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Abstract

Modeling the electromagnetic response of carbon nanotube (CNT) reinforced composites is inherently a three dimensional (3D)

multi-scale problem that is challenging to solve in real-time for nondestructive evaluation applications. This article presents a

fast and accurate full-wave electromagnetic solver based on a multi-layer dyadic Green’s function approach. In this approach,

we account for the effects of the dielectric slab, where the CNTs are embedded, without explicitly discretizing its interfaces.

Due to their large aspect ratios, the CNTs are modeled as arbitrary thin wires (ATWs), and the method of moment (MoM)

formulation with distributed line impedance is used to solve for their coupled currents. The accuracy of the inhouse solver

is validated against commercial method of moment (MoM) and finite element method (FEM) solvers over a broad range of

frequencies (from 1 GHz to 10 THz) and for a wide range of dielectric slab properties. Examples of 100nm long vertical and

horizontal CNTs embedded in a 1 μm thick lossy dielectric substrate are presented. The in-house solver provides more than

50 speed up while solving the vertical CNT, and more than 570 speed up while solving the horizontal CNT than a commercial

MoM solver over the GHz to THz frequency range.
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Abstract—Modeling the electromagnetic response of carbon
nanotube (CNT) reinforced composites is inherently a three-
dimensional (3D) multi-scale problem that is challenging to
solve in real-time for nondestructive evaluation applications. This
article presents a fast and accurate full-wave electromagnetic
solver based on a multi-layer dyadic Green’s function approach.
In this approach, we account for the effects of the dielectric slab,
where the CNTs are embedded, without explicitly discretizing
its interfaces. Due to their large aspect ratios, the CNTs are
modeled as arbitrary thin wires (ATWs), and the method of
moment (MoM) formulation with distributed line impedance is
used to solve for their coupled currents. The accuracy of the in-
house solver is validated against commercial method of moment
(MoM) and finite element method (FEM) solvers over a broad
range of frequencies (from 1 GHz to 10 THz) and for a wide
range of dielectric slab properties. Examples of 100 nm long
vertical and horizontal CNTs embedded in a 1 µm thick lossy
dielectric substrate are presented. The in-house solver provides
more than 50 × speed up while solving the vertical CNT, and
more than 570 × speed up while solving the horizontal CNT
than a commercial MoM solver over the GHz to THz frequency
range.

Index Terms—Arbitrary thin wire (ATW), carbon nanotubes
(CNTs), electric field integral equation (EFIE), method of
moment (MoM), multilayer dyadic Green’s function, Sommerfeld
integrals (SI).

I. INTRODUCTION

OVER the past decade, carbon nanotube (CNT)
reinforced composites have been used in a wide range

of applications including automotive and aerospace materials,
electro-mechanical actuation and sensing, packaging,
adhesives, conductive ink, coatings, electromagnetic
interference (EMI) shielding and many more [1]–[5].
The unique carbon atom arrangements of metallic CNTs
provides them with a unique high electrical conductivity [1],
[2]. The inclusion of a small volume fraction of CNT fillers
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can produce light-weight, durable, ultra-thin and flexible
composites with high dielectric constants [6], [7].

Several factors control the electromagnetic response of
CNT composites, such as the spatial distribution of CNTs
[8]–[10], CNT volume fraction [11], average length of
embedded CNTs [12], [13], interaction among CNTs [13],
[14], conductivity of CNTs (single wall/multi wall) [11],
[15], waviness of CNTs (nearly straight to highly crumpled)
[16], [17], CNT interaction with matrix, matrix properties,
and dimensions [18], [19]. Thus, finding an efficient method
capable of accurately quantifying the interactions among
CNTs, interactions of CNTs with the embedding layers,
and with the incident electromagnetic excitation is critical
for understanding and optimizing the electromagnet response
of CNT reinforced composites. This will help guiding the
process of composite fabrication and monitoring composite
health during their service life and check for any structural
degradation [5], [20].

To predict the effective permittivity and permeability of
composite materials, many theories have been proposed
and extended such as the Waterman-Truell [21]–[24], and
Maxwell-Garnett (MG) approximations [25], [26]. These
theories are commonly known as the dilute limit effective
medium approximation (EMA) theory which assume low filler
density and operate at a low frequency range. EMA theories
do not incorporate the effects of the finer distribution of the
fillers, interaction among fillers when in close proximity, and
filler interaction with the embedding matrix. For example,
Hassan et al. recently used two independent commercial full-
wave solvers, the method of moment (MoM) based FEKO 1,
and the finite element method (FEM) based CST Microwave
Studio (MWS), to verify that even at small volume fractions,
dilute limit EMA fails to account for the strong interactions
between adjacent CNTs, and differs significantly from the full-
wave simulations, especially at higher terahertz frequencies
[27].

Full wave electromagnetic analysis ensures high accuracy
of the solution provided the system under observation is
discretized with an adequate size and number of mesh
elements. The main bottleneck in discretizing CNT composites

1Certain commercial equipment, instruments, or materials are identified
in this paper to foster understanding. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.
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arises due to their multiscale nature. The CNTs are high aspect
ratio pipe-like structures whose diameter varies from a few
nm to hundreds of nm, and lengths varies from hundreds
of nm to several µm. Embedding matrix thicknesses vary
from several µm to several mm, and lateral extents may
go beyond the cm range. In 1 cm3 composite volume, the
number of CNTs may vary from several thousands to billions.
Thus, volume/surface discretization of the entire composite
structure tremendously increases the computational cost. For
example, Wang et al. used finite element analysis (FEA)
based COMSOL Multiphysics software to study the effects of
CNT orientation on the resulting relative permittivity of CNT
composites [8]. They modeled multiple 600 nm long CNTs
inside a three dimensional (3D) unit cell (1.5 µm× 1.5 µm×
0.6 µm) and applied periodic boundary condition to simulate
the composite. According to that study, the tetrahedral mesh
per unit cell increased from 413,702 to 1,903,693 elements,
when the number of embedded CNTs were increased from 5 to
40, with approximately a 134-fold increase in computational
time. Hassan et al. have also discussed the increase in
computational time necessary to accurately simulate a realistic
distribution of a large number of 3D CNTs [27] .

In this paper, we propose an alternate full wave approach
for analyzing multiscale CNT composites that reduces the
computation time by several orders of magnitude compared to
a commercial full wave solver. The approach studied herein
adopts the following strategies.

1) To eliminate the need of volume/surface discretization
of the dielectric slab or substrate interfaces, we use a
multilayer dyadic Green’s function (DGF) formulation
where the substrate is simulated as a finite thickness
lossy dielectric slab with infinite lateral extent [28], [29].

2) The embedded high-aspect ratio CNTs are modeled
as one dimensional (1D) arbitrary thin wires (ATW)
and discretized into 1D segments [13], [16]. This
eliminates a huge number of surface/volume mesh
elements required for the explicit modeling of 3D
cylindrical CNTs.

3) The ATW CNTs are assigned distributed frequency
dependent complex impedances [30], and their
corresponding induced currents are calculated using the
method of moment (MoM) based on the electric field
integral equation (EFIE) technique [31].

The DGFs are defined for lossy three layer stratified
media, which include a special class of integrals known as
the Sommerfeld integrals (SI) that have no direct analytical
solutions [32], [33]. The accuracy and the computational speed
of the solver depends directly on the efficiency and accuracy of
the SI evaluation method. This work proposes a modified semi-
analytical approach to evaluate the SIs associated with the
DGFs, which addresses the SI instability issues in multiscale
layered media and employs an adaptive elliptic contour
deformation technique to avoid integrand singularities [34]–
[36]. We also propose an efficient way to evaluate the SI tail
in appropriate closed forms that circumvents time consuming
slow convergence issues [37]. The in-house full wave 1D MoM
solver was developed on the MATLAB [38] platform and was

Fig. 1: General planar stratified three layer structure with embedded CNTs in layer 2.

validated in two phases. First, the DGFs are validated using an
infinitesimal embedded dipole for a vast range of embedding
media properties from 1 GHz to 10 THz against the planar
substrate solver of FEKO [39]. Next, the absorption power
spectrum of a horizontal and a vertical embedded CNT is
computed using the in-house solver and is validated against
the 3D MoM solver FEKO [39], and 3D FEM solver CST
MWS [40]. The comparison shows that the in-house solver is
more efficient and several orders of magnitude faster than the
commercial solvers which requires explicit discretization of
the 3D CNT surface and/or the interfaces of the dielectric slab.
This demonstrates the potential of the in-house solver for real-
time interpretation of the scattering measurements typically
performed during non-destructive evaluation (NDE) of CNT
reinforced composites, or any layered composites with wire-
like fillers.

II. FORMULATION

The formulation of the proposed full wave MoM solver is
outlined in this section. The problem is defined by electric field
integral equations (EFIE) with proper boundary conditions
pertaining to the embedded CNTs. Detailed expressions of
the dyadic Green’s functions (DGF) are provided and their
solution with a semi-analytic approach is discussed. Different
interpolation techniques and look-up tables are implemented
to reduce the computation time for the MoM matrices.

A. EFIE for Embedded Arbitrarily Thin CNTs

A generic case of a lossy three-layer stratified planar
structure is illustrated in Fig. 1, where the CNTs are embedded
in layer 2, which has a finite thickness (d) and is backed by
two other lossy semi-infinite layers (layer 1 and layer 3). The
layered structure is illuminated by a plane wave excitation
(Ēinc1 ) incident on the top of layer 1. The interface between
layer 1 and layer 2 is defined by the z = d plane, and
the interface between layer 2 and layer 3 is defined by the
z = 0 plane. The layers have real values of permittivity
εi = ε0εri, permeability µi = µ0µri, and conductivity σi,
where the layer number is given by i = 1,2,3, and ε0 and µ0 are
the vacuum permittivity and permeability, respectively. Thus
the associated propagation constants in these three regions
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TABLE I: Parameter Range for the Multiscale CNT Composite
Problem

Electrical Properties of Embedding Media
εri = 1 to 20, µri = 1 to 20, σi = 1 S/m to 20 S/m, for i=1,2,3

Operating frequency (f) = 1 GHz - 10 THz
Physical lengths f = 1 GHz f = 10 THz
free-space wavelength (λ0) 0.3 m 3× 10−5m
|R̄− R̄′|min= rcnt = 0.61 nm 2.033× 10−9 λ0 2.033× 10−5 λ0
|R̄− R̄′|max = 1 cm 0.033 λ0 333.33 λ0
dmin = 10 nm 3.33× 10−8 λ0 3.33× 10−4 λ0
dmax = 2 mm 6.66× 10−3 λ0 66.66 λ0

are complex and expressed as ki =
√
ω2µiεi − jωµiσi,

where ω is the angular operating frequency and j =
√
−1.

The high aspect ratio CNTs are modeled as one-dimensional
arbitrary thin wires (ATW) as validated previously in [13],
[16]. Thus, the induced currents on the CNTs will have only an
axial component and no circumferential variation. The CNTs
are characterized by a Drude-like surface conductivity (σcnt)
as described in [30], which is then translated into a one-
dimensional distributed complex impedance (Zcnt) as detailed
in Appendix A, Eqs. (A.1) - (A.2). The Drude-like surface
conductivity (σcnt) agrees well with the quantum mechanical
dynamic conductivity model from microwave through 100
THz frequency range provided the CNTs are small radius,
metallic, and single walled [41].

The full wave solver developed in our present study is
capable of characterizing the scattering response of embedded
CNTs for a wide frequency range, starting from 1 GHz up
to 10 THz. The sandwiched layer 2 can be as thick as
2 mm. All three media can be assigned a broad range of
electrical properties (εri/µri/σi). The interacting CNTs can
be as far apart as 1 cm in lateral separation. The range of the
parameter values considered for the CNT composite problem is
summarized in Table I, which shows its true multiscale nature.
In the absence of any embedded CNT, the fraction of the

plane wave excitation that is transmitted from layer 1 into
layer 2 experiences multiple reflections and transmissions at
top and bottom interfaces, and eventually sets up an equivalent
electric field in layer 2 (Ēinc2 (R̄)). When CNTs are present
in layer 2, Ēinc2 (R̄) will act as an excitation field and induce
current (Īcnt) on the CNT surface, which in turn will produce
scattering electric fields (Ēs2(R̄)). The boundary condition that
relates the total tangential electric field to the induced axial
current on the CNT is given below.[

Ēinc2 (R̄) + Ēs2(R̄)
]
tan

= ZcntĪcnt (1)

One needs to solve Eq. (1) for every operating frequency to
find the value of Īcnt that is required to compute the absorbed
power spectrum of the embedded CNTs in the composite
structure. We first compute the scattered electric field (Ēs2(R̄))
from the CNT surface, which is expressed as [28],

Ēs2(R̄) = −jωµ2

∫
l

¯̄G(22)
e (R̄, R̄′) · Īcnt(R̄′) dl (2)

where R̄ is the observation vector (see Fig. 1) that locates the
electric field scattering point on the CNT surface. R̄′ is the
source vector, which locates the point on the CNT where the

unknown axial current Īcnt(R̄′) is excited on an infinitesimal
CNT length dl. The integration is computed over the contour
length of the CNT (l). The term ¯̄G

(22)
e (R̄, R̄′) is the spatial

domain electric dyadic Green’s function (DGF) of the third
kind defined in layer 2, which will be discussed next.

B. Spatial Domain Dyadic Green’s Function (DGF)

For a stratified three-layer medium with embedded radiating
source, there exists a total of nine electric DGF of the third
kind, represented as ¯̄G

(pq)
e (R̄, R̄′) with p, q = 1, 2, 3, where p

denotes observation layer and q denotes source layer [29]. In
our present study, we are interested in analyzing interactions
among the buried CNTs in layer 2. So the source points
(R̄′(x′, y′, z′)) and observation points (R̄(x, y, z)), whether
on the same CNT or on two different CNTs, are both
located in layer 2 (p = q = 2) as shown in Fig. 1. Thus
out of nine electric DGF, only ¯̄G

(22)
e (R̄, R̄′) is required to

calculate scattering electric fields (Ēs2) in layer 2 as declared
in (2). Following the method of scattering superposition,
¯̄G

(22)
e (R̄, R̄′) can be expressed in its generic form as given

in [28], [29],

¯̄G(22)
e (R̄, R̄′) = ¯̄G(2)

eo (R̄, R̄′) + ¯̄G(22)
es (R̄, R̄′) (3)

where the first term on the right hand side denotes the
free-space electrical DGF defined in a medium of the same
constitutive constants as that of layer 2, and the second
term defines the scattered DGF in layer 2. Considering the
coordinate system and generic medium properties of Fig. 1,
we derived the expression for ¯̄G

(22)
e (R̄, R̄′) as given below.

However, for brevity the intermediate steps are skipped here,
and can be followed in [28].

For z > z′ in layer 2,

¯̄G(22)
e (R̄, R̄′) = − 1

k2
2

ẑẑ δ(R̄− R̄′) +

∫ ∞
0

dλ

∞∑
n=0

j(δ0 − 2)

4πλh2{
1

Γ
[M̄(+h2)+ρ21e

−2jh2dM̄(−h2)][ρ23M̄
′(+h2)+M̄ ′(−h2)]

+
1

Γ′
[N̄(+h2)+ρ′21e

−2jh2dN̄(−h2)][ρ′23N̄
′(+h2)+N̄ ′(−h2)]

}
(4)

and for z < z′ in layer 2,

¯̄G(22)
e (R̄, R̄′) = − 1

k2
2

ẑẑ δ(R̄− R̄′) +

∫ ∞
0

dλ

∞∑
n=0

j(δ0 − 2)

4πλh2{
1

Γ
[ρ23M̄(+h2)+M̄(−h2)][M̄ ′(+h2)+ρ21e

−2jh2dM̄ ′(−h2)]

+
1

Γ′
[ρ′23N̄(+h2) + N̄(−h2)][N̄ ′(+h2)+ρ′21e

−2jh2dN̄ ′(−h2)]

}
(5)

The parameters and functions in (4)-(5) are defined as follows.
λ is the lateral wave vector in all three layers and also
the Fourier-Bessel integral variable, and hi is the z directed
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wave vector for the ith layer (i = 1, 2, 3), which defines the
radiation condition,

hi =


√
k2
i − λ2 for λ ≤ ki

∓j
√
λ2 − k2

i for λ > ki

(6)

where the − sign and + sign in front of the second condition in
(6) must be chosen appropriately to identify poles in the top or
bottom Riemann sheet, respectively. Condition (6), (if − sign)
ensures that the Sommerfeld radiation conditions are obeyed
[32]. M̄ and N̄ are the cylindrical vector wave functions,
which are solutions to the wave equation in layer 2, describing
the TE mode and TM mode, respectively, and are expressed
as [29],

M̄(h2) = M̄e
onλ

(h2) = ∇× [Jn(λr) cos
sinnφ e

−jh2z]

= [∓nJn(λr)

r
sin
cosnφ r̂ −

∂Jn(λr)

∂r
cos
sinnφ φ̂] e−jh2z

(7)

N̄(h2) = N̄e
onλ

(h2) =
1

k2
∇× M̄e

onλ
(h2)

=
1

k2
[−jh2

∂Jn(λr)

∂r
cos
sinnφ r̂ ±

jh2n

r
Jn(λr) sin

cosnφ φ̂

+ λ2Jn(λr) cos
sinnφ ẑ] e

−jh2z

(8)
where the subscript e denotes the even mode, and o denotes
the odd mode. Jn is the Bessel function of order n. The
primed functions in (4)-(5), M̄ ′ and N̄ ′, are the excitation
coefficients defined with respect to the source coordinate
(r′, φ′, z′) pertaining to R̄′. M̄ ′(+h2) and N̄ ′(+h2) represent
wavelets travelling downward for the TE and TM modes,
respectively. Similarly, M̄ ′(−h2) and N̄ ′(−h2) represent
wavelets travelling upward for the TE and TM modes,
respectively. δ0 = 1 for the null mode (n = 0), and δ0 = 0
for other modes (n 6= 0). For waves travelling from layer-i
towards layer-j, their Fresnel’s coefficients of reflection for
electric fields at the interface for TE modes and TM modes
are given respectively as,

ρij =
µjhi − µihj
µjhi + µihj

; ρ′ij =
k2
jµihi − k2

i µjhj

k2
jµihi + k2

i µjhj
. (9)

Finally, the expressions for the terms 1
Γ and 1

Γ′ are given by
[29],

(10a)
1

Γ
= (1− ρ21ρ23 e

−2jh2d)−1

(10b)
1

Γ′
= (1− ρ′21ρ

′
23 e

−2jh2d)−1

Substituting the expressions of (7)-(10) into (4)-(5) will lead
to the final expression for ¯̄G

(22)
e in layer 2 for z ≷ z′.

For any arbitrary current distribution with xyz variation
there are nine associated components of ¯̄G

(22)
e present in the

EFIE as shown below,Es2xx̂Es2y ŷ
Es2z ẑ

=−jωµ2

∫
l

Gxxx̂x̂ Gxyx̂ŷ Gxzx̂ẑ
Gyxŷx̂ Gyy ŷŷ Gyz ŷẑ
Gzxẑx̂ Gzy ẑŷ Gzz ẑẑ

·
J2xx̂
J2y ŷ
J2z ẑ

 dl
(11)

Presently, we are interested in studying horizontal (aligned in
x-axis) and vertical (aligned in z-axis) embedded CNTs as

(a) (b)

Fig. 2: (a) A horizontal CNT in layer 2 aligned parallel to the x-axis, and (b) a vertical
CNT aligned parallel to the z-axis illuminated by a plane wave excitation polarized in
xz-plane.

shown in Fig. 2. We choose the xz plane as the plane of
incidence for (Ēinc1 ) that maximizes the field coupling to the
CNTs in Fig. 2. Based on the thin wire approximation, the x
directed horizontal CNT in Fig. 2(a) couples only to the Einc2x

component of the excitation field. Other components of Einc2

have no effect on the x directed horizontal CNT, and so do not
contribute to the net electric field on the CNT surface, which
then simply reduces to,

Es2x(R̄) = −jωµ2

∫
l

Gxx(R̄, R̄′)J2x(R̄′) dl (12)

Similarly, the z directed vertical CNT in Fig. 2(b) couples only
to the Einc2z component of the incident excitation and thus the
net electric field on the z directed CNT surface reduces to,

Es2z(R̄) = −jωµ2

∫
l

Gzz(R̄, R̄′)J2z(R̄′) dl (13)

To evaluate the scattered electric fields we first need to evaluate
the DGFs present in integrals (12) and (13). For planar
stratified media, the DGFs are laterally invariant and thus while
deriving Gxx(R̄, R̄′) and Gzz(R̄, R̄′) in layer 2 we consider
the source point located at R̄′(x′ = 0, y′ = 0, z′), and choose
an arbitrary observation point R̄(x, y, z). The expressions are
as given below,

Gxx(R̄, R̄′) =
[

¯̄G(22)
e (R̄, R̄′) · x̂

]
(0,0,z′)

· x̂

=
−j
4π

∫ ∞
0

dλ {λJ0(λr) sin2(φ) +
J1(λr)

r
cos(2φ)} G̃TE

xx

+
j

4πk2
2

∫ ∞
0

dλ {λJ0(λr) cos2(φ)− J1(λr)

r
cos(2φ)} G̃TM

xx

(14)

where x̂ = r̂ cos(φ)− φ̂ sin(φ) and,

(15a)

G̃TE

xx =
( 1

h2Γ

){
ρ23e

−jh2|z+z′| + e−jh2|z−z′|

+ ρ21e
−2jh2d

(
ρ23e

+jh2|z−z′| + e+jh2|z+z′|
)}

(15b)

G̃TM

xx =
(h2

Γ′

){
ρ′23e

−jh2|z+z′| − e−jh2|z−z′|

− ρ′21e
−2jh2d

(
ρ′23e

+jh2|z−z′| − e+jh2|z+z′|
)}
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Similarly,

Gzz(R̄, R̄′) =
[

¯̄G(22)
e (R̄, R̄′) · ẑ

]
(0,0,z′)

· ẑ

= − 1

k2
2

δ(R̄− R̄′)− j

4πk2
2

∫ ∞
0

dλ {λ3J0(λr)} G̃TM

zz

(16)

where

G̃TM

zz =
( 1

h2Γ′

){
ρ′23e

−jh2|z+z′| + e−jh2|z−z′|

+ ρ′21e
−2jh2d

(
ρ′23e

+jh2|z−z′| + e+jh2|z+z′|
)}

(17)

The DGFs of (14) and (16) incorporate semi-infinite complex
Sommerfeld integrals (SI) [32], which have no direct analytical
solutions. The next sub-section discusses a semi-analytic
approach in conjunction with special numerical treatments for
efficient SI evaluation.

C. Evaluation of Sommerfeld Integrals (SI) with Semi-analytic
Approach

The generic form of a Sommerfeld integral is given below
[32],

G(r, z, z′) =

∫ ∞
0

{Jn(λr) λn+1} G̃(λ; z, z′) dλ (18)

which connects the spatial domain Green’s function
G(r, z, z′), to its spectral domain counterpart G̃(λ; z, z′). The
spectral domain Green’s function, G̃(λ; z, z′), also known as
the layer/medium function, can take specific algebraic forms
depending on the precise nature of the problem, such as in
(15) and (17). The orders of Bessel function that survive
the derivation from (3) - (17), are n = 0, 1, 2. J2(λr), can
be reduced to the lowest order Bessel functions J0(λr) and
J1(λr) by using the recurrence relationship [42].

J2(λr) =
2

λr
J1(λr)− J0(λr) (19)

The fast and accurate evaluation of the Sommerfeld
type integral is a classical problem that still draws a
lot of attention from the computational EM community.
Several computational techniques have emerged from decades
of rigorous research to solve these semi-infinite integrals
with competing performances in solution accuracy and
computational speed [34], [36], [37], [43]–[54]. There exists
no such single optimum integration strategy that works well
for all types of Green’s function problems. The solution
strategy has to be adaptive following the nature of the
particular problem in hand [55]. Especially when dealing with
a multiscale multilayer problem with a wide frequency range,
it becomes necessary to consider several factors that impact the
behavior of the spectral domain Green’s function G̃(λ; z, z′).

While evaluating SI on the complex (λ) plane, severe
numerical problems occur when source and observation point
lie on the same plane. As |z−z′|→ 0, the numerical integration
begins to accumulate round off errors due to severe oscillatory
behavior of the integrand induced by the Bessel functions [34],
[48], [52].

Fig. 3: Semi-analytical approach for Sommerfeld integral evaluation. The semi-elliptic
contour deformation skips the region containing the integrand singularities lying in the
range k0 ≤ λ ≤ kmax. The tail part of the Sommerfeld integral (kM ≤ λ ≤ ∞) is
evaluated in closed form.

If |z− z′|6→ 0, and the integration path stays on the proper
Riemann sheet, then the overall integrand may have a fast
or slow convergence depending on the distribution of the
exponential terms and the lateral separation of source and
observation point. In this case, the integration along the semi-
infiniteRe(λ) axis still remains challenging, particularly when
singularities of the integrand lie on or close to the Re(λ) axis,
such as the case of low-loss layered structures [34], [48], [52].

There are finite numbers of surface wave poles (SWPs) and
infinite numbers of leaky wave poles (LWPs) associated with
G̃(λ; z, z′) [56]. The number of contributing poles increases
with the electrical thickness of the embedding layer or with
increasing operating frequency [35], [53], [56]. The pole
locations depend on the constitutive parameter values, such
as the material properties {εi, µi, σi}, and layer thickness (d)
[35], [53], [56]. In order to integrate the SI on the Re(λ)
axis, maintaining a high numerical accuracy from near field
to far field calculations, one needs to identify all contributing
pole locations accurately and evaluate their residue effects
[52]–[54]. This is very complex iterative time consuming task
that will hinder the goal of fast computation of the MoM
matrix especially when the structure is lossy, multiscale, and
multilayer.

Fortunately, these poles are dispersed in the shaded strip
region, as shown in Fig. 3, confined by the branch points and
branch cuts in the lower half plane (considering all media
are right handed). To obviate the need of pole extraction and
residue calculations, we chose to lift the contour of integration
over the pole region in the first quadrant of the complex (λ)
plane and split the SI into two parts following [36], [49]:∫ ∞

0

{Jn(λr) λn+1 } G̃(λ; z, z′) dλ

=

∫ kM

0

{· · ·} G̃(λ; z, z′) dλ+

∫ ∞
kM

{· · ·} G̃(λ; z, z′) dλ.

(20)
The first finite integral on the right hand side from 0 to
kM , (with kM ≥ max{Re(ki=1,2,3)}), is computed following
a deformed contour (see Fig. 3) in the upper half plane,
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which avoids all branch points and singularities lying in the
fourth quadrant of the complex(λ) plane. Different choices of
contour can be found in the literature, such as semi-circle,
semi-ellipse, or triangle, among which we chose the semi-
elliptical contour for its simple parametric representation and
independent control over its major and minor axis [34], [36],
[48]. The details of this contour deformation technique will
be discussed at the end of this section.

The remaining semi-infinite integral from kM to ∞,
commonly known as the Sommerfeld integral tail, is free
from singularities thus can be integrated on the Re(λ) path.
However, the numerical integration of the SI tail defined by
oscillatory and slowly varying kernels is a time consuming
task. Different algorithms have been proposed in the literature
to efficiently calculate SI tails, such as weighted averages
[51], double exponential (DE) [52], matrix pencil method
(MPM) [44], multilevel DCIM [46], and modified fast Hankel
transform method (MFHT) [50] etc. The pros and cons of these
methods and their applicability have been nicely summarized
[37]. However, expressing the SI tails in exact closed form can
certainly outperform the above methods in computation time,
especially when a GHz to THz range of operation is being
considered with large lateral separations.

In this work we propose a new formulation to compute SI
tails in exact closed form, which is inspired by the works of
[34], [44], [47]–[49], but different in many aspects. We chose a
sufficiently large suitable value of kM > max{Re(ki=1,2,3)},
such that when λ ≥ kM , we can express G̃(λ; z, z′) in an
appropriate asymptotic form under the following conditions,

lim
λ→∞



h1 ≈ h3 ≈ h2 = −j
√
λ2 − k2

2

ρij ≈ %ij =
µj−µi
µj+µi

; ρ′ij ≈ %′ij =
k2jµi−k

2
iµj

k2jµi+k
2
iµj

G̃(λ; z, z′) � G̃(λ ≥ kM ; z, z′)

(21)

where %ij and %′ij become independent of the integration
variable λ and are indeed the low-frequency approximation
of the reflection coefficients. The first condition of (21) leads
to more accurate asymptotic approximation for G̃(λ; z, z′),
compared to what was reported in [48]. In [47], the authors
used a similar approximation but neglected the entire contour
integration contribution, so that their approach was restricted
only to the low frequency regime (ω → 0). In contrast,
our approach is full-wave and works accurately from low
frequency through tens of THz. Next, we focus on finding
suitable closed form expressions for the SI tails. Following the
idea of [49] and referring to Fig. 3, we express an alternate
format for the SI tail, which is the second integral appearing
on the right hand side of (20), as follows:∫ ∞

kM

{· · ·} G̃(λ; z, z′) dλ

≈
∫ ∞

0

{· · ·} G̃(λ ≥ kM ; z, z′) dλ

−
∫ kM

0

{· · ·} G̃(λ ≥ kM ; z, z′) dλ.

(22)

Substituting (22) into (20) and rearranging terms under similar
integration limits one can obtain the approximate relationship
for general numerical evaluation of Sommerfeld integrals
appearing in various classes of multilayer media problems.
This relationship reads:∫ ∞

0

{· · ·} G̃(λ; z, z′) dλ

≈
∫ kM

0

{· · ·} [G̃(λ; z, z′)− G̃(λ ≥ kM ; z, z′)] dλ

+

∫ ∞
0

{· · ·} G̃(λ ≥ kM ; z, z′) dλ.

(23)

The integrand subtraction appearing in the first integral on the
right hand side is a key step towards efficient SI evaluation,
as it serves two purposes:

1) After subtraction, the resultant integrand in the contour
integral [0, kM ] decays faster with λ, which accelerates
the numerical integration process. Without subtraction,
the original integrand for [0, kM ] decays very slowly
with λ, especially when the source and field points
are close to each other (δz → 0) and close to an
interface between two adjacent layers. In such cases,
the exponential terms like e−jhiδz present in G̃(λ; z, z′)
approach 1 and do not decay with increasing λ [48].

2) The SI tail integration limit is now modified to
[0,∞), which eases the search for an exact closed-
form expression for the SI tail using the Fourier-Bessel
transform relationships given in [57].

It is important to note that, unlike [43], and [44], the present
method does not approximate the Bessel terms of (14) and (16)
while searching for closed-form expressions for the SI tails.
Asymptotic approximation of the Bessel/Hankel functions
enhances inaccuracies for small separation between source and
observation. The above techniques are unjustified for CNTs
that have source points in nm scale proximity of observation
points (k0r ≈ 10−8 at 1 GHz). Thus, in the present method,
the asymptotic condition (21) is imposed only on the spectral
domain Green’s functions of (15) and (17). For λ ≥ kM , we
first substitute (21) into (10) and expand it into power series
as follows,

(24a)

1

Γ
≈ (1− %21%23 e

−2d
√
λ2−k22 )−1

≈
∞∑
n=0

(%21%23 e
−2d
√
λ2−k22 )n

(24b)

1

Γ′
≈ (1− %′21%

′
23 e

−2d
√
λ2−k22 )−1

≈
∞∑
n=0

(%′21%
′
23 e

−2d
√
λ2−k22 )n

The convergence of the above power series is guaranteed since
the magnitude of the second term inside (· · ·)−1 is always less
than one. Now, inserting (24) and (21) back into (15) we get,
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(25a)
G̃TExx =

j√
λ2 − k2

2

4∑
m=1

∞∑
n=0

bmne
−amn

√
λ2−k22

(25b)
G̃TMxx = −j

√
λ2 − k2

2

4∑
m=1

∞∑
n=0

cmne
−amn

√
λ2−k22

where,

a1n = 2d(n− 1) + z + z′, a2n = 2dn− |z − z′|
a3n = 2d(n− 1) + |z − z′|, a4n = 2dn− z − z′

b1n = %23(%21%23)n−1, b2n = (%21%23)n

b3n = (%21%23)n−1, b4n = %21(%21%23)n−1

c1n = %′23(%′21%
′
23)n−1, c2n = −(%′21%

′
23)nr

c3n = −(%′21%
′
23)n−1, c4n = %′21(%′21%

′
23)n−1

Similarly, inserting (24b) and (21) into (17) we get,

(26)
G̃TMzz =

j√
λ2 − k2

2

4∑
m=1

∞∑
n=0

dmne
−amn

√
λ2−k22

where the amn terms are the same as in (25), and

d1n = c1n, d2n = −c2n, d3n = −c3n, d4n = c4n

Now we substitute (25) into (14) and express it in the form
of (23) as given below,

Gxx(R̄, R̄′) ≈
(
GTE

xx

∣∣∣
contour

+GTE

xx

∣∣∣
closed

)
+
(
GTM

xx

∣∣∣
contour

+GTM

xx

∣∣∣
closed

)
GTE

xx

∣∣∣
contour

= − j

4π

∫ kM

0

{λJ0(λr) sin2(φ) +
J1(λr)

r
cos(2φ)}

× [G̃TE

xx − G̃TExx ] dλ

GTE

xx

∣∣∣
closed

= − j

4π

∫ ∞
0

{λJ0(λr) sin2(φ) +
J1(λr)

r
cos(2φ)}

× G̃TExx dλ

GTM

xx

∣∣∣
contour

=
j

4πk2
2

∫ kM

0

{λJ0(λr) cos2(φ)− J1(λr)

r
cos(2φ)}

× [G̃TM

xx − G̃TMxx ] dλ

GTM

xx

∣∣∣
closed

=
j

4πk2
2

∫ ∞
0

{λJ0(λr) cos2(φ)− J1(λr)

r
cos(2φ)}

× G̃TMxx dλ

(27)

Similarly, by inserting (26) into (16) we get,

Gzz(R̄, R̄′) ≈ −
1

k2
2

δ(R̄− R̄′) +
(
GTM

zz

∣∣∣
contour

+GTM

zz

∣∣∣
closed

)
GTM

zz

∣∣∣
contour

= − j

4πk2
2

∫ kM

0

{λ3J0(λr)}[G̃TM

zz − G̃TMzz ] dλ

GTM

zz

∣∣∣
closed

= − j

4πk2
2

∫ ∞
0

{λ3J0(λr)} G̃TMzz dλ

(28)

In (27) we find two finite and two infinite integrals, whereas
in (28) there is one finite and one infinite integral. All these
integrals include infinite series in their integrands coming from
the G̃ terms. However, the infinite series can be truncated to
a finite series without losing accuracy by judicially choosing
a sufficiently large value of n. In our present study, we use
n = 500 to eliminate any cumulative approximation error in
the MoM calculation. However, this is not an ultimate value of
n and can be optimized to reduce the SI tail computation time
while maintaining required solution accuracy. As indicated by
the subscripts, the finite integrals GTE

xx|contour, GTM
xx |contour,

and GTM
zz |contour are computed numerically by integrating over

the semi-elliptical contour. In this case, each G̃ is computed
first as a finite series up to nth terms and then subtracted from
G̃ giving the resultant spectral domain Green’s function, which
is then multiplied with Bessel terms followed by contour
integration. For the infinite integrals, GTE

xx|closed, GTM
xx |closed,

and GTM
zz |closed, fortunately no integration is needed as we find

exact closed-form solutions from [57] using Fourier-Bessel
transform relationships as listed in Appendix B. To do so,
we move the summation operator in front of the integration.
This step is valid since the summation coefficients bmn, cmn,
and dmn are independent of the spectral variable λ. This step
allow us to express GTE

xx|closed as a sum of exponential terms
by using the Sommerfeld identity (B.1) and its derivative (B.2).
Similarly, we can express GTM

xx |closed as a sum of exponential
terms by using the identities (B.3) and (B.4). GTM

zz |closed is
expressed as a sum of exponential terms by using (B.5).

As we now have the closed form solutions for the SI tails in
(27) and (28), we finally turn our attention to evaluate the finite
integrals over the semi-elliptic contour in the upper half of the
complex λ plane. As depicted in Fig. 3, we first transform the
finite integrals from λ : [0, kM ] space to α : [0, π] space by
applying the following semi-elliptic relations,

λ = a− a cosα+ jb sinα

dλ
dα = a sinα+ jb cosα

(29)

where a = kM
2 is the semi-major axis and b is the semi-minor

axis of the semi-elliptic contour. The value of kM , or the major
axis length, should be large enough to skip any singularities
near the path of integration and also ensure the validity of the
asymptotic condition (21). The minor axis height b dictates
the convergence of the integrands, which are highly oscillatory
along the Re(λ) axis and exponential along the Im(λ) axis
[52]. A large value of b will cause both J0,1(λr) terms to
diverge. Reducing b significantly can bring the contour down
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TABLE II: Controlling Minor Axis Height (b)

Reference Choice of b
Value of b

f = 1 GHz f = 10 THz

r = 0.61 nm r = 1 cm r = 0.61 nm r = 1 cm

[35], [36] b =

 k0 ×min
(

1, 1
k0r

)
for r > |z − z′|

k0 for r ≤ |z − z′|
20.95 20.95 2.09× 105 2.09× 105

[34], [48]
b = 10−3 × 1.2×max{Re(ki)}

= 10−3 × 1.2×Re(k2)
0.098 0.098 795 795

This work b =

 20 m−1 for 1 GHz ≤ f ≤ 2 THz

10× f

1012 Hz m−1 for 2 THz < f ≤ 10 THz
20 20 100 100

Considering εr2 = 10, µr2 = 1, σ2 = 1 S/m. Air for layer1 and layer3.

Fig. 4: Semi-elliptic contour minor axis height (b) with varying range of frequency.

to the vicinity of singularities lying close to, or on the Re(λ)
axis [34], [52]. Thus an optimal choice of b that minimizes the
effect of the poles and the oscillations of the Bessel function
should be somewhere in between these two extreme limits. A
few studies can be found in this context that discuss how to
control the semi-minor axis height and are given in Table II.
However, none of these guidelines are fully compatible for a
GHz to THz frequency range and nm to cm lateral range of
operation. As shown in Table II, if we follow [35], [36], at 10
THz the value of b will become too large and the integrand
will diverge. If we follow [34], [48], at 1 GHz the value of b
will become too small and the contour will come very close
to Re(λ) axis, and at 10 THz the value of b will be large
enough to cause the integrand to diverge. Thus, in our present
study we propose a new adaptive contour height that is suitable
for our multiscale scenario (see Table I). The contour height
variation with frequency is shown in Fig. 4 and the relation
is given in the last row in Table II. The contour maintains a
constant low value of b as long as the operating frequency
lies below 2 THz. Further increase in frequency enhances the
effects of singularities near the Re(λ) axis and it becomes
necessary to push the contour further into the upper half
plane. This is unavoidable because with increasing frequency
layer 2 becomes electrically thick and more higher order poles
pop up near Re(λ) axis. So eventually, a as well as b are
increased to avoid the effects of singularities. This effect is

more concerning when the source is close to an interface as it
induces convergence problems. Our proposed choice of b has
been tested for all possible scenarios of operating frequency,
physical length, and material properties given in Table I. The
validation results will be shown in section III.

D. MoM-ATW for Embedded CNTs

The calculated scattered electric field value Ēs2(R̄) is
inserted into the E-field boundary condition on the CNT
surface (1) to solve the unknown current density flowing
axially in the ATW CNT (Īcnt). We first assume that the
individual ATW CNT structure is subdivided into multiple
number of connected small segments (S), and (1) is solved
for each of these segments. The unknown Īcnt thus can be
approximately expressed as a linear weighted summation of
N = S − 1 overlapped triangular basis functions:

(30)Īcnt ≈
N∑
n=1

In f̄n(R̄)

where In is the unknown weighting current coefficient for the
nth triangular basis f̄n that expands over nth and (n + 1)th
segment [31]. To satisfy the ATW condition with reasonable
accuracy, the discretization should be optimized. At least 20
segments per wavelength is desired, but individual segment
length should not fall below twice the diameter of the CNT
[13], [16]. This sets an upper and lower limit on the choice
of segment number (S),

(31)
20 l

λ
< S <

l

4 rcnt

Substituting (30) into (1) results in a matrix equation as given
below that needs to be solved for each operating frequency
[31],

(32)
[
Z
]
N×N

[
I
]
N×1

=
[
V
]
N×1

On the right hand side, V = [Ēinc2 (R̄)]tan is the tangential
E-field component of the incident excitation that couples to
the CNT. On the left hand side, Z is the resultant complex
impedance matrix, also known as the MoM impedance matrix.
To find Z, we have followed the procedure described in
[31]. We first set the right hand side of (1) to zero, which
gives us the solution of the impedance matrix of a perfect
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electric conductor (PEC) wire. Next, we add the distributed
line impedance value of CNT (Zcnt) along the diagonal
elements the PEC impedance matrix calculated in the previous
step. Imposing the right impedance condition along the thin
wire structure is the key step that differentiates the CNT
electromagnetic response from that of a similar PEC wire. The
total axial current (Īcnt) flowing in the CNT is determined by
solving the matrix equation (32). Once the current is solved,
we can finally calculate the total extinction power (Pext),
absorbed power (Pabs), and scattered power (Pscat) for the
embedded CNTs following the given relations [13],

(33a)Pext = 0.5 Re
(∫ l

0

Ī†cnt · Ēinc2 (R̄) dl
)

(33b)Pabs = 0.5

∫ l

0

|Īcnt|2 Re(Zcnt) dl

(33c)Pscat = Pext − Pabs

where the † notation refers to conjugate transpose. For PEC
and conventional metals such as gold, silver, or aluminum,
Pscat dominates over Pabs, whereas conductors with complex
conductivity such as the CNTs show higher values of Pabs
compared to Pscat. The resonant peaks found in the absorption
power spectrum have various applications in CNT-based nano-
sensing platforms.

Filling the impedance matrix [Z]N×N in (32) is a time
consuming task. To give an idea, the matrix size or the number
of bases (N ) may range from tens (for a single CNT) to several
thousand (for a cluster of CNTs). For more accurate numerical
integration, we have subdivided each basis into 64 Legendre-
Gauss quadrature points. Thus to calculate [Z]N×N for a
single operating frequency, one needs to compute the source
observation interactions for 64×N ×64×N times. However,
considering the source observation reciprocity, and lateral
invariance properties of the Green’s function of multilayered
structures, we can reduce the burden of repetitive calculations.
To accelerate the filling of [Z]N×N we have adapted different
interpolation and look-up-table (LUT) strategies. In general,
if all other constitutive parameter values remain constant,
then a spatial domain Green’s function G(r, z, z′) needs a
three-dimensional (3D) LUT for varying lateral separation
between source and observation point (r), observation height
(z), and source height (z′). For a horizontal CNT, z and z′

are fixed, and thus for Gxx a one-dimensional (1D) LUT
with varying r is sufficient. However, for a vertical CNT only
r is fixed, thus for Gzz a two-dimensional (2D) LUT with
varying z and z′ is required. In our present study, a LUT is
built only for the contour integration part of the SI, which
is otherwise a laborious task especially at THz frequencies.
Spline interpolation is used to populate the contour integration
LUT for intermediate locations between the node points. The
closed form expressions for the SI tail are easy to compute
and require minimal time, thus no separate LUT were used
for them. For the self terms (diagonal entries in [Z] matrix)
and terms adjacent to them, which inherently have a large
order of magnitude, their closed parts are filled by exhaustive
calculations. Source and observation bases that are at least
a segment apart are filled by a 5 × 5 spline interpolation for

each segment consisting of 32×32 Legendre-Gauss quadrature
points. This strategy ensures the high accuracy of the full-
wave solver and at the same time maintains a fast computing
speed. Details of the computational speed and accuracy of the
solution compared to commercial solvers are discussed in the
following sections.

III. ELECTRIC FIELD EVALUATION AND VALIDATION

We first demonstrate the validity of the Green’s function
formulated in (27) and (28). We consider a x-directed HED
(horizontal electric dipole) and z-directed VED (vertical
electric dipole) of unit magnitude current embedded in a lossy
dielectric slab as shown schematically in Fig. 5a and Fig.
6a, respectively. The dielectric slab is d = 2 mm thick and
is backed by air (εr1,3 = 1, µr1,3 = 1, σ1,3 = 0 S/m)
on either side. The electric dipoles are placed δz = 0.25 mm
below the top interface. The dominant electric field E2x for
x-directed HED is computed directly following (12), which
is nothing but Gxx multiplied with a factor of (−jωµ2).
Similarly, the dominant electric field E2z for z-directed VED
is computed directly following (13), which is actually Gzz
multiplied with a factor of (−jωµ2). The dominant field
components are shown specifically as they will be required to
solve the embedded x-directed and z-directed CNTs of Fig. 2.
The in-house field calculations are validated against the results
generated by the FEKO planar multilayer substrate solver
which also uses a multilayer Green’s function formulation.
We validate the field computation rigorously for the wide
frequency range from 1 GHz to 10 THz and parameters as
given in Table I. However, for brevity we select f = 1 THz as
an intermediate frequency value and select two different sets
of slab dielectric properties to present the validation study
as shown in Fig. 5b-5c and Fig. 6b-6c. The electric fields
produced by HED in Fig. 5b and VED in Fig. 6b consider
a dielectric slab having electrical properties close to that of
lossless air (εr2 = 1.1, µr2 = 1, σ2 = 10−9 S/m). In Fig. 5c
and Fig. 6c, the slab is assigned high values of permittivity and
conductivity (εr2 = 20, µr2 = 1, σ2 = 20 S/m). The E-fields
were computed at the source height (z = z′) for the source-
observation lateral separation starting from rcnt = 0.61 nm
to 1 cm. For a clean comparison, the computed real and
imaginary part of the electric fields are plotted separately along
with the corresponding FEKO results. The relative percentage
error/difference between the in-house field calculation and
FEKO result is calculated as follows,

(34)Relative error =
E − EFEKO
EFEKO

× 100 %

The relative error remains less than 1 % (< −2 dB) (grey
dashed line) throughout the lateral range. The validation
study clearly shows that the in-house DGF implementation
is robust, accurate and suitable for the multiscale composite
environment, which includes extremely thick layers, variable
media properties, and THz-range operating frequency.

IV. ABSORPTION POWER SPECTRUM OF EMBEDDED CNTS

In this section, we perform full-wave analysis of both
horizontal and vertical embedded CNTs in a lossy dielectric
slab.
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(a)

(b)

(c)

Fig. 5: (a) Schematic diagram of an x-directed electric dipole placed inside a d = 2 mm
thick semi-infinite lossy dielectric slab at a depth of δz = 0.25 mm from the top
interface. The top and bottom layers are considered as air. The x-component of the
electric field is computed at the source height at f = 1 THz (λ0 = 3 × 10−4 m) for
a lateral range of x = 0.61 nm to 1 cm, for the following two different lossy dielectric
cases, (b) εr2 = 1.1, µr2 = 1, σ2 = 10−9 S/m, (c) εr2 = 20, µr2 = 1, σ2 = 20
S/m. The field computation by the in-house full wave solver is validated against FEKO
and the relative error (blue curve) are found to be less than 1% (grey dashed line).

A. Horizontal Embedded CNT

The schematic diagram of a horizontal embedded CNT in
lossy three-layer media was shown previously in Fig. 2a. For
validation, we consider a simple CNT composite, where the
top and bottom layer is considered as air, the middle layer is d
= 1 µm thick dielectric with relative permittivity εr2 = 10 and
conductivity σ2 = 1 S/m. The horizontal CNT is l = 100 nm
long, with a radius rcnt = 0.61 nm, and placed at a height z0

= 0.75 µm from the bottom interface. The composite structure
in Fig. 2a is illuminated by a transverse magnetic (TM) plane
wave excitation normally incident on the top interface, i.e.
with zero incidence angle (θi = 0°), so that the incident
electric field has only Ex-component and couples maximally
to the x-directed CNT. Following the ATW condition (31), the
in-house solver discretizes the embedded 100 nm long CNT
into S = 25 small equal segments and assigns frequency
dependent complex distributed line impedance (Zcnt) to each

(a)

(b)

(c)

Fig. 6: (a) Schematic diagram of an z-directed electric dipole placed inside a d = 2 mm
thick semi-infinite lossy dielectric slab at a depth of δz = 0.25 mm from the top
interface. The top and bottom layers are considered as air. The z-component of the
electric field is computed at the source height at f = 1 THz (λ0 = 3 × 10−4 m) for
a lateral range of x = 0.61 nm to 1 cm, for the following two different lossy dielectric
cases, (b) εr2 = 1.1, µr2 = 1, σ2 = 10−9 S/m, (c) εr2 = 20, µr2 = 1, σ2 = 20
S/m. The field computation by the in-house full wave solver is validated against FEKO
and the relative error (blue curve) are found to be less than 1% (grey dashed line).

segment. No discretization is required for the layer as the in-
house solver uses multilayer DGFs to account for the layer
effect. The absorbed power spectrum (Pabs) of the horizontal
embedded CNT is computed by the in-house solver from 1
THz to 10 THz and is shown as the black curve in Fig. 7.
The 100 nm long horizontal embedded CNT shows resonance
at 6.9 THz. The unique complex conductivity of CNT and
the presence of the layered media allow the CNT to resonate
at a much lower frequency than a similar sized PEC wire
in free space. For example, the first resonance of an isolated
100 nm long PEC wire in free space appears near 1500 THz,
and that of a 100 nm long CNT in free space appears near 22
THz, irrespective of their orientation [13]. While embedded
in a dielectric layer the same CNT resonates at a much lower
frequency value depending on the layer characteristics.

We validate the in-house solver results against the MoM
based FEKO planar multilayer substrate solver, which uses a
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Fig. 7: Validation of absorbed power spectrum of an embedded horizontal CNT (see Fig.
2a) using three different solvers: (1) MoM based 1D in-house solver (this work), (2)
MoM based 3D FEKO solver, (3) FEM based CST MWS. Composite parameters are
as follows: εr1 = εr3 = 1, εr2 = 10, µr1 = µr2 = µr3 = 1, σ1 = σ3 =
0, σ2 = 1 S/m, d = 1 µm, z0 = 0.75 µm, l = 100 nm, rcnt = 0.61 nm. TM wave
excitation with θ = 0°.

(a) (b) (c)

Fig. 8: Three-dimensional (3D) full-wave model in commercial solvers for a 100 nm
long single CNT embedded in a 1 µm thick dielectric slab. (a) Zoomed view of the
3D cylindrical model for CNT in FEKO MoM solver discretized by 3000 triangular
surface mesh elements, and (b) discretized by 6000 triangular surface mesh elements.
The dielectric slab does not need discretization. (c) 3D unit cell in CST solver with
periodic boundary condition assigned in x and y direction for the single CNT embedded
in the dielectric slab where the whole setup is discretized by 1,145,026 tetrahedral mesh
elements.

similar multilayer Green’s function approach that avoids layer
discretization complexity [39]. However, FEKO does not allow
assigning complex impedance to 1D wire structures, and thus
the CNTs are modeled as 3D penetrable objects (cylinders),
discretized by triangular surface mesh elements, and assigned a
frequency dependent equivalent complex permittivity profile as
given in Appendix A, Eq. (A.3). Since the CNTs are inherently
high aspect ratio wire-like structures, a large number of
surface mesh elements is required to accurately define the wire
curvature of 3D cylindrical model. In the present example, the
100 nm long CNT with a radius rcnt = 0.61 nm has an aspect
ratio (length/diameter) ≈ 80. To study the meshing effect
on solution accuracy and compare the computation time we
simulated different mesh densities for the 3D CNT structure
in FEKO. Two such discretization in FEKO are shown by
the zoomed view in Fig. 8a (using 3000 mesh elements) and
Fig. 8b (using 6000 mesh elements). The FEKO results show
overall good agreement with the in-house results except for
the small red-shifts in resonance frequency (Fig. 7 red and
green curve). We find that the red-shift decreases from 4.35 %
to 2.61 %, when the CNT surface mesh elements assigned
by FEKO are doubled from 3000 to 6000 triangles. That
means with increasing meshing density, the 3D CNT resonance

should converge to the 1D CNT resonance. This is because
increasing mesh elements in FEKO better approximates the
wire curvature and thus we get increasingly accurate 3D MoM
solutions. It is obvious that the 3D meshed cylindrical shape
will always remain crude compared to the actual cylindrical
shape (which ideally would need an infinite number of mesh
elements), and thus a small but finite red-shift will always
persist in the FEKO generated resonance as compared to
the in-house solution. This observation is in accordance to
our previously reported work [13], where the CNTs were
investigated in a free space condition. To better visualize the
convergence phenomena of embedded CNT resonance we plot
both the FEKO resonance and the in-house resonance with
increasing mesh density in Fig. 9. The top x-axis shows inverse
of the number of linear segments used by the in-house solver
to discretize the 1D CNT and corresponding resonances are
plotted in black. The bottom x-axis shows inverse of the square
root of number of triangles used by FEKO to discretize the 3D
CNT surface and corresponding resonances are plotted in red.
For both the top and bottom x-axis, mesh density increases
towards the left. The black curve shows that the in-house
resonance remains unchanged when we use more than 20
segments for 100 nm long CNT. However the red curve shows
that the FEKO resonance frequency value gradually rises as the
triangular mesh density increases from 3000, to 4500, to 6000.
The extrapolated red curve shows that the FEKO will need
more than 20,000 triangular mesh elements to approximately
merge with the in-house resonance.

To further confirm the results of Fig. 7 we performed an
extra validation step. We chose finite element method (FEM)
based CST Microwave studio [40], a full-wave electromagnetic
solver that uses a totally different approach than the MoM
based FEKO and the in-house solver. The FEM based CST
solver requires discretization of the embedding layer surfaces
as well as the embedded 3D CNT with large number of
tetrahedral mesh elements. As shown in Fig. 8c, we design
the 1 µm thick dielectric slab with embedded CNT confined
in a 3D unit cell of 4 µm × 4 µm × 5 µm. The zmin/max are
set to open boundary conditions to simulate air above and
below the dielectric interfaces. Periodic boundary condition
is applied on xmin/max and ymin/max to simulate infinite
lateral extent of all three layers. We chose the adaptive mesh
setting in CST and solved from 1 THz to 10 THz. The
CST solution slowly converges to the in-house solution of
Pabs with increasing number of iterative passes. The CST
computed Pabs is also plotted in Fig. 7 (magenta dashed
curve), which shows excellent agreement with the in-house
result. The CST resonance frequency value is less than 1 %
red-shifted compared to the in-house resonance frequency
value. To achieve this result CST assigned a total of 1,145,026
tetrahedral mesh elements to discretize the confined composite
structure in a unit cell. Thus it is evident that with increasing
mesh density both the FEKO 3D MoM solution and CST
3D FEM solution converge towards our in-house 1D MoM
solution of embedded CNT.

The disadvantage of increasing mesh density is the price
of increased computation time. For a fair comparison, we
only compared the time required by FEKO and our in-house
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Fig. 9: Convergence of FEKO resonance towards the in-house solver resonance with
increasing mesh density for an embedded 100 nm long horizontal CNT. The top x-axis
shows the inverse of segment number used by in-house code for 1D CNT. The bottom
x-axis shows the inverse of square root of triangular mesh elements used by FEKO for
3D cylindrical CNT. Composite parameters remains same as in Fig. 7.

Fig. 10: Comparison of the [Z] filling time required by in-house solver vs FEKO for
the embedded horizontal 100 nm long CNT as described in Fig. 7.

solver. Both the solvers use multilayer Green’s function based
MoM technique that obviates the computational cost of layer
discretization. We only consider the time to calculate and fill
the impedance matrix at each operating frequency. An Intel(R)
Xeon(R) CPU E5-2697A v4 @ 2.60 GHz machine, with
512 GB installed RAM, was used to study the computation
time. Since the in-house algorithm does not involve any
parallel computation, FEKO was also operated in serial
mode. Fig. 10 plots the CPU time (in second) elapsed until
the [Z] matrix is filled along the y-axis, and increasing
frequency (1 GHz to 10 THz) along the x-axis. The red solid
line refers to the computation time required by the FEKO
3000 mesh (tFEKO(3K)), and the green solid lines refers
to the computation time required by the FEKO 6000 mesh
(tFEKO(6K)). The time required by the in-house algorithm
(for S = 25 segment CNT) is plotted as the black solid curve
(tA+B), which is the sum of two independent times tA and tB .
tA is the time required to build the LUT for contour integration
on the axial mesh grid along the CNT length. tA rises with
increasing frequency as the upper limit of contour integration
kM in (27) and (28) increases and more sampling points and
iterations are needed to maintain a desired numerical accuracy.

However, tB is independent of frequency. tB is the combined
time required to compute the closed form SI tail on the CNT
axial mesh grid, followed by the interpolation of the full-wave
solution and filling of the [Z] matrix.

Observing the entire frequency range in Fig. 10, we see
that tFEKO(3K) ≈ 2000 s, and tFEKO(6K) ≈ 8000 s. Thus
to reduce the resonant frequency red-shift approximately by a
factor of two (from 2.61 % to 4.35 %) FEKO needs a two fold
increase in surface mesh density (from 3000 to 6000), which
in turn increase the computation time by four fold (from 2000
s to 8000 s). However, to solve a [Z]24×24 matrix for the
horizontal CNT, the in-house solver takes only tA+B = 11.5
s @1 GHz, and tA+B = 16.7 s @10 THz. Thus we achieve
on average a computation speed up of tFEKO(6K)

tA+B
≈ 570 for

a 100 nm long horizontal embedded CNT while using the in-
house solver as compared to FEKO that still suffers from a
2.61% red-shift in resonant frequency.

B. Vertical Embedded CNT

To perform similar full-wave analysis with a vertical
embedded CNT we keep every other composite parameter
the same as mentioned in Fig. 7, except for the CNT
orientation and incident excitation. The schematic diagram of
the vertical embedded CNT in lossy three-layer media was
shown previously in Fig. 2b where the CNT was oriented
along z-axis and centered at a height z0 = 0.75 µm from the
bottom interface. The vertical embedded CNT (Fig. 2b) is
illuminated by a transverse electric (TE) plane wave excitation
with oblique incidence (θi = 80°), which has a large Ez
component that couples to the z-directed CNT.

The absorbed power spectrum (Pabs) for the embedded
vertical CNT is computed using the in-house solver and FEKO
from 1 THz to 10 THz and the results are compared in Fig.
11. For ease of comparison, we keep the mesh settings similar
to the previously discussed horizontal CNT case. From the
in-house calculation, we find that the 100 nm long vertical
embedded CNT also resonates at 6.9 THz, similar to the
embedded horizontal CNT. However due to the difference in
incident electric field polarization and CNT orientation the
absorbed power spectrum of the vertical embedded CNT (Fig.
11) is found to be approximately 19 dB lower than that of
the horizontal embedded CNT (Fig. 7). The FEKO simulation
results for the vertical embedded CNT with 3000 and 6000
mesh shows good agreement with the in-house results (Fig.
11). In this case also we find small red-shifts in resonance
frequency exhibited by FEKO as compared to the in-house
solver. The red-shift decreases from 4.35 % to 2.61 %, when
the number of FEKO surface mesh elements are doubled from
3000 to 6000 triangles.

Using the same Intel(R) Xeon(R) CPU E5-2697A v4 @
2.60 GHz machine, with 512 GB installed RAM, we record
the computation time required to solve the vertical embedded
CNT. Fig. 12 shows the time comparison between FEKO
and the in-house solver. The y-axis indicates the CPU time
(in seconds) elapsed until the [Z] matrix is filled, and the
x-axis shows increasing frequency from 1 GHz to 10 THz.
The definition of tFEKO(3K), tFEKO(6K), tA, tB and tA+B
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Fig. 11: Validation of absorbed power spectrum of an embedded vertical CNT (see Fig.
2b) using MoM based 1D in-house solver (this work) and MoM based 3D FEKO solver.
Composite parameters are as follows: εr1 = εr3 = 1, εr2 = 10, µr1 = µr2 =
µr3 = 1, σ1 = σ3 = 0, σ2 = 1 S/m, d = 1 µm, z0 = 0.75 µm, l = 100 nm, rcnt
= 0.61 nm. TE wave excitation with θ = 80°.

Fig. 12: Comparison of the [Z] filling time required by in-house solver vs FEKO for
the embedded vertical 100 nm long CNT as described in Fig. 11.

remains same as in Fig. 10. To solve a [Z]24×24 matrix for
the vertical embedded CNT, the in-house solver takes tA+B

= 140.2 s @1 GHz, and tA+B = 177.3 s @10 THz as shown
in Fig. 12. This is almost ten times more than what was
observed in Fig. 10 for the horizontal CNT. To explain this
ten fold increase in computation time we can refer back to
the last paragraph of section II-D, where it was discussed that
for the horizontal CNT an 1D LUT is employed considering
its lateral invariance property, but for the vertical CNT a 2D
LUT is required. The FEKO solution time for the embedded
3D CNT remains similar irrespective of any CNT orientation.
This is because FEKO fetches Green’s function data from a
pre-formatted built-in LUT that works in similar fashion for
any orientation of the 3D object. However, for the 100 nm
long vertical embedded CNT we still achieve an average
computation speed up of tFEKO(6K)

tA+B
≈ 50 by using the in-

house solver as compared to FEKO.

V. CONCLUSION

A novel full wave method of moment (MoM) solver was
developed for accurate and efficient non-invasive evaluation of
the electromagnetic response from multiscale CNT reinforced

composites. The three dimensional (3D) multiscale composite
problem has been effectively reduced to a one dimensional
(1D) arbitrary thin wire problem by using the multilayer
dyadic Green’s function (DGF) which accurately accounts
for the lossy substrate effect. A modified semi-analytical
technique was conceived for fast evaluation of the associated
Sommerfeld type integrals. The integrand singularities were
avoided by adaptive contour deformation. The slow converging
integrand tails were computed in exact closed form. The
reliability of the in-house solver was tested for a wide
range of composite parameters, including 1 GHz to 10
THz operating frequency, nm to mm thick substrate, nm
to cm range of lateral separation between source and
observation point, and also a wide variety of media properties
to cover most CNT composite applications. The accuracy
of the in-house algorithm was verified rigorously against
multiple commercial 3D full-wave solver. The absorbed power
spectrum of horizontal and vertical embedded CNTs are
studied. It is observed that, with increasing mesh density,
the results achieved by the 3D commercial solvers gradually
converge towards the results achieved by the solver proposed
in this work. The in-house algorithm (in serial mode) solves a
100 nm long embedded CNT ≈ 570 times faster for horizontal
orientation, and ≈ 50 times faster for vertical orientation as
compared to the FEKO 3D MoM solver. Thus for composite
problems the present approach will be more scalable than
available commercial full-wave solvers. In its present form,
the solver can be rigorously applied to investigate horizontal
and vertical arrangements of embedded CNTs and study the
effects of composite parameters on the total electromagnetic
response. The algorithm is currently being expanded to include
additional DGF components. Parallelization of the algorithm
can further improve the solver speed.

In summary, the proposed full-wave solver overcomes
the limitations of: (i) the dilute limit effective media
approximations (EMA) which are fast but inaccurate beyond
low frequencies, and (ii) 3D full wave commercial solvers
(FEM, MoM) which give comparable accuracy but at the
expense of enormous computation resources and time.
The proposed solver could enable the simulations of more
complex composite structures that are engineered to produce
tailored electromagnetic behavior. Also, the greatly improved
computational efficiency of the in-house algorithm will be
very useful for real-time interpretation of the spectroscopy
data to facilitate the non-destructive evaluation (NDE) of
CNT composites.

APPENDIX A
ELECTRICAL PROPERTIES OF SINGLE WALLED CNTS

The ATW CNTs are assigned Drude-like axial surface
conductivity as follows [30],

σcnt =
σ0

1 + jωτ
, σ0 =

2e2 νF τ

2πh̄ rcnt
(A.1)

where σ0 is the CNT static DC conductivity, τ = 0.3 ps to
3 ps is the relaxation time, e is the electronic charge, νF =
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9.71 × 105 m/s is the Fermi velocity, h̄ is Plank’s constant
divided by 2π, and rcnt is the CNT radius. The axial surface
conductivity in (A.1) is valid in the microwave through 100
THz range for metallic CNTs with small chirality (n,m) < 50
[41]. In this study, we have considered only single walled
CNTs (SWCNTs) with a (9, 9) armchair chirality resulting in
a cross-sectional CNT radius of rcnt = 0.61 nm. The relaxation
time was set to τ = 3 ps to generate sharp resonances in
power spectrum. The CNT axial surface conductivity can
be translated into a one-dimensional distributed complex
impedance Zcnt as follows [13]:

Zcnt = Rcnt + jωLcnt =
1

2 π rcnt σcnt
where,

Rcnt =
1

2 π rcnt σ0
, Lcnt =

τ

2 π rcnt σ0

(A.2)

Rcnt is the Ohmic distributed resistance and Lcnt is the kinetic
inductance of the CNT.

While modeling the CNT as a penetrable 3D cylindrical
structure in FEKO, the region inside the cylinder was assigned
an appropriate complex permittivity profile following the
below steps, 

σcyl = 1
Zcnt πr2cnt

εrcyl =
Im(σcyl)−jRe(σcyl)

ωε0

tan δcyl = −Im(εrcyl )

Re(εrcyl )

(A.3)

APPENDIX B
SOMMERFELD IDENTITIES

The following exact closed-form solutions of Sommerfeld
type integrals are derived using the Fourier-Bessel transform
relationships given in [57].

S0 =

∫ ∞
0

dλ [λJ0(λr)]
e−an

√
λ2−k2i√

λ2 − k2
i

=
e−jkiA

A
(B.1)

where A =
√
r2 + a2

n.

S1 =

∫ ∞
0

dλ
[J1(λr)

r

] e−an√λ2−k2i√
λ2 − k2

i

=
e−jkian − e−jkiA

A

(B.2)

S2 =
∂2

∂a2
n

{S0} =

∫ ∞
0

dλ[λJ0(λr)]
√
λ2 − k2

i e
−an
√
λ2−k2i

=
e−jkiA

A2

[
− jki −

1 + k2
i a

2
n

A
+

3jkia
2
n

A2
+

3a2
n

A3

]
(B.3)

S3 =
∂2

∂a2
n

{S1} =

∫ ∞
0

dλ
[J1(λr)

r

] √
λ2 − k2

i e
−an
√
λ2−k2i

=
1

r2

[
jkie

−jkian +
e−jkiA

A

(
1− jkia

2
n

A
− a2

n

A2

)]
(B.4)

S4 = − ∂2

∂r2
{S0} −

1

r

∂

∂r
{S0}

=

∫ ∞
0

dλ [λ3J0(λr)]
e−an

√
λ2−k2i√

λ2 − k2
i

=
e−jkiA

A2

[
2jki +
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2

A
− 3jkir

2

A2
− 3r2

A3

]
(B.5)
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