Fast Transformation of Discriminators into Encoders using

Pre-Trained GANs

Cheng Yu ! and Wenmin Wang 2

"Macau University of Science and Technology
2 Affiliation not available

November 8, 2023

Abstract

Finely tuned deep generative adversarial networks (GANs) can generate high-quality (HQ) images. However, the discriminator
in GAN is only able to distinguish true or fake images. Moreover, numerous synthesized images from GANs are imperfect, and
we can not reconstruct those images via GANs. In this paper, we revisit pre-trained GANs and offer a self-supervised method
to quickly transform GAN’s discriminators into encoders. We reuse parameters of the GAN’s discriminator and replace its
output layer, so that it can be transformed into an encoder and output reformed latent vectors. The transformation makes
the pre-trained GAN a symmetrical architecture and allows for better performance. Based on the method, GANs can be made
to reconstruct synthesized images via encoders. Compared to synthesized images, these reconstructions can maintain or even

attain higher quality.

Fast Transformation of Discriminators into Encoders using Pre-Trained GANs

Cheng Yu?, Wenmin Wang?*

4 Faculty of Information Technology, Macau University of Science and Technology, Macau 999078, China
b International Institute of Next Generation Internet, Macau University of Science and Technology, Macau 999078, China
¢State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China

Abstract

Finely tuned deep generative adversarial networks (GANs) can generate high-quality (HQ) images. However, the discriminator
in GAN is only able to distinguish true or fake images. Moreover, numerous synthesized images from GANs are imperfect, and
we can not reconstruct those images via GANs. In this paper, we revisit pre-trained GANs and offer a self-supervised method to
quickly transform GAN’s discriminators into encoders. We reuse parameters of the GAN’s discriminator and replace its output
layer, so that it can be transformed into an encoder and output reformed latent vectors. The transformation makes the pre-trained
GAN a symmetrical architecture and allows for better performance. Based on the method, GANs can be made to reconstruct
synthesized images via encoders. Compared to synthesized images, these reconstructions can maintain or even attain higher

quality.

Keywords: Keywords:

Generative Adversarial Net (GAN)
Auto-Encoder

Image Synthesis

Image Reconstruction

1. Introduction

Since DCGAN [1] was proposed, using a convolutional
neural network to implement generative adversarial networks
(GANS) has become popular. However, with the increase in
resolution, we need large learning parameters and large-scale
HQ datasets as training samples. Recent novel GANs, such
as PGGAN [2], StyleGAN [3] and so forth ([4, 5, 6]), can
achieve stable training and produce effective results. These
GANSs take advantage of several techniques such as pixel nor-
malization and equalized learning rates to control the upgrading
rate for training-related parameters. Compared to DCGAN that
requires doubling parameters for the next layer, the improve-
ments mentioned above produce better GANs that can gener-
ate higher resolution images with fewer parameters. However,
those GANs have no ability to reconstruct synthesized images.
Furthermore, the above methods inevitably create many defec-
tive samples, with local details, blurred, and perturbed synthe-
sized images.

A GAN consists of a generator and a discriminator. The
generator utilizes low-dimensional latent vectors to generate
high-dimensional images. The latent vectors are always sam-
pled from a normal distribution. The discriminator has no use
other than to assist in training the generator. In GAN inversion

*Corresponding author.
Email address: wnwang@must . edu.mo (Wenmin Wang)

Preprint submitted to Elsevier (Pattern Recognition Letters)

[7], embedding images in latent vectors is the process of map-
ping data from high dimensions to low dimensions. There are
two types of methods to embed images in latent vectors. Pre-
vious work [8] tried to embed an image into its latent vector
via perceptual loss [9], but the method does not use GAN en-
coders so getting the latent vector from each image entails a lot
of training costs. Besides, other works [10, 11, 12] use GAN
encoders to embed images. However, training GAN encoders
also incurs numerous costs, especially in using deep GANs. We
transformed GAN’s discriminators to an encoder so GANs can
quickly get their encoders.

So far, GAN encoders cannot do the embedding task well if
there are not enough training sources, such as large-scale im-
ages and training devices. We propose an efficient method that
can embed images in latent vectors and reconstruct images. Us-
ing pre-trained GANs, we quickly transform its discriminator
into an encoder, which uses the self-generated images from the
generator to replace ground-truth samples, so that we can allow
GANSs to reconstruct synthesized images via the transformed
encoder. The encoder is slightly different from the discrimina-
tor (the last layer), and we reuse the discriminator’s parameters
so that the encoder can inherit the discriminator’s features. In
addition, although previous works (such as BigGAN [5], Style-
GANV2 [6]) found that increasing model parameter size could
make better performance, the importance of the model symme-
try is omitted. The symmetry represent parameter size differ-

August 29, 2021

ence between generator and discriminator. In this regard, we
explore the model performance when we increase the symme-
tries by adjusting the discriminator’s last layer. Meanwhile dis-
coving the transformation of discriminator to encoder. In con-
clusion, we describe our three contributions in the following
way:

e We propose a novel approach to quickly transform the
discriminator into an encoder. Using a self-supervised
method with few training epochs (limited to 10 epochs),
the transformed encoder can embed images into reform la-
tent vectors. Using the reformed latent vectors, the per-
formance of reconstructions is better than the synthesized
images if GAN performance is limited.

e We change the parameters of the GAN’s discriminator and
allow its output size to equal the input size of the generator.
Based on the change, we train the modified discriminator
to get the GAN encoder. By reusing the parameters of
the discriminator, the transformed encoder can inherit the
features from pre-trained GAN and can be trained quickly.

e We analyze the relationship between the model perfor-
mance and the model architecture, and we notice that when
we increase the symmetries of the generative model, which
consists of transformed encoder and generator, the modi-
fied model can improve the quality of the synthesized im-
ages, such as reducing the unclear areas in the synthesized
image and improve the performance when measured by
PSNR [13], SSIM [14], FID [15] and LPIPS [16].

2. Proposed Approach

From the perspective of training strategy, GAN is achieved
by asynchronously training two networks: generator G and dis-
criminator D. In the training process, we upgrade the parame-
ters of D according to the true or fake labels. Fake labels repre-
sent G outputs (x") and True labels represent ground-truth (GT)
images (y). Then we upgrade the parameters of G so that G can
produce better fake images. Here, we denote the loss function
of GAN as L(D,G)-

Different from GAN, training an auto-encoder model is a
synchronous process that is composed of an encoder (E) and
a decoder. Here, we regard the decoder as a generator (G) and
try to transform D to E. Then we train E to match pre-trained
GAN. In Bayesian probability model, such as variational auto-
encoder (VAE) [17], E and G can also be denoted as g(z|x) and
p(x|z). Both E and G need to be upgraded in the same once
back-propagation. The input of the auto-encoder is y which
samples from the ground truth (GT), and the output image is
the corresponding reconstruction G(z). Similar to VAE, we de-
note z as latent vectors. Here, we choose z ~ N (0, 1).

We briefly denote the loss function of vanilla VAE as L g)
(see Eq.1). The first term is the distribution gap between y and
G(2), and that gap needs to be measured by the KL divergence.
The second term is the reconstruction loss Lz, which maxi-
mizes the expected log-likelihood of the image reconstruction.

Lo = —Drr(q@xn)llp2)) + Eyllog p(xlz)] . ey
[——

Reconstruction—Loss

There are two latent vectors that we should compare for their
similarity. One is the encoder’s output (E(-)), and the other one
is the decoder’s input (z). Motivated by [11], we deduce the gap
between the z and E(-) when they have the same dimensions.
The first term of Eq.1 can measure the gap between the above
two latent vectors as follows:

Lr =) (1 +log(e?) - = o). ©))
i=1
Here, we denote one dimension of z as z;. On the dimension,
we denote its mean as y; and its standard deviation as ;. By
only using z, we aim to minimize the latent vector gap using a
self-supervised method.

2.1. Self-Supervised Transformation

The loss function of the ordinary GAN is not adaptive for
training the transformed auto-encoder, because it only judges
true or fake labels. We modify the GAN-based architecture so
that it is similar to VAE. However, if we use the VAE loss func-
tion, the KL divergence is based on the Bayesian probabilistic
model, and cannot guide the details of the latent vector repre-
sentation. At the same time, E cannot effectively reconstruct the
wild image when the target is far from the training dataset. In-
spired by [8, 18], we propose a self-supervised method to train
E, replacing the log-likelihood (the 2nd term of Eq. 1) loss
with mean square error (MSE) loss and perceptual loss [9] as
follows:

Lrr = Linse(G(2), y) + Lpep(G(2),). 3

Eq.3 is the standard loss function that measures G(z) and
GT samples y. We translate y as a self-supervised output,
G(E(G(2))). In this way, the optimized target (y) is replaced,
and there is no need for any dataset training. The replacement
is as follows:

Lry = Linse(G(2), GE(G(2))))

“
+Lpep(G(2), G(E(G(2)))).

In addition, if we do not consider the specific value of E(-),
it will be too far apart from z. Therefore, we assume a fixed
mean y = 0 and variance o = 1 for E(:), that is the key to im-
proving efficiency. E should find a more suitable latent vector
for image reconstruction, and images will be embedded in an
overlapping space between E(-) and z. This regularization trick
can reformulate Eq.2 as follows:

l n
Lri = Loy =~) (EG@) + EG@)) -1 (5)
i=1

For pre-trained GANs, we do not know the specific value of
u and o, so we use MSE to optimize the latent vector which

Overview Image Generation: @ @ @ @
Block ID: Block-9 Block-8 Block-7 Block-6
Image Res. : 1024x1024 512x512 256x256 128x128

Image Reconstruction: @ @

Image Discrimination: ::: i

Block-5
64x64

Block-4
32x32

Block-3 Block-2 Block-1
16x16 8x8 4x4

Figure 1 An illustration for our proposed method (Case of PGGAN 1024x1024). By adjusting the output channels in the last
layer of the discriminator, we transform the discriminator into an encoder, and then we train the encoder corresponding to the fixed
generator. The green-dashed arrows indicate the process of GAN, and the solid black and green arrows indicate our process.

comes from E output. Eq.5 can be replaced by the following
loss function:

_1y NI
Lry = n;(ﬂG(zz» o). (6)

Finally, we briefly summarize the final loss function in Eq.
7, which replaces the original auto-encoder loss function as fol-
lows:

Lg = Lgy + Lry. @)

Fig.1 demonstrates the principles of transforming a pre-
trained discriminator into an encoder.

2.2. Fine-tuning Networks to Symmetrical Architecture

In normal GANSs, the usage of D is only to classify y and
G(2), and its output size usually is a one-dimensional value (the
true or fake label), which is smaller than G input size z. For
example, in PGGAN, the size of z is 512 which is needed to
represent an HQ image with size (1024,1024). Transforming
D to E is our goal, so we fix pre-trained G and only train the
transformed E. In order to make G and E form a symmetrical
encoding-decoding architecture, E output size (Eoypu:) needs to
equal G input size (Ginpyur). The transformation means that we
add more parameters to the output layer of D. Following the
increased parameters, we increase the symmetries of the trans-
formed model, which is composed of G and E. We achieve the
transformation by replacing the output layer of D (Doyspus)- In

each layer, we focus on the data input size and output size (in-
put, output), and we only address the D output layer with its
output size. In the full connected layer (FC), we increase the
output nodes. In the convolutional layer (CONV), we increase
its output channels. The modified Doyp, for different GANs
are listed in Table 1. We use a 3-layer fully connected architec-
ture (3-FC) and a 5-layer convolutional architecture (5-CONV)
to process 28%x28 images. As it happens, DCGAN deals with
256x 256 images, PGGAN deals with 1024x1024 images, and
PGGAN-FC deals with 256times256 images.

Table 1
Details of transforming D to E by changing output layers (de-
fault as CONV).

Layer Position: Giypur Doutpur Eoutpur

3-FC (784,2048)rc (2048, 1)gc (2048,784) ¢
5-CONV (32,512) (512, 1) (512, 32)
DCGAN (128,2048) (2048, 1) (2048, 128)
PGGAN (512,512) (512,1) (512,512)
PGGAN-FC (512,512) (32768, 1)} (32768, 512) ¢

* In PGGAN-FC, D yuspur s the last block which has two fully connected layers. The
number of their nodes (input, output)rc are (32768,4)rc and (4, 1)rc.

Pre-Trained

Transformed

Wild(Left)
vs.
Transformed

Figure 2 The 1st row shows the face images that are generated by pre-trained PGGAN (1024x1024). The 2nd row shows corre-
sponding reconstructions via our method. Most reconstructions are better than the previous images in local details. The 3rd row
shows 3 pairs of wild images (left) with their reconstructions (right).

2.3. Sharing Discriminator Parameters with Encoders

A recent work [19] reuses the pre-trained parameters in the
discriminator to handle the task of image-to-image style trans-
lation. Similar to Cycle-GAN [20], it needs another network to
form a double model to deal with the image-to-image transla-
tion task. The difference from this work is that we only reuse
the parameters to boost the speed of training convergence. We
do not use the double model which contains a pair of networks.
Algorithm 1 shows the pseudo-code of the whole proposed
method. In Fig.2 and Fig. 6, we display pre-trained PGGAN
samples and corresponding reconstructions.

Algorithm 1:
Transforming discriminator into encoder
Input:
Pre-trained GAN: G and D.
Latent Vector: z ~ N(0, 1).
Learning Rate: @ = 0.0015.
Initialize:
E =D, Eoulput = Ginputs WE = Wp.
while (no more 10 epochs & not converged) do
VL, « Lr (G(),GE(G(2)),
VLg, « Lr,(E(G(2)),2),
WE ¢ WE + a(VLRl + VLRZ)'
end
Output: E.

3. Experiments

We used three datasets for doing experiments. The first
dataset is Fashion-MNIST. We used 60.000 training samples

Table 2
Comparison of different architectures (E) via Fashion-MNIST

Model Layers (E): 1-FC 3-CONV 3-FC 5-CONV
PSNR(%0.5) 15.18 16.95 15.36 17.98
SSIM(£0.1) 0.52 0.66 0.64 0.71

with image size 28x28, and we set the batch size at 128. The
second dataset is CelebA [21]. There are 202,599 face images
and we choose 30,000 samples for training, we resized images
to 256x256 with a batch size of 30. The last dataset is an HQ
dataset (CelebA-HQ [22]). There are 30,000 face images with
image size 1024x1024. Here, we only used CelebA-HQ for
evaluation. The framework is PyTorch (version 1.5.1, CUDA
10.2) on a GPU Card (Nvidia Tesla V100-SXM3 32GB). We
chose the Adam optimizer with a learning rate of 0.0015, 8, =
0.5 and 3, = 0.99.

3.1. Comparison between Different Architectures

In Fashion-MNIST, we used 5 convolutional layers (5-
CONV) to build G and D, and used different numbers of fully
connected layers and convolutional layers to construct E. These
architectures included one fully connected layer (1-FC), 3 con-
volutional layers (3-CONV), 3 fully connected layers (3-FC),
and 5 convolutional layers (5-CONV). When we chose differ-
ent architectures to build E for auto-encoding with G, the re-
constructed images by reformed latent space were not much
different. We report the evaluation metrics in Table 2. The re-
constructed 5,000 images were evaluated by PSNR and SSIM
after training for one epoch. We noticed that the performance
has improved when we increased the model symmetries, even

Fréchet Inception Distance (FID)

—e— G(Es)
- G(E)
"l —— G(Ew T _
Glz2) e T e

L e

FID

a B 4 7
LEpoch (5000 iters/ep)

Learned Perceptual Image Patch Similarity Metric (VGG)

— G(Es)
— G(Ey)
o —— G(Ew)

LPIPS

H s s 7
Lpoch (5000 iters/ep)

Figure 3 Ablation study of training E,, E, and E, with progressive epochs. E; is a small architecture which has half layer
parameters of D. E,, is the same parameter size as D but without reusing parameters of D. E, is same parameter size with E, and

reuse parameters of D.

Figure 4 Comparison of Image reconstructions during different
E (Fashion-MNIST).

Epoch 1 Epoch 2 Epoch80
A

original

Figure 5 Training comparison in DCGANs (D with trans-
formed D).

though the improvement is not obvious to human perception
(see Fig. 4).

We chose DCGAN to evaluate the symmetrical architecture
on CelebA. Different from vanilla DCGAN, we replaced batch
normalization with spectral normalization [23] on D. Based
on the replacement, D satisfies Lipschitz continuity and makes
training more stable. Compared with the previous size 64x64,
the modification can make DCGAN handle 256x256 images,
but it is still difficult to train. So, we tested two architectures
on 256x256 images. As shown in Table 1, D output channel
is a one-dimensional label for classifying the sample’s fake and
truth labels. In transformed D (we also call it E), we increased
the last layer parameters by changing its output channels, and
then E output size equal to the input size of G (see Table 1). We

trained the two architectures via the GAN loss function (Lpg))
without auto-encoding training. The result has shown that D
training fails when the training epoch increases, but E can make
the training more effective. We report the training process in
Fig. 5.

Figure 6 Pre-trained PGGAN-FC samples (ups) and corre-
sponding reconstructions (downs). Results come from LSUN
(car, horse and tower), with image size 256x256.

3.2. Self-Supervised Training for the Encoder

Using CelebA-HQ, we chose 10,000 real samples for evalua-
tion. To train E, we synthesized 20,000 generated images from
pre-trained PGGAN which is limited performance. We trained
E with batch size 4. As shown in Fig.2, the pre-trained samples
still had many distortions, blurs, and blobs in local details. The
first row shows the generated images by PGGAN. Our trans-
formed method is shown in the second row. By encoding the

reformed latent space, our method samples (G(E(G(z)))) were
better than the pre-trained model samples (G(z)). On the LSUN
dataset (car, tower, and horse) [24], we report more cases in Fig.
6 with pre-trained PGGAN-FC and our reconstructions.

3.3. Reusing Parameters with Symmetric Architecture

Table 3
Performance of pre-trained PGGAN and transformed architec-
tures

Metrics
PSNRT
SSIMT LPIPSYY¢ | (£0.01) FIDJ (+0.1)
G(2) - - - 5.43
G(E;) 59.89 +0.52 0.9915 0.4640 6.82
G(E,) 61.38 +0.58 0.9942 0.3498 6.77
G(E,) 61.73+0.82 0.9947 0.2997 4.86

To evaluate reusing parameters, we designed three different
encoders based on PGGAN’s E (Ey, E, and E,). PGGAN’s
network needs 9 blocks from 4x4 to 1024x1024. Here, the
output block of the three encoders is the same. As for the other
blocks, E; has half layer parameters of D (two-layer block to
one-layer block), and E,, is the same parameter size as D with
no reused D’s parameters. £, has the same parameter size as E,
but reuses D’s parameters. We report the experimental results in
Table 3. In FID, we compared three encoders with GT (10,000
samples) and with G(z) in LPIPS (2,000 samples). All results
were obtained in the 10th epoch.

We also compared three encoders during the training process.
As shown in Fig 3, in the early epochs, FID of E; and E,, are
slightly higher than the baseline G(z). With the epoch increase,
E, is better than E and E,,, and converges faster. LPIPS of E,
is also better than others. This verified our intuitive view that
a transformed E would be better when we reused D parameters
and increased the model symmetries.

4. Conclusion

We have offered a novel approach for quickly transforming a
discriminator into an encoder via a pre-trained GAN, in which
we adjusted the parameters of the discriminator output layer
to the same size as the generator input layer. We used a self-
supervised method to train the reformed encoder. By reusing
the parameters and increasing the networks’ symmetries, our
proposed scheme quickly yielded an efficient encoder that en-
hances the performance of latent space representation and im-
age reconstruction.

Declaration of Competing Interest

We confirm that the current version of the manuscript has
been read and approved by all named authors and that there are

no other persons who satisfied the criteria for authorship but are
not listed.

We further confirm that the order of authors listed in the
manuscript has been approved by all of us. We also wish to
confirm that there are no known conflicts of interest associated
with this publication and there has been no significant financial
support for this work that could have influenced its outcome.

Acknowledgments

This work was supported by the Science and Technology De-
velopment Fund (FDCT) of Macau (0016/2019/A1). Our code
and pre-trained models are available upon request.

References

[1] A. Radford, L. Metz, S. Chintala, Unsupervised representation learning
with deep convolutional generative adversarial networks, in: Int. Conf.
Learn. Represent. (ICLR), 2016.

[2] T. Karras, T. Aila, S. Laine, J. Lehtinen, Progressive growing of gans for
improved quality, stability, and variation, in: Int. Conf. Learn. Represent.
(ICLR), 2018.

[3] T. Karras, S. Laine, T. Aila, A style-based generator architecture for gen-
erative adversarial networks, in: Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2019.

[4] A.Karnewar, O. Wang, Msg-gan: Multi-scale gradients for generative ad-
versarial networks, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2020.

[5] A. Brock, J. Donahue, K. Simonyan, Large scale GAN training for high
fidelity natural image synthesis, in: Int. Conf. Learn. Represent. (ICLR),
2019.

[6] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, T. Aila, Analyz-
ing and improving the image quality of stylegan, in: Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2020, pp. 8107-8116.

[71 W.Xia, Y. Zhang, Y. Yang, J. Xue, B. Zhou, M. Yang, GAN inversion: A
survey, arXiv preprint abs/2101.05278.

[8] R. Abdal, Y. Qin, P. Wonka, Image2stylegan: How to embed images into
the stylegan latent space?, in: Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
2019, pp. 4431-4440.

[9] J. Johnson, A. Alahi, L. Fei-Fei, Perceptual losses for real-time style
transfer and super-resolution, in: Europ. Conf. Comput. Vis. (ECCV),
2016, pp. 694-711.

[10] J. Donahue, P. Krihenbiihl, T. Darrell, Adversarial feature learning, in:
Int. Conf. Learn. Represent. (ICLR), 2017.

[11] A. Creswell, A. A. Bharath, Inverting the generator of a generative adver-
sarial network, IEEE Trans. Neural Networks Learn. Syst. 30 (7) (2019)
1967-1974.

[12] S. Pidhorskyi, D. A. Adjeroh, G. Doretto, Adversarial latent autoen-
coders, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
2020.

[13] A. Horé, D. Ziou, Image quality metrics: Psnr vs. ssim, in: Proc. Int.
Conf. Pattern Recognit. (ICPR), Istanbul, 2010, pp. 2366-2369.

[14] Zhou Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image qual-
ity assessment: from error visibility to structural similarity, /IEEE Trans.
Image Process. 13 (4) (2004) 600-612.

[15] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, S. Hochreiter, Gans
trained by a two time-scale update rule converge to a local nash equi-
librium, in: Proc. Int. Conf. Neural Inf. Process. Syst. (NIPS), 2017, pp.
6626-6637.

[16] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, O. Wang, The unreason-
able effectiveness of deep features as a perceptual metric, in: Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2018.

[17] D.P. Kingma, M. Welling, Auto-encoding variational bayes, in: Int. Conf.
Learn. Represent. (ICLR), 2014.

URL http://arxiv.org/abs/1312.6114

[18] J. Zhu, P. Kr, E. Shechtman, A. A. Efros, Generative visual manipulation
on the natural image manifold, in: Europ. Conf. Comput. Vis. (ECCV),
2016, pp. 597-613.

[19]

[20]

[21]

(22]

(23]

[24]

R. Chen, W. Huang, B. Huang, F. Sun, B. Fang, Reusing discrimina-
tors for encoding: Towards unsupervised image-to-image translation, in:
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2020, pp.
8165-8174.

J.-Y. Zhu, T. Park, P. Isola, A. A. Efros, Unpaired image-to-image trans-
lation using cycle-consistent adversarial networks, in: Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2017, pp. 2223-2232.

Z. Liu, P. Luo, X. Wang, X. Tang, Deep learning face attributes in the
wild, in: Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 2015, pp. 3730-
3738.

C.-H. Lee, Z. Liu, L. Wu, P. Luo, Maskgan: Towards diverse and interac-
tive facial image manipulation, in: Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2020, pp. 5549-5558.

T. Miyato, T. Kataoka, M. Koyama, Y. Yoshida, Spectral normaliza-
tion for generative adversarial networks, in: Int. Conf. Learn. Represent.
(ICLR), 2018.

F. Yu, Y. Zhang, S. Song, A. Seft, J. Xiao, LSUN: construction of a large-
scale image dataset using deep learning with humans in the loop, arXiv
preprint abs/1506.03365.

