time 

of the PPF, a linearized AC power flow is used hereinafter. 

    1)  Network Equations 

In this context, a certain state of operation in an upcoming 

interval (index: *) is estimated based on the expected initial 

state of operation (index: 0), using a Taylor series: 

 (
𝜽∗

𝒗∗
) ≈ (

𝜽𝟎
𝒗𝟎
) + 𝓙−1 ((

𝒑∗

𝒒∗
) − (

𝒑𝟎
𝒒𝟎
)) (18) 

where 𝓙 is the Jacobian matrix, consisting of the gradients of 

the active and reactive power differentiated with respect to the 

voltage angle 𝜃 and the voltage magnitude 𝑣, see [8]:  

 
(
∆𝒑
∆𝒒
) ≈ (

𝛁𝜽𝒑 𝛁𝒗𝒑
𝛁𝜽𝒒 𝛁𝒗𝒒

)
⏟        

𝓙

(
∆𝜽
∆𝒗
) 

(19) 

Hence the inverse Jacobian matrix can be used to determine the 

change in the voltage magnitudes ∆𝒗 and angles ∆𝜽 following 

a change in the active and reactive powers ∆𝒑 and ∆𝒒. 

    2)  Line Current 

In addition, also equation (18) can be linearized for the 

initial state of operation, using the expected values of net power 

injections, as described above. The current 𝑖𝑚 on transmission 

line 𝑚 ∈ ℳ depends on the voltage magnitudes and angles at 

the beginning of the line 𝑗 ∈ 𝑁𝐵 and the end of the line 𝑙 ∈ 𝑁𝐵 

(written as 𝑗 ↔ 𝑙, where 𝑗 ≠ 𝑙 holds). The first-order Taylor 

approximation for the current on line 𝑚 ∈ ℳ writes 

 𝑖𝑚 ≈ 𝑖𝑚,0 + ∇𝑓𝑚(𝒙𝟎)(𝒙𝟎 − 𝒙
∗) (20) 

with 𝑓𝑚(𝒙) = 𝑦𝑗,𝑙√𝑣𝑗
2 + 𝑣𝑙

2 − 2𝑣𝑗𝑣𝑙 cos(𝜃𝑗 − 𝜃𝑙) and the vector of input 

variables 𝒙 = (𝑣𝑗 , 𝑣𝑙 , 𝜃𝑗 , 𝜃𝑙)
𝑇
. Using two 𝑀 ×𝑁𝐵 matrices 𝑫𝜽 and 

𝑫𝒗, the linear approximation of equation (20) may be rewritten 

: 

 𝒊∗ ≈ 𝒊𝟎 + (𝑫𝜽 𝑫𝒗) ((
𝜽∗

𝒗∗
) − (

𝜽𝟎
𝒗𝟎
)), (21) 

Where the elements 𝑑𝑚,𝑗
𝜃  of the matrix 𝑫 are defined as 

𝑑𝑚,𝑗
𝜃  = {

𝜕𝑓𝑚(𝒙𝟎)

𝜕𝜃𝑗
, ∀ 𝑚 ∈ {(𝑗, 𝑙)|(𝑗, 𝑙) ∈ 𝑁𝐵

2\∧ 𝑗 ↔ 𝑙}

0, otherwise

 (22) 

and the elements 𝑑𝑚,𝑛
𝑣  of the matrix 𝑫𝒗 are defined as 

 

𝑑𝑚,𝑛
𝑣  = {

𝜕𝑓𝑚(𝒙𝟎)

𝜕𝑣𝑗
, ∀ 𝑚 ∈ {(𝑗, 𝑙)|(𝑗, 𝑙) ∈ 𝑁𝐵

2\∧ 𝑗 ↔ 𝑙}

0, otherwise

 

 

(23) 

    3)  Probabilistic Power Flow 

Assuming the loads in the power system to be forecasted 

with a high accuracy, the uncertainties in the net power 

injection of the PV units ∆𝑝𝑃𝑉,𝑘 at feed-in location 𝑘 ∈ 𝒦 are 

larger than the uncertainties in the load ∆𝑝𝐿,𝑘: ∆𝑝𝑃𝑉,𝑘  ≫ ∆𝑝𝐿,𝑘.. 

Furthermore, it is assumed that most of the considered PV units 
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are located in the medium and low voltage levels (without any 

reactive power management as described in [27]), hence not 

affecting the reactive power exchange between voltage levels. 

Therefore, the change in the line currents ∆𝒊 =  𝒊∗ − 𝒊𝟎 depends 

on the changes of the net power injection of the PV units, i.e., 

∆𝑝𝑃𝑉,𝑘 = 𝑝𝑃𝑉
∗ − 𝑝𝑃𝑉,0 for 𝑘 ∈ 𝒦, exclusively. Hence, the 

overall linearized equations for obtaining the transmission line 

currents based on equations (18) and (21) can be formulated as: 

 𝒊∗ = 𝒊𝟎 + (𝑨𝜽 𝑨𝒗) (
𝓙𝟏𝟏

−1

𝓙𝟐𝟏
−1)(𝒑𝑷𝑽

∗ − 𝒑𝑷𝑽,𝟎) (24) 

with the inverse Jacobian matrix being segmented into the four 

𝑁𝐵 × 𝑁𝐵 matrices 𝓙𝟏𝟏
−1 to 𝓙𝟐𝟐

−1: 

 𝓙−1 = (
𝓙𝟏𝟏

−1 𝓙𝟏𝟐
−1

𝓙𝟐𝟏
−1 𝓙𝟐𝟐

−1) (25) 

The problem of solving multiple non-linear equations thus 

becomes linear and the solution is obtained directly through 

matrix operations on the change of the active power net 

injection of the PV units at the different feed-in locations. The 

PPF then is carried out using the Monte Carlo simulation 

introduced below. 

D.  Monte Carlo Simulation 

Within this paper a Monte Carlo simulation (MCS) is 

proposed, following [28]. Hereinafter the MCS is used to 

stochastically predict network congestions by applying the 

probabilistic forecasts of the PV generation as input variables 

to the power flow analysis. Since finding a closed-form 

analytical solution for the given mathematical problem may 

either not be feasible or lead to an over-sophisticated solution, 

the application of the Monte Carlo method is deemed more 

appropriate, relying on the central limit theorem and the law of 

large numbers [28]. In the application, the MCS will be applied 

to all alternatives: The AC power flow, the linearized AC power 

flow and the DC power flow. Finally, the different approaches 

are compared using the performance metrics and benchmark 

model described in the following section, to evaluate the 

improvements of the overall approach. 

V.  PERFORMANCE MEASUREMENT 

A.  Probabilistic Metrics 

To evaluate the goodness of fit of the spatial dependency 

and to assess the accuracy of multivariate forecasting models 

predicting the D-dimensional variable 𝑧 for a certain timestep t, 

there are two commonly used probabilistic measures: The 

energy score and the variogram-based score [21]. 

    1)  Energy Score 

The energy score (ES) represents a proper multivariate 

generalization of the univariate continuous ranked probability 

score and is applicable to evaluate the ensembles of forecasts of 

the variable 𝒛𝒕 = (𝜃𝑡,1, … , 𝜃𝑡,𝐷)
𝑇
: 

 𝐸𝑆𝑡
(𝒛) =

1

𝑁𝑆
∑‖𝒛𝒕 − 𝒛̂𝒕

(𝑛) ‖
2
−

1

2𝑁𝑆
2∑∑‖𝒛̂𝒕

(𝑖) − 𝒛̂𝒕
(𝑗)
 ‖
2

𝑁𝑆

𝑗=1

𝑁𝑆

𝑖=1

𝑁𝑆

𝑛=1

 (26) 

where 𝑁𝑆 describes the sample size and 𝒛̂𝒕
(𝑛) is the vector of 

forecasts for sample 𝑛. The ES is a negative scoring rule; hence, 

lower values indicate a higher forecasting accuracy. However, 

investigations of Scheurer and Hamill [29] have shown that the 

ES is not adequately sensitive to incorrectly specified 

correlations of multivariate forecasts. It is worth mentioning 

that the ES is able to detect mean-biased forecasts correctly, but 

it is not able to indicate incorrect dependency structures and 

false variances clearly [29]. 

    2)  Variogram-Based Score 

Especially for evaluating the spatial dependence structure 

and the spread of multivariate forecasts for the D-dimensional 

variable 𝜃, the variogram-based score (VS), according to [29], 

is considered within this paper as a proper scoring rule: 

 𝑉𝑆𝑡
(𝒛) =∑∑𝑤𝑖𝑗 (

1

𝑁𝑆
∑|𝑧̂𝑡,𝑖

(𝑛) − 𝑧̂𝑡,𝑗
(𝑛)
|
𝛾

𝑁𝑆

𝑛=1

− |𝑧𝑡,𝑖 − 𝑧𝑡,𝑗|
𝛾
)

𝐷

𝑗=1

𝐷

𝑖=1

2

 (27) 

where 𝛾 is the order of the VS (where [29] proposes 0.5 for 

accurate results) and 𝑤𝑗,𝑙 is a weighting factor. Just as the ES, 

this scoring rule is also negative oriented; hence, lower values 

indicate a higher forecasting accuracy. 

    3)  Diebold-Mariano Test 

In addition, the Diebold-Mariano (DM) test can be carried 

out on VS and ES, according to [30], for testing the null 

hypothesis that the performance of two considered models is 

equal, assuming a standard normal distribution to hold for the 

test statistic, i.e., 𝑡𝐷𝑀~𝒩(0,1). For a given the significance 

level α, the DM test statistic furthermore indicates the preferred 

model [30]. 

B.  Benchmark Model 

Since the probabilistic performance metrics provide a 

comparative assessment of different models, a simple 

benchmark model is introduced hereinafter to assess and 

quantify the improvement resulting from the overall approach 

introduced in the sections above. 

    1)  Multivariate Normal Distribution 

As a simplified benchmark model, a multivariate normal 

distribution (MVN) is introduced, following [21]. This allows 

to identify the benefits of applying the more complex and 

numerically demanding copula approach for modelling the 

forecasting errors at multiple feed-in locations and their spatial 

dependences. A further simplification is to assume the 

forecasting errors of the multiple feed-in locations to be 

spatially independent. For both approaches (with and without 

spatial dependence) the relative forecast errors ∆𝑝𝑘 can be 

described as ∆𝒑~ℳ𝒱𝒩(𝝁𝒑, 𝚺𝒑). Hence, for each feed-in 

location and each hour a set of parameters exists: Whereas the 

mean relative forecasting error 𝜇𝑝,𝑘 should be zero for unbiased 

forecasts, the variance of the forecasting error 𝜎𝑝,𝑘
2  and the 

covariances to the other feed-in locations are summarized in the 

variance-covariance matrix 𝚺𝒑. When neglecting the spatial 

dependence between the forecasting errors in the second 

benchmark, non-diagonal elements become zero. 

    2)  DC Power Flow 

The DC power flow is based on the assumption that the 

voltages at all nodes 𝑗 and 𝑙 are close to their nominal value, the 

phase angle differences 𝜃𝑗,𝑙 are small and losses can be 

neglected, as described in [6]. Therefore, the relation between 

nodal net power injections 𝒑𝑵𝑩 and the power flow across the 
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considered transmission lines can be described using the power 

transfer distribution factor (PTDF) matrix 𝑯: 

 𝒑𝑴 = 𝑯 𝒑𝑵𝑩 (28) 

Based on the previously introduced assumptions 𝒊𝑴 = 𝒑𝑴 

holds for per unit values. 

VI.  APPLICATION 

Within this paper an existing power system on the high voltage 

level (110 kV) is considered as a case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

study, see Fig. 2. This network consists of 18 buses and 17 

nodes, of which 12 nodes represent PV feed-in locations, 

accounting for an installed capacity of 527.5 MW. The nodes 

of the considered power system are serially numbered (1 to 17), 

whereby the boundary nodes connecting to other networks 

(nodes 4, 6, 14 and 17) are highlighted with arrows. For the 

power system, measurement data for each node and each 

transmission line are available in a quarter-hourly temporal 

solution for one year (here: 2017), i.e., voltages, active and 

reactive power. Regarding the net power injection of the PV 

units, measurement data of the active power is available for a 

sample of PV units comprising 156.2 MW of installed capacity, 

see Table I. 

 
Fig. 2.  Investigated segment of the high voltage power system. 

TABLE I 
DATA OF AVAILABLE PV UNITS IN SAMPLE AND TOTAL 

      

 Node 
No. 

Sample Power 
(in MW) 

No. of units 
in sample 

Total Power 
(in MW) 

 

 1 3.30 4 27.16  

 2 18.44 10 46.91  
 5 14.23 19 64.02  

 6 19.49 12 59.03  

 7 25.44 6 37.13  
 9 1.58 5 40.87  

 10 5.34 3 30.42  

 12 16.25 9 41.82  
 13 10.68 3 18.47  

 14 14.09 4 45.29  

 15 18.01 11 68.13  

 16 9.35 7 48.25  
      

The measurement data is available in an hourly temporal 

solution for three months of three years (May to July, 2015 to 

2017). For each PV unit, hourly NWP data (global irradiance 

and temperature) is available in a forecast horizon of 1-3 hours, 

i.e., the forecasts are updated in intervals of 3 hours and contain 

information on the next couple of hours. 

A.  Evaluation Methodology 

In a first step, a reference current is calculated for each line 

based on the available measurement data. Furthermore, the 

load, the grid voltages and the transfer power to external 

networks are assumed to be known exactly, i.e., the power 

transfer at boundary nodes solely varies due to forecasting and 

related approximation errors. All models have been trained on 

the available data of the years 2015 and 2016. In addition, the 

adjustment matrix and the approximation error for the boundary 

nodes are determined for January to April 2017 exclusively. 

Hence, an out-of-sample test of all models is carried out for 

2,015 hours of May to July 2017. The MCS hereinafter is based 

on a sample size of 5,000. Subsequently, the results are 

evaluated as follows: the KDE-based gaussian copula (GC), the 

KDE-based student’s-t copula (TC), the multivariate normal 

distribution with correlation (MVN) and without correlation 

(UMVN) are combined with the different PPF approaches, 

namely the linearized AC (LAC) PPF as well as AC and DC 

PPF, as introduced above. 

B.  Results 

In the following, the results of the case study introduced 

above are presented. Therefore, the sensitivity to the 

probabilistic PV forecasts, the upscaling method of the 

forecasting errors, the power flow method and the 

approximation error are considered. In addition, the 

computational efficiency of the proposed model is scrutinized. 

    1)  Quality of Probabilistic Forecasts 

The multivariate probabilistic PV forecasts based on the 

UMVN, MVN, GC and TC models are compared in the upper 

left panel of Fig. 3. Thereby, the average variogram-based score 

with 𝛾 = 0.5 (VS1: wj,l = 1; VS2: wj,l = ρj,l, where ρj,l is the 

correlation coefficient of the reference current) and the average 

energy score (ES) are compared. 

 
Fig. 3  Variogram-based score (VS1: wj,l = 1; VS2: wj,l = ρj,l) and energy score 

(ES) of the PV forecasts (in MW) as well as the AC and LAC based line current 

forecasts (in p.u.). 

As depicted in Fig. 3 there are significant differences in 

VS1, VS2 and ES when considering the PV forecasts, 

indicating the TC to surpass the UMVN, MVN and GC 

approaches. When using these forecasts for the AC and LAC 

PPF, eight test cases are obtained. Thereby, the TC still 

outperforms the other approaches in VS1 and VS2. However, 

the results for the ES indicate that the MVN and the TC might 

be mean-biased. Yet the ES is not indicating the improvements 

of modelling the dependency structure (and the KDE of TC) 

correctly as emphasized in [29]. Subsequently, the VS is hence 

considered exclusively. Since the differences of the scores 

appear to be rather low for both line current forecasts (AC and 
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LAC PPF), a DM test is carried out. Table II illustrates the 

resulting test statistics of all possible combinations, whereby a 

negative sign indicates that the upper model is preferred. 
TABLE II 

RESULTS OF THE DIEBOLD-MARIANO TEST ON THE VARIOGRAM-BASED 

SCORE (VS1 & VS2): TEST STATISTIC FOR AC- AND LAC-PPF 
    

Test Case TC vs. GC vs. MVN vs. 
          

 GC MVN UMVN MVN UMVN UMVN 

AC-VS1 -13.5** -4.01** -8.78** -0.29++ -5.69** -5.8** 

AC-VS2 -15.3** -2.47++ -7.99** 1.67++ -3.87** -5.91** 

LAC-VS1 -9.37** -9.43** -9.9** -5.94** -7.24** 0.38++ 
LAC-VS2 -9.33** -11.21** -11.23** -7.59** -8.45** 1.61++ 

       

In this context, the following notation is used indicating the 

confidence level on which a null hypothesis H0 of equally 

performing models is rejected: No asterisk means that the null 

hypothesis is not rejected, plus sign (+) confidence = 95%, one-

asterisk (*) confidence = 99% and two-asterisks (**) 

confidence = 99.9%. Solely the MVN reveals equal 

performance to the TC in the AC-VS2 test case 

    2)  Sensitivity to Upscaling of PV Forecasts 

To assess the advantages of the proposed upscaling method 

of the PV forecasts assuming full correlation, a comparative 

analysis is carried out using the VS. In this context, the results 

of the upscaling of the PV forecasts assuming full correlation 

of the forecasting errors is benchmarked to a correlation-based 

approach, using the average correlation 𝜌̅𝑘 of the forecasting 

errors for each node, and to an upscaling assuming independent 

forecasting errors, i.e., 𝜌̅𝑘 = 0. For this comparison, the results 

are given in Table III for the full correlation (FC), the 

correlation-based upscaling (CB) and the independency 

assumption (IA). 
TABLE III 

RESULTS FOR DIFFERENT UPSCALING METHOD 
       

Test Case VS1 VS2 
       

 FC CB IA FC CB IA 

TC-AC 1,4961 1,5038 1,5788 0,7893 0,7939 0,8363 

TC-LAC 1,5656 1,5689 1,6134 0,8366 0,8381 0,8594 

       

Accordingly, the FC upscaling method (assuming fully 

correlated forecasting errors at each node) surpasses the 

correlation-based and independency upscaling methods, for 

both TC-AC and TC-LAC for VS1 (wij=1) and VS2 (wij=ρij). 

Although the small differences in scores of the FC and CB 

approaches seem to indicate a comparable forecasting accuracy, 

the DM test shows that the results are statistically significant at 

the 99.9% confidence level. 

    3)  Sensitivity to Power Flow Method 

Using the DC PPFs as benchmarks for the AC and LAC 

PPFs, Table IV depicts the results of the TC model in terms of 

VS1 and VS2. 
TABLE IV 

RESULTS FOR DIFFERENT POWER FLOW METHODS 
      

 Test Case AC LAC DC  

 TC VS1 1.5250 1.5799 10.8383  
 

TC VS2 0.8062 0.8430 6.0760 
 

      

As already expected, the results of the PTDF based DC PPF 

do not come close to the LAC or AC power flow. In opposite, 

the VS1 and VS2 results of the TC-LAC are nearby the UMVN-

AC results, as illustrated by Fig. 3. When applying a DM test to 

compare both approaches, i.e., TC-LAC and UMVN-AC, the 

resulting test statistic 𝑡𝐷𝑀 are –0.1806 for VS1 and 4.3981 for 

VS2, respectively. Therefore, both approaches provide equal 

performance in terms of the VS1, but UMVN-AC surpasses the 

TC-LAC approach for VS2. 

    4)  Sensitivity to Approximation Errors at Boundary Nodes 

The approximation error (AE) can be modelled using the 

same approaches as used for the forecasting errors. Therefore, 

each of the approaches TC to UMVN has been carried out for 

AC- and LAC-PPFs, with and without AE., see Table V. 
TABLE V 

VARIOGRAM-BASED SCORE (VS1 & VS2) FOR PROBABILISTIC MODELLING 

WITH (INDICATED AS B) AND WITHOUT APPROXIMATION ERRORS 
     

Test Case UMVN MVN GC TC 
             

 VS1 VS2 VS1 VS2 VS1 VS2 VS1 VS2 

AC-B 1.581 0.830 1.549 0.814 1.547 0.819 1.525 0.806 

AC 1.605 0.845 1.554 0.818 1.542 0.816 1.540 0.816 
LAC-B 1.635 0.873 1.637 0.876 1.597 0.851 1.580 0.843 

LAC 1.644 0.877 1.639 0.879 1.589 0.848 1.591 0.849 

         

As depicted by Table V, the differences in VS1 and VS2 are 

rather small, correspondingly the DM test indicates equal 

performance when comparing the models with AE with those 

models without AE. In the GC test case, the model without AE 

even surpasses the model with AE, albeit the difference is not 

statistically significant. 

    5)  Computational Efficiency 

The case study has been carried out using MATLAB / 

MATPOWER on a Windows Server 2012 R2 Standard with 64-

bit operating system, a two kernel 3.50 GHz processor (Intel® 

Xeon® CPU E5-2637 v2) and 192 GB RAM of memory. Table 

VI compares the computational efficiency for the different PPF 

approaches. Thereby, the MCS of the AC-PPF have been 

carried out sequentially and parallelized. 
TABLE VI 

COMPARISON OF COMPUTATIONAL TIME FOR LAC-PPF AND AC-PPF 

APPROACHES (PARALLELIZED AND SEQUENTIAL) 
     

 Computational Time MCS AC-PPF LAC-PPF  
         

  sequential parallel sequential  

 Average per hour 24.02 s 16.21 s 0.04 s  

 Total (2015 h) 7.84 h 5.29 h 50.84 s  
      

The results for the computation time of the parallelized 

MCS AC-PPF opposed the expectations: The additional effort 

for distributing and allocating large variables (type: 2,015 hours 

× 19 lines × 5,000 samples, i.e., 1.53 GByte per variable) to the 

virtual kernels, exceeds the gains of parallel computation. 

Furthermore, the gains of the LAC-PPF are remarkable, taking 

less than one minute for computing more than 106 scenarios. 

VII.  CONCLUSION 

This paper proposes a novel approach to provide 

probabilistic congestion forecasts in high voltage power 

systems utilizing multivariate copula-based RES-infeed 

simulations. The improvements presented contribute to 

increase both, the performance of the congestion forecasts 
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(upscaling of forecasting errors, reduction of heteroscedasticity, 

modelling of boundary nodes) and the computational efficiency 

(application of linearized power flows). The benefits of the 

proposed model are demonstrated on a real-world case study 

against commonly used benchmark models. Thereupon, this 

approach enables system operators to predict potential 

congestions at an early stage, taking the increasing number of 

uncertainties into account, in order to derive the necessary 

countermeasures. 
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