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Abstract

Fourier theory is the backbone of the area of Signal Processing (SP) and Communication Engineering. However, Fourier series
(FS) or Fourier transform (FT) do not exist for some signals that fail to fulfill a predefined set of Dirichlet conditions (DCs).
We note a subtle gap in the explanation of these conditions as available in the popular signal processing literature. They lack
a certain degree of explanation essential for the proper understanding of the same. For example,

the original second Dirichlet condition is the requirement of bounded variations over one time period for the convergence of

Fourier Series, where there can be at most infinite but countable number of maxima and minima, and at most infinite but

countable number of discontinuities of finite magnitude. However, a large body of the literature replaces this statement with

the requirements of finite number of maxima and minima over one time period, and finite number of discontinuities. The latter

incorrectly disqualifies some signals from having valid FS representation. Similar problem holds in the description of DCs for

the Fourier transform. Likewise, while it is easy to relate the first DC with the finite value of FS or FT coefficients, it is hard

to relate the second and third DCs as specified in the signal processing literature with the Fourier representation as to how the

failure to satisfy these conditions disqualifies those signals from having valid FS or FT representation.
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Pushpendra Singh†, Amit Singhal‡, Binish Fatimah§,
Anubha Gupta$¶, and Shiv Dutt Joshi‖

Fourier theory is the backbone of the area of Signal Processing (SP) and
Communication Engineering. However, Fourier series (FS) or Fourier transform
(FT) do not exist for some signals that fail to fulfill a predefined set of Dirichlet
conditions (DCs). We note a subtle gap in the explanation of these conditions as
available in the popular signal processing literature. They lack a certain degree
of explanation essential for the proper understanding of the same. For example,
the original second Dirichlet condition is the requirement of bounded variations
over one time period for the convergence of Fourier Series, where there can be
at most infinite but countable number of maxima and minima, and at most
infinite but countable number of discontinuities of finite magnitude. However,
a large body of the literature replaces this statement with the requirements of
finite number of maxima and minima over one time period, and finite number
of discontinuities. The latter incorrectly disqualifies some signals from having
valid FS representation. Similar problem holds in the description of DCs for the
Fourier transform. Likewise, while it is easy to relate the first DC with the finite
value of FS or FT coefficients, it is hard to relate the second and third DCs as
specified in the signal processing literature with the Fourier representation as to
how the failure to satisfy these conditions disqualifies those signals from having
valid FS or FT representation.

These concepts are taught worldwide in the standard course of “Signals and
Systems” to the second year undergraduate students of Electrical/Electronics/
Communication/Computer Engineering. Lack of clarity in the explanation of
DCs in the signal processing textbooks makes it hard for the young engineer-
ing students to understand these concepts. In fact, many instructors roll out
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this topic as a “reading assignment” for the students because it may be equally
uncomfortable for signal processing instructors to provide suitable explanations
for the second and third DCs. In this lecture note, we attempt to provide the
required clarifications and provide a lucid but precise description and explana-
tion on DCs. We support the text with the help of suitable examples. The
entire signal processing community may benefit from this work. In particular,
the presented work can help in teaching these concepts with better clarity to
the young signal processing audience.

Relevance

Fourier theory provides a powerful tool for the analysis of signals. It has been
widely used in the areas of signal processing and communication engineering.
Fourier representation, such as FS and FT, provides an alternate representation
of a time-domain signal in terms of its frequency content that is helpful in
the analysis and processing of signals in umpteen number of applications and
devices. While FS is evaluated for periodic signals, FT is generally used to
analyze non-periodic (or aperiodic) signals, although it can be computed for the
periodic signals by roping in impulse functions that are generalized functions.

It is not necessary that every signal will have a valid Fourier representation.
In general, it is stated that a signal would have a valid FS or FT representation
provided it satisfies a set of conditions given by Dirichlet. These are stated to be
sufficient, but not necessary conditions. The Fourier theory and the associated
DCs are essential tools that are utilized by the scientific community working in
the area of signal processing and related applications. Almost every textbook
on “Signals and Systems” as well as many widely-used manuscripts and books
[1–10] specify these conditions in the context of Fourier representation and also
provide examples, some of which are incorrectly perceived as not fulfilling these
conditions.

Preliminaries

In this section, we present some mathematical preliminaries that are important
to understand the concepts with clarity.

Definition 1 : A signal x̃(t) is periodic if, x̃(t + T0) = x̃(t), ∀ t where T0 is the
fundamental period in seconds and ω0 = 2π

T0
= 2πf0 is the fundamental frequency

in radians/second.
Definition 2 : Let x : [a, b]→ C be a function and any finite partition of [a, b] is
set P = {a = t0 < t1 < · · · < tn = b}. The variation of x over [a, b] is defined
as

V (x, [a, b]) = sup {SP : P is a partition of [a, b]} , (1)

where SP =

n∑
i=1

|x(ti)− x(ti−1)| . (2)
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The function x has ‘bounded variation’ (BV) on [a, b] denoted as x ∈ BV ([a, b]),
if V (x, [a, b]) is finite, i.e., V (x, [a, b]) <∞.
To obtain the variation in (1) the supremum is taken over all possible partitions
on [a, b]. Some important results related to a function of bounded variation are
as follows:

1. If a function x is increasing on [a, b], then x ∈ BV ([a, b]) and V (x, [a, b]) =
x(b)− x(a).

2. If a function x is decreasing on [a, b], then x ∈ BV ([a, b]) and V (x, [a, b]) =
x(a)− x(b).

3. The function x has at most countably infinite discontinuities on [a, b].

4. If x is differentiable and its derivative x′ is continuous on [a, b], then

V (x, [a, b]) =

∫ b

a

|x′(t)|dt. (3)

Next, we illustrate this concept of bounded variation (BV) with a few ex-
amples.
Example-1:
Consider a signal

x1(t) =

{
sin(2π/t), if t ∈ (0, 1]

0, otherwise.
(4)

The derivative of x1(t) is given by x′1(t) = −2π cos(2π/t)/t2. It is easy to see

that
∫ 1

0
|x′1(t)|dt =∞. This implies that V (x1, [0, 1]) =∞. Hence, signal x1(t)

does not have BV in the time interval [0, 1], i.e., x1 /∈ BV ([0, 1]).
Example-2:
Consider a signal

x2(t) =

{
t sin(2π/t), if t ∈ (0, 1]

0, otherwise.
(5)

The derivative of x2(t) is given by x′2(t) = −2π cos(2π/t)/t+ sin(2π/t)/t. It is

easy to see that
∫ 1

0
|x′2(t)|dt = ∞. This implies that V (x2, [0, 1]) = ∞. Hence,

signal x2(t) does not have BV in the time interval [0, 1], i.e., x2 /∈ BV ([0, 1]).

Example-3:
Consider a signal

x3(t) =

{
t2 sin(2π/t), if t ∈ (0, 1]

0, otherwise.
(6)
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The signal x3(t) has BV in [0, 1] because

V (x3, (0, 1]) =

∫ 1

0

|x′3(t)|dt

=

∫ 1

0

|2t sin(2π/t)− 2π cos(2π/t)|dt,

≤
∫ 1

0

|2t sin(2π/t)|+|2π cos(1/t)|dt,

≤
∫ 1

0

(2t+ 2π)dt = (1 + 2π). (7)

In fact, one can easily show that the signal xr(t) = tr sin(2π/t) for t ∈ (0, 1]
and zero otherwise, has BV in [0, 1] for r ≥ 2.

Fourier Series and Dirichlet Conditions

The FS representation of a periodic signal x̃(t) is defined as

Analysis equation: Xk =
1

T0

∫ T0/2

−T0/2

x̃(t) exp(−jkω0t) dt, (8)

Synthesis equation: x̃(t) =

∞∑
k=−∞

Xk exp(jkω0t), (9)

According to the Dirichlet-Jordan Theorem [15], the above representation
for a signal x̃(t) is available provided it satisfies the following two DCs:

(A1) The signal x̃(t) is absolutely integrable over one time period, i.e.,∫ T0/2

−T0/2

|x̃(t)|dt <∞. (10)

(A2) It has BV over one time period. Signals with BV have (i) at most count-
ably infinite number of maxima and minima, and (ii) at most countably
infinite number of finite discontinuities. This is to note that vice-versa
need not be true because signals with BV form a subset of signals satisfy-
ing (i) and/or (ii).

However, the signal processing and other literature [1–10] states the following
three DCs over one time period:

(B1) The signal x̃(t) is absolutely integrable, i.e.,∫ T0/2

−T0/2

|x̃(t)|dt <∞. (11)

(B2) It has a finite number of maxima and minima.
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(B3) It has a finite number of discontinuities of finite magnitude.

Furthermore, the first DC is stated as the weak Dirichlet condition, while the
second and third DCs are stated as strong Dirichlet conditions [4].

The first DC is stated identically in the literature, i.e., (A1) and (B1) are
identical, and ensures the convergence of the integral leading to the computa-
tion of FS coefficients (8). In other words, it ensures the existence of the FS
coefficients or the analysis equation.

Signals that satisfy second DC as stated originally (A2) with bounded vari-
ations over one time period, also satisfy the conditions: (a) at most countably
infinite maxima and minima, and/or (b) at most countably infinite number of
finite discontinuities. In fact, (A2) is required to ensure the recovery of the orig-
inal signal using the Fourier coefficients (except at the points of discontinuities)
via the synthesis equation (9). In other words, it ensures the convergence of FS
(9).

The signal processing textbooks lack a clear explanation in multiple ways as
listed below:

1. Superficially, the two sets of conditions (A2) vis-à-vis (B2)-(B3) may look
similar, but they are not identical. Signals that satisfy (B2)-(B3) have
bounded variations. But there may be signals that have bounded vari-
ations with at most countable infinite maxima and minima, and count-
able infinite discontinuities. Thus, the restriction to finite maxima and
minima, and finite number of discontinuities incorrectly eliminates some
signals that will have convergent FS.

2. While the first condition implies that signals belong to the L1 space, the
second condition (A2) is needed for only these signals belonging to the L1

space. Interestingly, according to the Hunt theorem [13, 14], DCs are not
required for signals that belong to Lp with p > 1. This is the reason that
these conditions are stated to be sufficient but not necessary conditions.
Further, the space L1, i.e., p = 1 is excluded from the Hunt theorem
because, in 1925, Kolmogorov provided an example of a periodic signal
x̃ ∈ L1(0, 2π) that satisfies (A1), but its FS diverges everywhere [13,14].

3. It may not be appropriate to say that the first condition (B1) is weak
and the second and third DCs (B2)-(B3) are strong conditions. Both the
original DCs (A1) and (A2) are required for the signals belonging to L1

and they have their own significance in terms of the analysis and synthesis
of signals using the Fourier basis.

Further, it is to be noted that one can do analysis using the Fourier tool for
signals that satisfy (A1), but fail (A2). Researchers may find use cases of such
signals in applications, where only analysis using Fourier tools is helpful and
synthesis back to the original signal is not required. For example, two popular
continuous wavelets, Morlet and Maxican-Hat are not invertible, but they find
immense applications in the analysis of geophysical signals [16–18].
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From the above discussion, it is evident that the concept of convergence of FS
is required to be added with better clarity to the textbooks for academicians,
students, and researchers. In the next section, we will show examples from
popular signal processing literature that satisfy (B1) but violate (B2) or (B3)
and hence, are stated to fail FS convergence. However, these signals satisfy (A2)
and hence, their FS would converge. These examples can easily highlight the
distinction between (A2) and (B2)-(B3).

Convergence of the Fourier series

In this section, the results related to the convergence of FS are presented. Gen-
erally, three types of convergence, namely, point-wise, uniform, and norm con-
vergence are important and widely discussed in the literature. These definitions
of convergence are connected with how the partial sum [15]

SN (t) =

N∑
k=−N

Xk exp(jkω0t) (12)

converges to x̃(t) as N →∞, i.e., whether limN→∞ SN (t) = x̃(t) is valid in some
sense of convergence or not. The pointwise, uniform, and Lp-norm convergence
are defined as

SN → x̃ pointwise, if lim
N→∞

SN (t) = x̃(t), ∀ t ∈ [0, T0],

SN → x̃ uniformly, if lim
N→∞

{
sup

t∈[0,T0]

|x̃(t)− SN (t)|

}
= 0,

and SN → x̃ in Lp norm, if lim
N→∞

1

T0

∫ T0

0

|x̃(t)− SN (t)|p dt = 0,

where p ∈ R, p ≥ 1 and Lp norm is defined as

||x̃||p=

[
1

T0

∫ T0

0

|x̃(t)|p dt

]1/p
. (13)

Theorem 1 (Dirichlet–Jordan): If x̃ has period T0 and has bounded variation on
[0, T0], then the Fourier series for x̃ converges for all values of t as

lim
N→∞

SN (t) =
1

2
[x̃(t+) + x̃(t−)] , (14)

where this convergence is uniform on every closed interval on which x̃ is con-
tinuous.
Theorem 2 (Parseval’s equality): if 1

T0

∫ T0/2

−T0/2
|x̃(t)|2 dt is finite, then

∞∑
k=−∞

|Xk|2=
1

T0

∫ T0/2

−T0/2

|x̃(t)|2 dt. (15)
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The convergence of FS for an L2-function along with Riesz and Fischer
theorem [15] provides necessary and sufficient conditions for L2-convergence.
Theorem 3 : If x̃ is an L2-function on [0, T0], then its Fourier series converges
to x̃ in L2-norm. Conversely, If

∑
|Xk|2 converges, then there exists an L2-

function x̃ which has Fourier coefficients {Xk}.
The next theorem was proved by Carleson in 1966 [11] for L2-functions, and

was extended by Hunt in 1968 [12] for Lp functions for all p ∈ (1,∞).
Theorem 4 (Carleson [11]): For each x̃ ∈ L2([0, T0]), the Fourier series SN (t)
converges to x̃ almost everywhere.
Theorem 5 (Hunt [12]): If x̃ is an Lp-function for p > 1 on [0, T0], then its
Fourier series converges to it at almost all points.

The phrases about convergence at ‘almost all points’ or ‘almost everywhere’
imply that the FS converges everywhere except at a countable set of points.
Since the Lebesgue measure is zero on the set of countable points, the signal
x̃(t) is said to be equal to its series representation (Synthesis equation (9))
almost everywhere (excluding those countable points at which the divergence
occurs). Thus, the convergence at ‘almost all points’ or ‘almost everywhere’
implies pointwise convergence at all but a set of countable points where diver-
gence occurs. This convergence is a weaker version of pointwise convergence. It
should also be noted that the condition of BV is not specified in Theorems 2–5.
In the following subsections, we present some examples that are widely used in
the signal processing literature to illustrate signals that fail (B2) or (B3) and
are incorrectly stated as not having convergent FS representation [1–4].

Case 1: A function that satisfies only the first DC (A1/B1)

Example-4

Consider a signal x(t) = sin
(
2π
t

)
for 0 < t ≤ 1 and zero otherwise, as shown

in Fig. 1 (top left) and use it to construct a periodic signal with fundamental
period (0, 1] as

x̃(t) =

∞∑
m=−∞

x(t−m). (16)

Clearly, x(t) /∈ BV ([0, 1]) because V (x, [0, 1]) = ∞. However, x(t) ∈ Lp(R)

for p ∈ [1,∞]. It has finite energy because
∫ 1

0

[
sin2

(
2π
t

)
+ cos2

(
2π
t

)]
dt = 1.

Thus, it lies in L2(R). Therefore, by Theorems 2–5, its FS converges to the
original signal at almost all points, although this signal is incorrectly stated as
not having convergent FS representation. We compute the Fourier coefficients
as

Xk =

∫ 1

0

sin

(
2π

t

)
e−jkω0t dt, (17)
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where ω0 = 2π rad/s. By substituting t = e−v, we obtain

Xk =

∫ ∞
0

e−v sin (2πev) e−jkω0e
−v

dv, (18)

which is integration of an exponentially decaying function. One may observe
from (17) and (18) that its Fourier coefficients are upper bounded to one, i.e.,
|Xk|≤ 1. Although its closed form expression is difficult to obtain, we used
the numerical integration to compute the Fourier coefficients as shown in Fig.
1 (bottom left). For the purpose of illustration, Fig. 1 (right) depicts the
corresponding plots obtained for the signal x(t) = cos

(
2π
t

)
, 0 < t ≤ 1.
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Figure 1: Plot of one period of signals over the time interval 0 < t ≤ 1 and corre-
sponding spectrum: (i) signal sin

(
2π
t

)
(top left) and its spectrum (bottom left), (ii)

signal cos
(
2π
t

)
(top right) and its spectrum (bottom right).

Example-5

We consider another interesting example of a periodic signal with fundamental
period (0, 1] as

x̃(t) = sin (tan(πt)) , (19)

as shown in bottom Fig. 2. Clearly, in one period, x̃(t) ∈ Lp(R) for p ≥ 1, as∫ 1

0
|sin (tan(πt)) |pdt ≤

∫ 1

0
|1|pdt = 1,

∫ 1

0

[
sin2 (tan(πt)) + cos2 (tan(πt))

]
dt = 1,

which proves x̃(t) ∈ L2(R), but x̃(t) /∈ BV ([0, 1]) as x̃′(t) = π cos (tan(πt)) sec2(πt)

and V (x, [0, 1]) =
∫ 1

0
|x̃′(t)|dt = ∞. Theorems 2–5 lead to convergence in this

8
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Figure 2: Plot of one period of signals over the time interval 0 < t ≤ 1 and corre-
sponding spectrum: (i) signal sin (tan(πt)) (top left) and its spectrum (bottom left),
(ii) signal cos (tan(πt)) (top right) and its spectrum (bottom right).

case. Its Fourier coefficients can be obtained as

Xk =

∫ 1

0

sin (tan(πt)) e−jkω0t dt, (20)

|Xk| =
∣∣∣∣∫ 1

0

sin (tan(πt)) e−jkω0t dt

∣∣∣∣ ,
|Xk| ≤

∫ 1

0

∣∣sin (tan(πt)) e−jkω0t
∣∣ dt, (21)

≤
∫ 1

0

1 dt = 1, (22)

thus they are bounded, i.e. |Xk|≤ 1, for all k. Although its closed form ex-
pression is difficult to obtain, we used the numerical integration to compute the
Fourier coefficients as shown in Fig. 2 (bottom left). Similar analysis has been
performed for the signal x̃(t) = cos (tan(πt)) and plots are shown in Fig. 2 (top
right and bottom right).
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Example-6

Here, we consider a signal x(t) = 1√
t

for 0 < t ≤ 1, and zero otherwise. Now,

we construct a periodic function

x̃(t) =

∞∑
m=−∞

x(t−m), (23)

as shown in bottom Fig. 3. Clearly, x(t) ∈ L1(R) as
∫ 1

0
1√
t
dt = 2, but x(t) /∈

L2(R), and x(t) /∈ BV ([0, 1]) as V (x, [0, 1]) = x(0) − x(1) = ∞. However,
x(t) ∈ Lp(R) for 1 ≤ p < 2. From Theorems 1–4, it seems that the FS does
not converge while Theorem 5 leads to the convergence in this case. Its Fourier
coefficients can be obtained as

Xk =

∫ 1

0

1√
t
e−jkω0t dt, (24)

Xk =

∫ 1

0

2 e−jkω0z
2

dz,

and they are bounded as |Xk|≤ 2, ∀ k and X0 = 2. Although its closed form
expression is difficult to obtain, we used the numerical integration to compute
the Fourier coefficients as shown in Fig. 3 (bottom right).
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Figure 3: Plot of one period of signals and corresponding spectrum: (i) staircase
signal (25) (top left) and its spectrum (bottom left), (ii) signal 1√

t
(top right) and its

spectrum (bottom right)
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Case 2: A function that satisfies both the DCs (A1 and A2)

Example-7

Here, we consider a series xn(t) = 1
2n for 1

2n+1 ≤ t < 1
2n , n = 0, 1, 2, . . . , and

zero otherwise. Now, we construct a periodic signal

x̃(t) =

∞∑
m=−∞

x(t−m), where x(t) =

∞∑
n=0

xn(t), (25)

as shown in top Fig. 3. This signal is also incorrectly stated as not having
convergent FS representation since it does not satisfy DCs (B2 and B3). Clearly,
x(t) ∈ Lp(R) for p ∈ [1,∞], and x(t) ∈ BV ([0, 1]) as V (x, [0, 1]) = 1. Using
Theorems 1–5, its FS converges to it at almost all points.

We compute the Fourier coefficients as

Xk =

∞∑
n=0

∫ 1
2n

1

2n+1

1

2n
e−jkω0t dt, (26)

=
j

kω0

∞∑
n=0

1

2n

(
e

−jkω0
2n − e

−jkω0
2n+1

)
, k 6= 0,

and X0 =

∞∑
n=0

∫ 1
2n

1

2n+1

1

2n
dt =

2

3
, (27)

where ω0 = 2π rad/s. While its difficult to obtain a closed form expression, we
observe from (26) that Fourier coefficients are upper bounded as

|Xk| =

∣∣∣∣∣ j

kω0

∞∑
n=0

1

2n

(
e

−jkω0
2n − e

−jkω0
2n+1

)∣∣∣∣∣ , k 6= 0,

≤ 1

|k|ω0

∞∑
n=0

1

2n

∣∣∣(e−jkω0
2n − e

−jkω0
2n+1

)∣∣∣ , k 6= 0,

≤ 1

|k|ω0

∞∑
n=0

1

2n

(∣∣∣e−jkω0
2n

∣∣∣+
∣∣∣e−jkω0

2n+1

∣∣∣) =
4

|k|ω0
.

Hence, |Xk|≤ 4
|k|ω0

= 2
|k|π for k = ±1,±2, . . . , and X0 = 2

3 .

One may also argue that if FS of (16) and (25) do not converge, then they
will create exceptions (counter-examples) to the well established results in The-
orem 3, Theorem 4 and Theorem 5, and thus invalidate them.

For the sake of completeness, we provide some examples that neither satisfy
(both) DCs, nor the theorem by Hunt. Therefore, their FS do not converge.
Say, for example,
(i) x1(t) = 1

t , t ∈ (0, 1]
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(ii) x2(t) = 1
t sin

(
2π
t

)
, t ∈ (0, 1]

(iii) x3(t) =
∑∞
n=0 xn(t), where xn(t) = an for 1

cn+1 ≤ t < 1
cn , c > 1,

n = 0, 1, 2, . . . ,∞, diverges for |a|≥ c and converges for 0 ≤ |a|< c.

Dirichlet Conditions for Fourier Transform

Fourier transform (FT) is the limiting case of Fourier series as the time period
T0 of a periodic signal x̃(t) approaches ∞. In that case, the signal becomes
aperiodic and the Fourier transform is the limiting case of the envelope of Fourier
series. The Fourier transform (FT) and inverse FT are defined as [1–10]

Analysis Equation: X(f) =

∫ ∞
−∞

x(t) e−j2πft dt, (28)

Synthesis Equation: x(t) =

∫ ∞
−∞

X(f) ej2πft df, (29)

respectively. Similar to FS, the DCs for FT can be stated as below:

(C1) The signal x(t) is absolutely integrable, i.e.,∫ ∞
−∞
|x(t)|dt <∞. (30)

(C2) It has BV over t ∈ (−∞,∞), i.e., the signal x(t) ∈ BV (R). Such signals
will have (i) at most countably infinite number of maxima and minima,
and (ii) at most countably infinite number of finite discontinuities.

However, the DCs for FT are defined in the signal processing, communication
and other literature as [1–10]:

(D1) The signal x(t) is absolutely integrable, i.e.,∫ ∞
−∞
|x(t)|dt <∞. (31)

(D2) It has a finite number of maxima and minima within any finite interval.

(D3) It has a finite number of finite discontinuities within any finite interval.

These DCs are stated to be the sufficient, but not necessary conditions for
the convergence of FT. Similar to the subtle gaps observed in the statements
of DCs of FS, (A2) vis-à-vis (B2)-(B3), we observe a few gaps in (C2) vis-à-
vis (D2)-(D3). Firstly, signals that satisfy (D2)-(D3) have bounded variations.
But there may be signals that have bounded variations with at most countable
infinite maxima and minima, and countable infinite discontinuities. Thus, the
restriction to finite maxima and minima, and finite number of discontinuities
incorrectly eliminates some signals that will have convergent FT. For example,
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FT of the signals x(t) defined in (4) and (25) exist because they satisfy (C1)
and (C2). However, they are incorrectly stated as not having convergent FT
because they do not satisfy (D2)-(D3). Secondly, there exist signals with valid
FT representation, despite not satisfying DCs (C1) and/or (C2). For example,
if x(t) ∈ L2(R), then its FT converges in L2-norm [1–4]. Next, we present some
interesting examples in support of the above statements regarding DCs.

Example-8

We consider a signal x(t) = sin
(
2π
t

)
for −∞ < t < ∞, which does not satisfy

DCs, i.e., x(t) /∈ L1(R) and x(t) /∈ BV (R). This signal is incorrectly stated
as not having convergent FT representation. Because x(t) ∈ L2(R), its FT
converges in L2-norm. One may also note that x(t) ∈ L∞(R). To show that
x(t) ∈ L2(R), we compute its energy Ex as

Ex =

∫ ∞
−∞

sin2

(
2π

t

)
dt = 2

∫ ∞
0

sin2

(
2π

t

)
dt. (32)

On substituting 2π/t = v, we obtain

Ex = 4π

∫ ∞
0

(
sin(v)

v

)2

dv = 2π2. (33)

The Fourier transform of this signal is given by

X(f) =

∫ ∞
−∞

sin

(
2π

t

)
e−j2πft dt, (34)

and numerical integration can be used to compute the spectrum.

Example-9

Interestingly, in contrast to the signal x(t) = sin
(
2π
t

)
for −∞ < t < ∞ of

Example-8, the signal x(t) = cos
(
2π
t

)
for −∞ < t < ∞ does not satisfy DCs.

Also, its FT does not converge because x(t) does not belong to Lp(R), p ∈ [1,∞),
but belongs to only L∞(R). We compute its energy Ex as

Ex =

∫ ∞
−∞

cos2
(

2π

t

)
dt = 2

∫ ∞
0

cos2
(

2π

t

)
dt. (35)

The above energy is not finite because∫ ∞
−∞

[
sin2

(
2π

t

)
+ cos2

(
2π

t

)]
dt =

∫ ∞
−∞

1 dt =∞, (36)

and thus,

∫ ∞
−∞

cos2
(

2π

t

)
dt =∞. (37)
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One can also observe that∫ b

a

cos2
(

2π

t

)
dt+

∫ b

a

sin2

(
2π

t

)
dt = (b− a), (38)

which is finite for any finite duration a ≤ t ≤ b. Intuition regarding the above
computations of energies can be easily made from the graph of the signals
sin
(
2π
t

)
and cos

(
2π
t

)
plotted on the time interval 1 ≤ t ≤ 100 as shown in

the Fig. 4 top and bottom, respectively.

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

sin(2 /t)

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

cos(2 /t)

Figure 4: Plot of the signals sin
(
2π
t

)
and cos

(
2π
t

)
on the time interval 1 ≤ t ≤ 100.

Example-10

Similar to Example-8, there is another interesting non-periodic signal that is

frequently used, i.e., x(t) = sin(πt)
πt for −∞ < t < ∞, where x(t) /∈ L1(R) and

x(t) /∈ BV (R), i.e., it does not satisfy DCs. However, it is an L2(R) function.
Its energy (Ex) and FT can be obtained as

Ex =

∫ ∞
−∞

(
sin(πt)

πt

)2

dt = 1, (39)

X(f) =

{
1, if − 1 ≤ f ≤ 1,

0, otherwise.
(40)

The two alternative sets of requirements, i.e., (i) fulfillment of DCs, (ii) finite
energy, are sufficient to guarantee that a signal has a Fourier representation.
The set of signals which are neither absolutely integrable nor square integrable
over an infinite interval, can have Fourier representation if Dirac delta impulse
function [19] is included in the Fourier representation [1–4].
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Some Concluding Remarks

In this lecture note, we have developed a clear understanding of the Dirichlet
conditions with detailed discussions and suitable examples. The clarifications
provided here are not available across many popular books, articles, and lecture
notes. Also, some of the examples considered in this note are inadvertently used
in the existing literature to illustrate signals not having a valid Fourier represen-
tation. The Fourier analysis for these widely-used examples has been presented
here to reveal some new findings. Therefore, as an outcome of this study, ap-
propriate clarifications may be added to the existing literature to ensure proper
dissemination of the intended information to students and researchers working
across a plethora of applications utilizing Fourier theory.
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