
P
os
te
d
on

25
J
u
n
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
48
42
24
5
.v
1
—

T
h
is

is
a
p
re
p
ri
n
t.

V
er
si
on

of
R
ec
or
d
av
ai
la
b
le

at
h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
16
/j
.i
sw

a.
20
22
.2
00
10
5

Safe Deployment of a Reinforcement Learning Robot Using Self

Stabilization

Nanda Kishore Sreenivas 1 and Shrisha Rao 2

1Affiliation not available
2International Institute of Information Technology - Bangalore

October 30, 2023

Abstract

In toy environments like video games, a reinforcement learning agent is deployed and operates within the same state space

in which it was trained. However, in robotics applications such as industrial systems or autonomous vehicles, this cannot be

guaranteed. A robot can be pushed out of its training space by some unforeseen perturbation, which may cause it to go into

an unknown state from which it has not been trained to move towards its goal. While most prior work in the area of RL safety

focuses on ensuring safety in the training phase, this paper focuses on ensuring the safe deployment of a robot that has already

been trained to operate within a safe space. This work defines a condition on the state and action spaces, that if satisfied,

guarantees the robot’s recovery to safety independently. We also propose a strategy and design that facilitate this recovery

within a finite number of steps after perturbation. This is implemented and tested against a standard RL model, and the results

indicate a much-improved performance.
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Abstract

In toy environments like video games, a reinforcement learning
agent is deployed and operates within the same state space in which it
was trained. However, in robotics applications such as industrial sys-
tems or autonomous vehicles, this cannot be guaranteed. A robot can
be pushed out of its training space by some unforeseen perturbation,
which may cause it to go into an unknown state from which it has
not been trained to move towards its goal. While most prior work in
the area of RL safety focuses on ensuring safety in the training phase,
this paper focuses on ensuring the safe deployment of a robot that has
already been trained to operate within a safe space. This work defines
a condition on the state and action spaces, that if satisfied, guaran-
tees the robot’s recovery to safety independently. We also propose a
strategy and design that facilitate this recovery within a finite number
of steps after perturbation. This is implemented and tested against a
standard RL model, and the results indicate a much-improved perfor-
mance.

Keywords: safety in robotics, reinforcement learning, self stabilization

1 Introduction

While some early works in reinforcement learning (RL) were restricted to
simple environments [1, 2], recent works have used RL to solve problems
in real-world settings where the stakes are much higher. Over the past
decade, RL has found its way into robotics [3], autonomous vehicles [4],
controlling traffic signals [5], and optimizing chemical reactions [6] among
many other practical use cases. Therefore, it can be seen that such robots
trained using RL (which we refer to as “RL robots”) cannot afford to focus
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only on performance; they also need to ensure their safety in addition to
that of their surroundings. Safety in robotics has been considered to be a
major bottleneck in the safe and productive use of robots in industry and
manufacturing [7].

Safety in RL has been a topic of interest recently. Achiam et al. [8] pro-
posed Constrained Policy Optimization (CPO) as a trust region method,
which offered near-constraint satisfaction. A different approach to address
the problem of safe exploration is to add a safety layer that corrects the
action choice to never violate constraints during training [9]. This is done
by pretraining based on past trajectories made up of arbitrary actions. An-
other class of solutions uses Lyapunov functions to guarantee safety during
training [10, 11]. Yet another recent work used a QP solver for ensuring
safety [12]. Gehring and Precup [13] propose a different approach based on
the notion of controllability computed from temporal difference errors. Hu-
man demonstrations have also been used to constrain exploration to ensure
safety [14]. Recently, inverse RL has been used to learn human perception of
safety and hard safety constraints based on successful demonstrations [15].
For an expanded overview of related work, see the survey by Garćıa and
Fernández [16] on safe RL.

A common theme across all these works is that they are more focused
on ensuring safety during training, which is certainly an important concern.
Andersson and Doherty [17] show that popular RL algorithms which gen-
erally perform well on simple toy environments fare poorly when random
perturbations are introduced. Also, even robots trained with safe explo-
ration methods such as CPO in simulation are unsuccessful at some tasks
when deployed in the real world [18]. Dalal et al. [9] write, “Safety is a
crucial concern: unless safe operation is addressed thoroughly and ensured
from the first moment of deployment, RL is deemed incompatible for them.”
Chow et al. [10] also concur: “Besides optimizing performance it is crucial to
guarantee the safety of an agent in deployment, as well as during training.”

While most agree that safety is as important in deployment as it is in
training, there has not been much work on safety in deployment. This
could be because of an implicit assumption that a well-trained robot taught
to explore safely will also remain within safety in deployment. While that
could be true, a robot may enter an unsafe state unintentionally due to some
unforeseen external perturbation in the environment. In such an event, the
robot should recover to safety as soon as possible, but it may be in a hitherto
unseen state and there may exist no learned policy that the robot can readily
use.

This has been defined as one of the challenges in AI safety by Amodei
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et al. [19], who discuss the scenario where an agent finds itself in a space
different from the one it was originally trained in:

“In general, when the testing distribution differs from the train-
ing distribution, machine learning systems may not only exhibit
poor performance, but also wrongly assume that their perfor-
mance is good. More broadly, any agent whose perception or
heuristic reasoning processes are not trained on the correct dis-
tribution may badly misunderstand its situation, and thus runs
the risk of committing harmful actions.”

We precisely focus on this aspect of safety: how can a trained RL robot
quickly recover when perturbed? Work on RL and its applications suggests
that systems using RL may be subject to transient disturbances, and specif-
ically that robots trained using RL may encounter issues during deployment
that have not been seen during training. We illustrate that self stabiliza-
tion, a classical paradigm of distributed computing, can be applied to RL
to address these problems.

We first define a recoverability condition on the state space, which if
satisfied guarantees the robot’s return to safety when unsafe. We offer a
prototype of an RL robot that learns the consequence of each action during
the training phase, i.e, the change in state that occurs. During deployment,
when the robot enters an unsafe territory, it determines the state change
required to navigate back to safety. The robot now finds a sequence of ac-
tions that help lower its distance to safety based on the relationship between
action and state change that it had learned during training. Thus, the sug-
gested robot model can stabilize itself when pushed out of the safe space
due to some unexpected perturbation.

We implement this model and test it on a simulated maze environment
where the robot navigates a maze to reach its goal. There are high negative
rewards when the robot is in an unsafe state. The trained RL robot is
deployed with and without self stabilization. Perturbations are simulated
probabilistically with the same frequency in both cases. While the RL robot
without stabilization is found to recover from roughly 50% of perturbations,
but the RL robot with self stabilization (abbreviated as RL+SS) achieved a
100% recovery. It is also observed that the average score after 5000 episodes
of deployment is significantly higher for the robot using the RL+SS strategy.

Further, the same strategy was implemented in a simulated environment
based on the Atari game of Lunar Lander. To find out if RL+SS can achieve
better scores even in the absence of systemic safety constraints, different
artificial safety constraints that direct the robot toward its goal are tested.
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For an already trained RL robot, choosing the right constraint resulted in
slightly better scores.

2 Self Stabilization

In distributed computing, self stabilization was conceived by Dijkstra [20] as
the property of a system that can return to a valid state in spite of the lack
of a centralized control. Equivalently, a self-stabilizing system is one whose
current state only depends on its previous k inputs (for some constant k).
Such a system is guaranteed to stabilize, post the occurrence of a fault, once
it processes k inputs.

Self stabilization may also be looked upon as a special case of non-
masking fault-tolerance [21, 22] where a system is able to recover from arbi-
trary transient faults. It has found applicability in different contexts where
algorithms are needed that can help a system recover to a valid state after
a fault.

We denote the set of all states by S. For any predicate P , we define SP
as the set of states in S where predicate P holds.

Definition 1. We define three predicates which serve as the basis for all
subsequent development:

1. L : S→ {T, F} is a legitimacy predicate, such that L(x) = T if x is a
legitimate state in S. The set of all legitimate states is denoted by SL.

2. Z : S→ {T, F} is a safety predicate, such that Z(x) = T if x is a safe
state in S. Safe states SZ denotes the set of all states where Z holds;
SZ ⊆ SL.

3. Z ′ : S → {T, F} is a non-safety predicate, such that Z ′ = Z̄ ∧ L.
Unsafe states SZ′ are those legitimate states where Z does not hold.

Safe states are those where the robot is supposed to operate, and un-
safe states are the ones from where the robot can recover to safe states.
Legitimate states refer to those states that are either safe or unsafe, and
illegitimate states are the absolute worst case where recovery is also not
possible.

The distance between two states sl and sk is denoted by d(sl, sk). The
exact distance metric can vary based on the environment. The distance to
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safety, denoted by dZ(x) is a measure of how close a given state x is to
safety; it is the minimum distance between x and any safe state in SZ .

dZ(x) =

{
0 x ∈ SZ

min∀i∈SZ
d(x, i) x /∈ SZ

(1)

Self stabilization is the process of a robot independently stabilizing itself
starting from an unsafe state to a safe state through a finite sequence of
actions, provided there are no further perturbations.

When the robot is at an unsafe state x, a properly chosen action will
move the robot to a state x′, such that dZ(x′) < dZ(x). Such an action
is termed a stabilizing nudge. In simpler words, a stabilizing nudge moves
the robot towards safety. Alternatively, stabilization can be seen as a finite
sequence of stabilizing nudges until the robot enters a safe state.

The robot has a set of permissible actions A, whose cardinality is denoted
by nA. When a certain action a is taken from a state st, the transition
function δ returns the next state and a real-valued reward. δ : S × An →
S × R, and is given by:

δ(st, a) = (st+1, rt) (2)

The environment defined by the state space S and the robot’s actions
A, is said to be recoverable if it satisfies the recoverability condition:

∀s1 ∈ SZ′ , ∃s2 ∈ SZ | δ(s1, πk) = s2 (3)

where πk is a finitely long sequence of actions.

Remark 1. If the recoverability condition is satisfied, then stabilization is
always possible.

The contradiction of the above is that the recoverability condition is
satisfied and there exists a case where stabilization is not possible. If stabi-
lization is not possible, then there should be at least one unsafe state that
cannot be stabilized through a finite sequence of actions, which is the nega-
tion of the recovery condition in (3). Thus, the contradiction is false, and
the remark is true.

3 Self Stabilization in RL

An RL robot is typically trained in a training space, and then deployed in
the real world. When the RL robot has been deployed, it could enter a state
outside the training space due to some external, unforeseen perturbation.
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As discussed in Section 2, each robot working in some environment typ-
ically has a legitimacy predicate L. We assume that robots are trained in
the safe space, and hence use the terms training space and safe space inter-
changeably from here. Even though the robot is trained in SZ , there is no
guarantee that the robot has been to all safe states. So, we define one more
predicate as follows.

Definition 2. F : SZ → {T, F} is the familiarity predicate, such that
F (x) = T if the robot has been in state x during the training phase. The
set of states encountered by the robot in the training phase is denoted by SF

and, SF ⊆ SZ .

State change function ∆, returns the vector difference between any two
given states. If the robot transitions from state sm to sm+1 by performing
an action a, then the state change is given by

∆(sm, sm+1) = sm+1 − sm (4)

The state change function ∆ would need some transformation if the
attributes representing the state are not numeric. There are many transfor-
mation functions available in the ML literature to do this. Of course, there
could be scenarios where the standard transformations are not applicable,
but such cases can only be dealt with on a case by case basis.

States could be continuous in some environments, and even when dis-
crete, there could be too many possible values of state changes in some
environments. So, to handle such cases, the state changes could be dis-
cretized into some finite types. The set of state changes is denoted by Σ and
its cardinality is denoted by nΣ.

There are many different algorithms within the domain of RL, but we use
Q-learning [1] in all the environments here. The goal is for the robot to learn
the optimum action to take under different circumstances. Central to the
algorithm is the quality function, which returns the quality of a state-action
pair, Q : SZ ×A→ R.

The Q-values for all state-action pairs are initialized with some arbitrary
value. Then, at some time t, the robot chooses some action a from a state
st, and observes a reward of rt. The new quality of the state-action pair is
updated based on the Bellman equation.

This whole process of selecting an action and updating the quality func-
tion helps the robot learn which actions to choose under various circum-
stances. This is done repeatedly until a certain number of episodes are over,
or until a certain average score is achieved. Once the training terminates,
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the robot can now be deployed. Now, when the robot is at state s, the
optimum action is chosen by

a∗ = argmax
ai∈A

Q(s, ai) (5)

As discussed above, the Q-function maps all safe state-action pairs. So,
when the robot has been perturbed and is in a state s′ ∈ SZ′ , it has no row in
the Q-Table to refer to, and hence cannot decide which action is appropriate.
In such a case, the robot has only two possible courses of action—to remain
idle, or choose an action at random from A. Both of these cannot guarantee
the recovery of the robot, and randomly choosing an action could further
aggravate the situation by landing the robot in an illegitimate state.

However, when the recoverability condition is satisfied by the environ-
ment (3), the robot can be stabilized and return to safety if it maintains some
extra information during training. The robot characteristics that facilitates
this, and the maze environment where this model is tested are explained in
the following subsections.

3.1 Robot Characteristics

Each robot has the following four attributes:

• Current state st, which is typically an n-tuple and is defined specifically
for each environment.

• Visited states Ψ, a set of all states visited by the robot during training.

• Action-state change table Ω, a table which holds the number of times
each action induces a certain state change.

• Q-Table or a Deep Q-Network Q, which is used to keep track of Q-
values. The choice depends on the particular environment.

Visited states Ψ is the set of familiar states, i.e., the states where the
familiarity predicate F holds. The only purpose of maintaining this is for
the robot to find the closest safe state, and consequently the distance to
safety given by (1) when unstable.

The action-state change table, Ω is an nA × nΣ matrix where Ω[i][j]
holds the number of times action i induces a state change j. This is used to
calculate conditional probabilities to decide which action is most probable
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to induce the required state change, σx ∈ Σ. Conditional probabilities can
be calculated from Ω as:

P (σx|ak) =
P (σx ∧ ak)
P (ak)

P (σx|ak) =
Ω[ak][σx]

Ω[ak]

where,Ω[ak] =
∑
∀l∈Σ

Ω[ak][l]

Here, the probability of state change σx and action ak happening together
is given by Ω[ak][σx], and the marginal probability P (ak) as the sum of all
cells in the row corresponding to ak.

The action a∗σx which is most likely to bring about a state change of σx
is given by

a∗σx = argmax
ai∈A

P (σx|ai) (6)

P (σx|ai) is the probability of inducing a state change of σx given that an
action ai has been chosen. So, to maximize the chances of getting σx, the
action should be chosen such that the conditional probability is maximized.
Based on Ω, the robot finds the action which can mostly likely effect a state
change of σx, as given by (6).

The Q-Table is a matrix used to store the quality of all state-action
pairs, and hence it is of dimensions |SZ |×nA. In environments with a large
number of discrete states, or when states are continuous, the number of rows
grows very large and cannot be efficiently handled. In such cases, Q-learning
is used along with function approximation techniques. One of the popular
solutions is to use an artificial neural network as the function approximator.

3.2 Working of the Robot

3.2.1 Modified Q-learning

To accommodate the robot characteristics discussed in Section 3.1, and
to learn the relation between actions and state changes, the standard Q-
learning algorithm is modified to additionally capture the effect of actions
on state changes. Similar to standard Q-learning, the robot chooses an ac-
tion a either by exploration or exploitation based on the current state s.
The transition function δ given by (2) is used to find the next state st+1

and the reward rt. The state change function ∆, given by (4), is used to
determine the state change between s and st+1, and this is stored as c. The
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corresponding entry in the action-state change table denoted by Ω[a][c] is
updated.

3.2.2 Self Stabilization

When the robot is deployed and if it is in unsafe territory, the self stabiliza-
tion method, outlined by Algorithm 1, is used to recover. The input to this
stabilization method includes current state st, and the action-state change
table Ω. The method returns the state of the robot after stabilization, and
the total reward accumulated due to the actions performed. The total re-
ward ρ is initialized as 0 in line 1. The robot then iterates through its set
of visited states Ψ to find the targeted safe state η and the corresponding
distance to safety $, seen in lines 2 and 3. From the set of all state changes
Σ, the best value σx is chosen such that it minimizes distance to safety, as
seen in line 4. The action a∗σx that is mostly likely to induce the required
state change σx is found using the findAction method, which is an imple-
mentation of (6). Line 7 uses the transition function δ given by (2) to find
the next state and reward associated with this action, and then ρ is updated.
$ is now updated as the distance between updated state st and the targeted
state η by (1). If $ = 0 (line 4), the function terminates and returns the
current state, which is safe by (1), and the total reward accumulated by all
the actions performed. Else, the same set of steps (lines 5–9) is repeated.

3.3 Maze

The Maze environment [23] is a simple 2D grid-based environment where
the robot finds its way from a start position to the goal. Each cell in the
grid is represented by its row and column numbers (r, c). The robot can
move in all four directions and only one step at a time. As in any typical
maze, movement along certain directions could be blocked in some cells. So,
if the robot attempts to execute such an impermissible action from such a
state, it remains at the same state.

The state of the robot is represented by an ordered pair 〈r, c〉, which is
simply the position of the robot in the grid. A 20×20 grid is considered the
legitimate space (SL) in this scenario; going outside of this grid is irrecov-
erable and has a high penalty. Centered within this large grid, a smaller
10× 10 grid is considered the safe space SZ .

Each episode starts with the robot at any random position within the safe
space. The goal or destination is fixed at (15, 15). An episode ends either
when the robot reaches its goal, or when it transitions into an illegitimate
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Algorithm 1: Self-Stabilization Method

Input : st,Ω
Output: st,ρ

1 ρ ← 0 ;
/* Find the closest state and the corresponding distance

to safety */

2 η ← closest state in Ψ;
3 $ ← d(η,st) ;
4 while $ 6= 0 do

/* Find the best state change */

5 σx ← argminj∈Σ d(st +j, η) ;

/* Find action corresponding to σx */

6 a∗σx ← findAction(σx,Ω) ;
/* Update state and total reward */

7 st,rt ← δ(st,a
∗
σx) ;

8 ρ ← ρ + rt;
9 $ ← d(st,η) ;

10 end
11 return st,ρ

10



state.
The entire grid which is the legitimate space is a square bound by (1, 1)

and (20, 20), the top left and bottom right cells respectively. The safe space,
which is the inner square is bound by (6, 6) and (15, 15).

As described earlier, the robot can move one step in all four directions.
So, the action space is a four member set given by

A = {N,S,E,W}

Based on the actions and the state space defined, it can be clearly seen
that a robot starting at any unsafe state can ultimately reach a safe state
through a finite sequence of actions. Thus, the recoverability condition (3) is
satisfied in this environment. Since there are four possible actions, only four
different state changes are possible due to any action. Since this is a maze,
and sometimes certain actions are not allowed from specific cells, such an
impermissible action does not induce any change and thus the state change
is 0 in both dimensions.

Σ = {(+1, 0), (−1, 0), (0,+1), (0,−1), (0, 0)}

As described in Section 3.1, the robot maintains the set of visited states
Ψ during the training phase. Additionally, after each transition, it also
updates the action-state change table (Ω), a 4 × 5 matrix. Since this is
a grid-based environment, the Manhattan distance is used as the distance
metric here.

Each action and the corresponding consequence determines a reward,
and this is used in estimation of Q-values and to learn the best action that
can be performed from each state. Achieving the goal has a reward of +1000,
entering an illegitimate state offers a reward of -1000, any action within the
safe space has a reward of -1, and any action outside provides a reward of
-5.

Action (1,0) (-1,0) (0,1) (0,-1) (0,0)

N 0 6972 0 0 288
S 8332 0 0 0 212
E 0 0 9146 0 201
W 0 0 0 7718 196

Table 1: An Example of Ω Table in Maze

11



A sample of the action-state change table Ω is shown in Table 1. For
example, for the action N moving towards North, the row number of the state
decreases by 1. This can also be observed from Table 1, where P ((−1, 0)|N) =
0.97 by (6).

Consider an event where the robot is at an unsafe state, say (2,12). It
now iterates through its set of visited states Ψ and finds the state (6,12)
which is the closest safe state. The difference between the two states is
(4,0). The state change σx that will move the robot towards safety is (1,0),
and the action most likely to induce that is calculated from Ω, which is to
move South (S) because P ((1, 0)|S) = 0.97 by (6). The same sequence of
steps is repeated until it is at a safe state as also shown in Algorithm 1.

4 Performance Improvement using Self Stabiliza-
tion

We use the standard Lunar Lander environment based on the well-known
Atari game; it is also a part of the OpenAI Gym [24]. Here, state is repre-
sented by an 8-tuple, 〈X,Y, Vx, Vy, θ, ω, l1, l2〉, where X,Y correspond to the
x and y coordinates of the lander and Vx, Vy denote the velocity components
along the x and y axes respectively. The angle of rotation,and the angular
velocity are denoted by θ and ω. The last two attributes l1, l2 indicate if
the legs of the lander are in contact with the ground. The state space is
continuous here, unlike the maze environment. The robot is trained to land
at its destination (0, 0). The discrete action space A is given by:

A = {N,L,M,R}

The first action N corresponds to no action where the lander is subject to
gravity only, while the other three actions correspond to firing the left, main,
and right engines respectively to navigate the lander.

States are continuous here, and hence maintaining an action-state change
table with all possible values of state change is not feasible. So, we define
state change as positive and negative with respect to each attribute. There-
fore, Σ is a set with 2 × 8 = 16 possible state changes. For illustration
purposes we show only the relevant part of the action-state change table
Ω for this environment in Table 2. For example, by (6), it can be seen
that firing the left engine mostly results in a decrease in Vx, firing the right
engine most likely corresponds to an increase in Vx, and firing the main
engine is most likely to bring about an increase in Vy. All these inferences
based on the action-state change table are true based on the definitions of
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X Y Vx VY

+ − + − + − + −

N 337 1103 596 844 637 803 3.0 1437.0
L 360 745 297 808 3 1102 21.0 1084.0

M 1286 3170 1827 2629 2226 2230 4066.0 390.0
R 299 824 179 944 1119 4 7.0 1116.0

Table 2: An Example of Ω in Lunar Lander

these actions, thus showing that our model can learn the action-state change
relationship accurately even in complex environments.

The goal of this experiment is to determine if the self stabilization
strategy helps achieve better scores using goal-directed artificial safety con-
straints. This environment also serves as an example of applying the self-
stabilization strategy in a complex environment with continuous states. We
create a simple artificial constraint based on the lander’s position on the x-
axis. We introduce a safety threshold λ, such that the lander is now consid-
ered safe only when −λ ≤ X ≤ +λ. As this is a complex environment where
each action impacts more than one attribute, performing self-stabilizing ac-
tions each instant could cause unintended consequences on other attributes.
Hence, different frequencies of self-stabilizing nudges are considered. The
stabilizing nudges are applied once every ν time steps, ν ≥ 1.

5 Results

In the Maze environment, the trained model is deployed and played for 5000
episodes. Three different scenarios are considered—no perturbations, RL-
only, and RL+SS. The case of no perturbations is considered to measure
the rewards in an ideal situation where the robot is always safe, and is
never perturbed. For the other two cases, perturbation is handled by a
probabilistic model, and the probability of a random perturbation in any
timestep is defined as the perturbation probability. It is simply to control
the frequency of perturbations, and a value of 0.05 is chosen as an example;
it is not critical to the simulations. Increasing the perturbation probability
would exacerbate the issues for unstabilised (RL-only) robots, but for the
robots using RL+SS approach, the results do not change significantly as any
perturbation is always eventually stabilized. As the perturbation probability
is reduced, the scores improve in both cases and as it tends to zero, it
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corresponds to the case of no perturbations.
In the case of only RL, the robot has no information on the Q-table

to make an informed decision about the next move. Two alternatives are
available to the robot—to remain stationary or to make random moves. The
consequences of remaining idle are fairly obvious, and hence we consider only
the random move strategy in this scenario. The RL+SS scenario is the case
of using the strategy that has been explained in Section 3.

5.1 Performances of the Three Strategies in Maze

Metric RL+SS RL Only No perturbations

Max 1000 1000 1000
Min 424 -1977 938
Mean 946 -80 973
Std deviation 54 1035 19
Recovery [%] 100 % 36 % N/A

Table 3: Aggregate statistics in Maze

Although the robot is deployed for 5000 episodes, in Figure 1a, only a
set of 20 episodes is depicted for the sake of brevity. The aggregate statis-
tics across all 5000 episodes are shown in Table 3. The RL+SS approach
guarantees recovery (100%), whereas the RL-only approach was able to re-
cover only in 36% of the cases of perturbations. Thus, this suggests that
stabilization is guaranteed by the RL+SS strategy in Maze.

From Table 3, it can be seen that the mean scores also reflect on the
benefits of RL+SS (946) over the RL-only strategy (-80). This is primarily
because when the RL-only strategy is used, the robot does not recover 64%
of the time and end up in illegal states which have high negative payoffs.
On the other hand, the RL+SS approach ensures the robot never enters an
illegal state, and also achieves the goal, thus enabling higher positive payoffs.

5.2 Extent of Perturbation Versus Recovery Time in Maze

The frequency of perturbation is handled by a probabilistic model, but the
extent of perturbation is random. The extent of perturbation is the min-
imum distance between the perturbed state and a safe state. Figure 1b
depicts the relationship between the extent of perturbation and the recov-
ery time with both strategies. In RL+SS, the number of steps taken to
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recover is exactly equal to the extent of perturbation, hence we see a per-
fect linear relationship in this case. In the RL-only strategy, the moves are
random, and hence there is no such relationship shown. However, it is clear
that the curve corresponding to the RL-only strategy is always above the
RL+SS line, showing that recovery, even when possible, is slower.
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Figure 1: Maze scores

5.3 Performance Improvement using RL+SS in Lunar Lan-
der

The values of the artificial safety constraint λ and stabilization period ν are
varied and the results are observed. A 5% improvement is observed with a
moderate value of λ and ν. It is also clear that extremely low values of stabi-
lization period and safety thresholds result in poor rewards. Also, very high
values of these two parameters give scores that are nearly same as the scores
achieved by the RL-only strategy. This is expected and fairly intuitive, since
the RL-only approach is basically RL+SS with infinite stabilization period
and safety thresholds. However, in the moderate range, this approach offers
better scores than the RL-only strategy as seen in Figure 2.

6 Conclusion

Safety of RL robots in deployment remains an unexplored idea, despite wide
agreement on its importance and relevance. We show that self-stabilization,
a popular paradigm in distributed computing, can be used with RL to tackle
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Figure 2: Performance Improvement by RL+SS in Lunar Lander

this challenge. We define a recoverability condition, which if satisfied can
guarantee the stabilization of the robot.

Self-stabilization is implemented by learning the relationship between
actions and state changes during training, and applying this information
to stabilize when unsafe. We describe the design of an RL robot that can
stabilize itself and implement it in a simulated environment. It is observed
that robots with self-stabilization always recover from a perturbation, but
robots trained with only RL can recover in a fraction of the cases only.
Results also indicate that a linear relationship exists between the extent of
perturbation and recovery time in the case of robots with self-stabilization.
The recovery times are also significantly lower than those of robots trained
with standard RL. The same approach was implemented in another environ-
ment with no issues of safety, to understand if there were any performance
benefits. It is observed that an appropriate choice of goal-directed artificial
safety constraint improves performance slightly.

This idea of self-stabilization in RL could also be extended to more
complicated environments and could find applications in many RL solutions
currently deployed in an industrial setting. Further, the same idea could
also be expanded to support self-stabilization and safety during training as
well.
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