
P
os
te
d
on

6
J
u
l
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
48
52
36
1.
v
1
—

T
h
is

is
a
p
re
p
ri
n
t.

V
er
si
on

of
R
ec
or
d
av
ai
la
b
le

at
h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
16
/j
.j
p
d
c.
20
22
.0
4.
02
1

Cohort-based Federated Learning Services for Industrial

Collaboration on the Edge

Thomas Hiessl 1

1TU Wien

October 30, 2023

Abstract

Machine Learning (ML) is increasingly applied in industrial manufacturing, but often performance is limited due to insufficient

training data. While ML models can benefit from collaboration, due to privacy concerns, individual manufacturers cannot share

data directly. Federated Learning (FL) enables collaborative training of ML models without revealing raw data. However,

current FL approaches fail to take the characteristics and requirements of industrial clients into account. In this work, we

propose a FL system consisting of a process description and a software architecture to provide \acrfull{flaas} to industrial

clients deployed to edge devices. Our approach deals with skewed data by organizing clients into cohorts with similar data

distributions. We evaluated the system on two industrial datasets. We show how the FLaaS approach provides FL to client

processes by considering their requests submitted to the Industrial Federated Learning (IFL) Services API. Experiments on both

industrial datasets and different FL algorithms show that the proposed cohort building can increase the ML model performance

notably.

1

1

Cohort-based Federated Learning Services for
Industrial Collaboration on the Edge

Thomas Hiessl, Safoura Rezapour Lakani, Jana Kemnitz, Daniel Schall,
and Stefan Schulte, Member, IEEE

Abstract—Machine Learning (ML) is increasingly applied in industrial manufacturing, but often performance is limited due to
insufficient training data. While ML models can benefit from collaboration, due to privacy concerns, individual manufacturers cannot
share data directly. Federated Learning (FL) enables collaborative training of ML models without revealing raw data. However, current
FL approaches fail to take the characteristics and requirements of industrial clients into account. In this work, we propose a FL system
consisting of a process description and a software architecture to provide FL as Service (FLaaS) to industrial clients deployed to edge
devices. Our approach deals with skewed data by organizing clients into cohorts with similar data distributions. We evaluated the
system on two industrial datasets. We show how the FLaaS approach provides FL to client processes by considering their requests
submitted to the Industrial Federated Learning (IFL) Services API. Experiments on both industrial datasets and different FL algorithms
show that the proposed cohort building can increase the ML model performance notably.

Index Terms—Federated learning, edge computing, collaborative AI, industrial collaboration, service-based architecture

F

1 INTRODUCTION

IN recent years, Machine Learning (ML) has improved
industrial manufacturing and process automation signif-

icantly, e.g., in fault classification, quality estimation, and
soft sensing [1]. For instance, value-added and ML-based
services like condition monitoring for production machines
can be used to facilitate timely and cost-efficient mainte-
nance actions throughout the lifetime of a machine [2], [3].

To achieve these benefits, high-quality ML models re-
quire a significant amount of training and test data. This
data is often considered privacy-sensitive and needs to be
protected from outside parties [4]. In addition, there is often
a lack of ground truth data, which is referred to as the
missing labeled data problem [5]. This is especially the
case in industrial scenarios, since some labels can only be
assigned to a dataset if critical and potentially rare events
(e.g., a machine breakdown) are observed [6].

Since these large and labeled datasets cannot be shared
with centralized servers for ML, a privacy-preserving way
of knowledge sharing between collaborating devices is de-
sired. This is the goal of Federated Learning (FL), as in-
troduced by McMahan et al. [7]. FL is a recently emerged
approach for transferring knowledge as model parameters
(e.g., weights of neural networks) between edge devices
without revealing raw data. For this, models are trained
locally on edge devices and are then uploaded to an aggre-
gation server that fuses model parameters, e.g., by averag-
ing. After aggregation, the model is returned to the clients
for evaluation. This process is executed repeatedly either

• T. Hiessl is a PhD student at TU Wien and is a research scientist at
Siemens Technology in Vienna. Email: hiessl.thomas@siemens.com

• S. Rezapour Lakani and J. Kemnitz are data scientists at the Distributed
AI Systems research group at Siemens Technology in Vienna.

• D. Schall is the head of the Distributed AI Systems research group at
Siemens Technology in Vienna.

• S. Schulte is the head of the Christian Doppler Laboratory Blockchain
Technologies for the Internet of Things at TU Wien.

until a pre-defined number of communication rounds or
a provided level of quality (e.g., classification accuracy) is
reached.

To optimize collective model training, various FL algo-
rithms, e.g. [7], [8], [9], [10], have been researched focusing
on model aggregation and client selection. Applying this
concept for industrial machines that are distributed over
multiple factories and facing heterogeneous environmental
and operational conditions is referred to as Industrial Fed-
erated Learning (IFL) [11].

At this time, still many challenges [12] exist in FL which
apply especially to industrial clients [11]. First, FL train-
ing processes typically start with selecting clients that are
sampled by a server acting as central authority [7], [12].
Hence, single servers are used for orchestrating and mon-
itoring the distributed training process managing connected
edge devices [13]. So, in the majority of FL approaches
the central authority defines the learning task by deciding
e.g., on the used ML model, hyperparameters, and the FL
algorithm [12]. However, in industrial applications, users
(e.g., machine operators in production lines) have individ-
ual requirements regarding business partnerships when it
comes to collaborations with other companies on improving
and maintaining machine performance [11]. Hence, clients
dependent on the learning task definition provided by
the server are restricted to centrally managed ML models,
therefore applications, and have no influence on selecting
partners for FL. For example, pump manufacturers provide
their products to customers (clients) from various industries
like manufacturing, food and beverage, pharmaceutical en-
gineering or water supply. Different use cases and therefore
operational conditions are present in these domains, which
may require adaptations of used ML models and hyper-
parameters for groups of clients. Moreover, even clients
from the same field have restrictions to collaborate only
with selected partners or with at least a defined minimum

2

number of partners to increase the chance for actual ML
model improvements. Hence, there is a need for a service-
based system, empowering independent clients to create
and submit ML models to the server and thereby enable FL
as a Service (FLaaS) [14]. Using a FLaaS approach, allows a
group of collaborating and independent clients to apply FL
on these models and subsequently use it on their machines.
Furthermore, considering client restrictions for collaboration
partners, and the applied FL algorithm on the server pro-
vides flexibility to the clients.

Second, model updates for operating machines often
needs to be triggered explicitly in industry under human
supervision. This can be relevant in industry when ML mod-
els are used to assist human users [15]. Potential use cases
are, e.g., condition classification of factory machines, failure
detection, or even optimization of production processes. To
update the used ML model with FL, a client may want
to explicitly request participation in FL rounds, instead of
automatically getting invoked in periodical execution plans
by the server. This enables manual testing before deciding
whether to use the model in production. Although, explicit
participation in FL is not unique to IFL, this is significant for
industrial applications.

Third, a prominent challenge in FL is the problem of
heterogeneous data distributions [12], which is especially
present in industrial domains when machines operate with
different configurations under varying environmental and
operational conditions. For instance, considering different
liquids that are pumped in industrial processes, one can
observe different error cases occurring over time detected
by models using vibration patterns as input data [16].
Typically, one can observe that input data (e.g., vibration
data) is varying across clients which is referred to as feature
distribution skew [17]. Additionally, varying labels (e.g., error
cases) can often be observed as well, which is referred to
as label distribution skew. This phenomena corresponds to
the non-IID (identically and independently distributed) data
problem, which is a general issue in FL [12]. In non-IID
settings, poor model quality can be observed by individual
clients as the model is validated on their local data after
FL was applied for all clients [12]. Therefore, FL systems
need to provide mitigation strategies in implemented FL
algorithms.

This paper addresses the aforementioned challenges of
(i) enabling clients to individually and independently select
used ML models and to define client criteria for collabora-
tion in FL, (ii) enabling clients to explicitly participate in FL
on an on-demand basis, and (iii) non-IID data distributions
by proposing a FL system. Notably, the contributions are
motivated and evaluated using scenarios from the industrial
domain, but as discussed above, similar problems also occur
in FL in general.

The contributions of this work can be summarized as
follows:

• We present a FL process, the IFL process, for indus-
trial clients including two algorithms dealing with
individual and on-demand requests, and non-IID
data.

• We design and implement a service-based system,
the IFL system, covering the IFL process and provid-

ing FLaaS.
• We provide an evaluation of the IFL system using

two time series-based industrial datasets. We present
results on the model performance after FL and com-
pare IID and non-IID scenarios.

We evaluated the IFL system on two industrial time
series datasets, both providing several clients. We show
that the IFL system considers on-demand participation of
clients and yields significant improvements in classification
accuracy applying FL on cohorts of similar clients rather
than on the overall population.

The remainder of this paper is organized as follows:
We describe the overall IFL system design in Section 2,
and the system architecture in Section 3. In Section 4, we
demonstrate the results of the FL experiments, and we
review related work in Section 5. We conclude and outline
future work in Section 6.

2 SYSTEM DESIGN

In order to present the design of our system, we first intro-
duce the basic notation used in our work in Section 2.1. In
Section 2.2, we introduce the IFL process and the algorithms,
which are central to our approach of applying FL on cohorts
of similar clients.

2.1 Basic Notation

To describe our IFL system model formally, we introduce
the notation presented in Table 1. For this, we consider that a
client c ∈ C manages an asset a ∈ A (e.g., a concrete heating
pump) of a given asset type type(a) (e.g, a centrifugal
pump). Every asset type defines a data scheme u(type(a))
that needs to match with the data scheme v(m) required by
the ML model m ∈M that client c wants to train.

To participate in IFL, the i-th client ci submits a task ti to
the IFL Server. For this, the client needs to specify asset ati ,
model mti , the individually selected FL algorithm algti ∈
ALG for aggregating model weights, a cohort building
algorithm cbti ∈ CB, and federation criteria critti ∈ CRIT
before submitting ti to the server.

The federation criteria critti correspond to a set of re-
quirements, where each need to be fulfilled by the system to
consider ti for upcoming FL rounds. So, we consider ti ∈ T
with T ⊆ A×M × CRIT × CB ×ALG.

A population p is a set of tasks that refer to the same
asset type typep, model mp, FL algorithm algp and cohort
building approach cbp, where p ⊆ T with typep = type(ati),
mp = mti , algp = algti , and cbp = cbti holds for all ti ∈ p.

A cohort coh is a set of tasks with similar data distribu-
tions with coh ⊆ p. For this, the cohort building approach
cbp is used to assign every task within a population to a
cohort. Furthermore, we consider COHp as the set of all
cohorts of population p. Hence, for cohp1, . . . , coh

p
|COHp| ∈

COHp it holds that cohpj ⊆ p for all j ∈ {1, . . . , |COHp|}
with cohpj ∩ coh

p
k = {} and j 6= k.

Finally, FL is applied on population p using the FL
algorithm algp to train one model per cohort cohj ∈ COHp.
For this, we consider mcohj with mcohj = algp(cohj) for all
cohj ∈ COHp.

3

 Population 1

 Cohort 1.2

IFL Client 1

IFL Client 2

IFL Client 7
ML Model

ML Model

2. Task & Model Registration 3. Population & Cohort Building

 Cohort 1.1

 Population 2

 Cohort 2.1

Task 5Asset 7

Asset 1

1. Asset Onboarding &
Task Submission

Task 6

Task 1 Task 2
Task 1

Task 2 Task 3

Task 4 Task 5

Task 6 Task 7

Task 4

Task 3 Task 4
Asset 2 IF

L
AP

I

4. IFL Execution

Load Cohorts

Apply FL Algorithm

Validate Results

Provide ML models
to clients

Clients Server

Fig. 1. IFL Process with 4 phases: 1. Clients are connected to their assets and submit tasks using the IFL API to participate in FL. 2. Submitted
tasks are registered on the server referring to ML models used as base for FL. 3. Populations of tasks with same asset types are created. Cohorts
further split populations in clusters of tasks with similar data distributions. 4. FL is executed for each cohort by applying the algorithm selected by
the clients. Finally, validating results and providing the ML model to clients.

TABLE 1
IFL system entities

Notation Description
C Set of clients ci ∈ C participating in IFL
A Set of assets a ∈ A
M Set of ML models m ∈M
CRIT Set of federation criteria crit ∈ CRIT
CB Set of cohort building approaches cb ∈ CB
ALG Set of FL algorithms alg ∈ ALG
T Set of tasks ti ∈ T submitted by clients
P Set of populations p ∈ P
COHp Set of cohorts coh ∈ COHp of a given population p

2.2 IFL Process
In our solution, we address the discussed challenges and
propose the IFL process depicted in Figure 1. The process is
executed by the IFL system consisting of the IFL Client and
the IFL Services. The client can be deployed on edge devices
to train and operate ML models based on data generated by
connected machines. The IFL Services offer an API to the
clients providing knowledge aggregation and distribution
on a central server.

To support FL for edge-based industrial clients, the IFL
Client and services provide a four-step process depicted in
Figure 1. As a prerequisite, we consider deployed client ap-
plications that invoke the IFL Client to establish connectivity
to the IFL Services. Data is recorded from the asset and
stored on the device. For this, we assume a classification
problem with input data provided as matrix X ⊆ RNS×NV

with NV variables and NS samples, and a NS-dimensional
target vector y ⊆ RNS .

2.2.1 Asset Onboarding and Task Submission
The first step involves the IFL Client that needs to specify
metadata that is referenced in a task. This metadata contains
the used asset with the corresponding asset type, whereas

the asset type can be reused, if other clients have already
published this to the server. Similarly, a ML model is cre-
ated or selected from the server to be applied to the data.
This model is created upfront, based on the asset types’
corresponding data structure and the ML task that needs
to be solved.

Based on that, the client selects a cohort building ap-
proach. For this, the IFL Services provide two approaches.
The first approach applies a cluster algorithm based on
input data X to address potential feature distribution skew.
The second approach clusters based on target data y to con-
sider label distribution skew. In both cases, the respective
cohort building approach is selected to reduce skewness
within cohorts and to improve performance of models that
are trained in a cohort by applying FL.

Furthermore, clients specify the knowledge aggregation
algorithm, e.g., Federated Averaging [7], and individual
federation criteria, e.g., the minimum number of clients in a
population or minimum dataset size. This enables the client
to control the knowledge aggregation process, e.g., to avoid
that knowledge is transferred only between a small number
of clients, which may lead to insufficient training results.
Furthermore, this prevents that knowledge from an individ-
ual model is transferred to only a few other clients that may
not contribute to the global model. To participate in IFL,
clients then submit a task with the mentioned specifications
to the server using the IFL API.

2.2.2 Task and Model Registration
In the second step, the server stores the defined assets,
uploaded ML models and the tasks. Subsequently, the
server verifies that the data scheme of the asset fits to the
data scheme required by the referenced ML model, i.e.,
u(type(a)) = v(m). Hence, it is ensured that clients can
participate in FL rounds when the model is trained on their
local data.

4

Algorithm 1 PopulationCohortBuilding
Input: new task t received from client, populations P stored

on the server
Update populations:

1: addedt ← False
2: for p ∈ P do
3: if typep = type(ati), mp = mti , algp = algti , and

cbp = cbti then
4: p← p ∪ ti
5: addedt ← True
6: if critti holds for every ti ∈ p then
7: COHp ← CreateCohorts(p)
8: break
9: end if

10: end if
11: end for
12: if not addedt then
13: pnew ← {ti}
14: P ← P ∪ pnew
15: end if

CreateCohorts(p):
16: Initialize F as n×m matrix for n tasks and m features
17: for ti ∈ p do
18: if cbp = Target Distribution then
19: r ← {mean(yti), var(yti), skew(yti), kurt(yti)}
20: end if
21: if cbp = Input Distribution then
22: r ← {mean(Xt

i), var(X
t
i), skew(X

t
i), kurt(X

t
i)}

23: end if
24: add row r to F
25: end for
26: for feature f ∈ F do
27: if std(f) < ε then
28: remove f from F
29: end if
30: end for
31: k ← elbow(F)
32: COHp ← kMeans(F, k)
33: return COHp

2.2.3 Population and Cohort Building

The third step assigns tasks to populations and further splits
populations into cohorts. This facilitates FL to be executed
within small groups of similar clients. For this, we consider
the server to execute Algorithm 1 to assign tasks accordingly
as they are submitted by clients.

First, to build populations, we consider tasks with equal
configurations. Particularly, we search for a population p
with the same asset type, ML model, cohort building al-
gorithm and FL algorithm as referred to in task ti. This is
necessary to consider a valid FL setting, whereas the same
algorithms and model need to be applied on a common data
scheme. If any population matches the task configuration
as checked in line 3, the task is added. Otherwise, a new
population pnew is created and added to the populations
store P on the server (lines 13 and 14).

Furthermore, it is required to reach a consensus regard-
ing the federation criteria, i.e., all criteria critti have to hold

for all tasks ti ∈ p as verified in line 6. For instance, we
consider a criterion for requiring a minimum number of
tasks in a population as a precondition before starting FL.
To formally describe this exemplary federation criterion, let
q(ti) be a function with q(ti) < |p| for all ti ∈ p, where q(ti)
returns the minimum number of tasks that is required by ti.
Based on that, the server eventually starts cohort creation in
line 7 to improve model accuracy when FL is executed.

For this, we consider that data of individual clients can
be non-IID. As we identified in [11], non-IID data can be
observed when assets operate in heterogeneous industrial
environments. Hence, in CreateCohorts(p), the server
makes use of aggregated data that describe the clients data
distribution.

For this, we consider two cohort building approaches,
i.e., Target Distribution and Input Distribution. Applying the
former one, the server requests the client to compute the
statistical moments mean, variance, skewness and kurtosis
of the target data yt in line 19. These measures provide
information on the shape of the data’s underlying distri-
bution function, i.e., location (mean), dispersion (variance),
asymmetry (skewness) and the form of tails (kurtosis). We
used these features to capture the target distribution of
every client’s dataset as precise as possible, which is the
basis for accurately assigning the corresponding task to a
cohort of tasks with similar target distributions. Therefore,
we can reduce label distribution skew in a cohort. In line 24,
the features are returned to the server and added as a new
row to the feature matrix F .

The Input Distribution approach computes the mentioned
moments based on all n variables of the input matrix Xt

(line 22) and adds them to F . This feature matrix F consists
of |p| rows and u columns, where u is the number of fea-
tures. Hence, using Target Distribution we have u = 4, while
for Input Distribution we consider u = 4 × n . Analagous
to Target Distribution, using Input Distribution we can reduce
feature distribution skew.

Since F may contain many features with limited infor-
mation, we remove all features f from F with std(f) ≤ ε in
line 28, where std(f) computes the standard deviation and
ε is a pre-configured parameter on the server.

To eventually create the cohorts COHp, we apply the k-
Means [18] cluster algorithm based on the reduced feature
matrix F. The k-Means cluster algorithm is an iterative ap-
proach that considers a fixed number of k clusters, whereas
data points are assigned to cluster centers that minimize
variance within clusters. Optimally, we want clusters where
all the data in a cluster are close to each other, and the dis-
tance between two clusters is as large as possible. To identify
k, we apply the elbow method [19], [20] in line 31 to find
the optimal value with respect to the silhouette [21] values.
In line 32 we finally apply k-means with the identified k
to assign all tasks ti ∈ p to cohorts COHp. We used the
combination of k-means and the elbow-method since it can
autmatically be applied by the IFL Service without the need
for human validation of the number of built cohorts and
still avoiding under- and over-fitting of the trained cluster
model.

5

2.2.4 IFL Execution
The fourth and final step in the IFL process applies the
selected FL algorithm algp on all created cohorts COHp as
described in Algorithm 2. To start the execution, the server
loops through all coh ∈ COHp and initializes the models
mti

0 for all tasks ti ∈ cohj in line 2. For this, the model
architecture of the underlying neural network is created by
building all layers as defined in the base model mp of the
population.

To actually share knowledge between the involved
clients, FL algorithms can be invoked by the server. In this
work, we evaluate the integration of two FL algorithms
in the IFL Services to be applied on cohorts, i.e., Federated
Averaging (FedAvg) [7] and Sequential FL (SeqFL) [22] We
selected the two algorithms since they are well-established
and often considered as a benchmark for FL.

Both algorithms invoke clients by iterating over their
issued tasks ti of the processed cohort cohj , and calling
the function ClientUpdate(t,m) on the client (lines 6
and 12). The clients individually train a model that is passed
to them by the server in ClientUpdate(t,m) as defined
in line 18. For this, in lines 19-24, the dataset Xti is split
into batches B and is iterated several times as defined in
the number of epochs E. In line 22, the model is updated
using one step of gradient descent optimization, considering
a loss function l and a learning rate alpha. After iterating the
defined number of epochs, the optimized model is returned
to the server in line 25, to exchange the gained knowledge
with other clients.

In FedAvg, this is achieved by summing up model
weights from all clients of a given round and dividing it
by the number of tasks in the cohort |cohj | as presented in
line 8. In our approach, we integrated a simplified equally
weighted averaging, whereas in the original approach client
models are weighted with an additional factor expressing
the proportion of the number of examples NSi

of client
ci with respect to the total number of examples. In the
next round, the aggregated model is again distributed to
all clients.

In SeqFL, the model is passed sequentially from one
client to another, whereas the subsequent client optimizes
the model that the previous client has optimized before. The
result of the last client in a given round r is used as input
for the first client of round r + 1 (line 14).

After training using either of the aforementioned algo-
rithms, the resulting model mcohj

R is validated by involved
clients on their local test datasets as stated in line 17. This
yields validation metrics (i.e., test set accuracies) that are
passed to the clients along with the model, which concludes
the IFL execution process. As a result, the client is enabled
to decide whether to operate the IFL-based model or an
individually trained model on the edge device.

3 SYSTEM ARCHITECTURE

To run the IFL process described in Section 2.2, the IFL
system provides the service-based architecture depicted in
Figure 2. In this FLaaS approach, we consider two main
locations, i.e., the shop floor and the IFL Server.

On the shop floor, assets are operated and generated
data (e.g., measured vibrations) are sent to an Edge Device

Algorithm 2 IFL Execution

Input: COHp received from population and cohort build-
ing step
Server execution:

1: for cohj ∈ COHp do
2: initialize mti

0 for all tasks ti ∈ cohj
3: for round r = 1, ..., R do
4: if algp = FedAvg then
5: for task ti ∈ cohj do
6: mti

r+1 ← ClientUpdate(ti,m
ti
r)

7: end for
8: m

cohj

r+1 ← 1
|cohj |

∑|cohj |
i=1 mti

r+1

9: end if
10: if algp = SeqFL then
11: for task ti ∈ cohj do
12: m

ti+1
r ← ClientUpdate(ti,m

ti
r)

13: end for
14: m

cohj

r+1 ← mt0
r+1 ← m

t|cohj |
r

15: end if
16: end for
17: validate and send m

cohj

R to all clients ci of tasks ti ∈
cohj

18: end for

ClientUpdate(t,m) // Run task t on client
19: B ← (Xt split into batches of size B)
20: for epoch e ∈ 1..E do
21: for batch b ∈ B do
22: m← m− α∇l(m, b)
23: end for
24: end for
25: return m to server

to train a ML model that can be used for, e.g., condition
monitoring. The IFL Server consists of the IFL Services that
provide an interface to onboard assets, submit tasks, and
apply FL on cohorts of clients. This architecture allows
multiple clients from different locations (i.e., shop floors) to
use the IFL Services and participate in FL. This can be useful
to provide FL to multiple sites within a company or even to
multiple companies that aim for collaborating on common
ML problems.

3.1 IFL Client on Edge Devices

To support the asset onboarding and tasks submission step
in the IFL process as described in Section 2.2.1, the IFL Client
is deployed to Edge Devices. In particular, the IFL Client is
invoked by the Industry Application to participate in FL. The
Industry Application can include arbitrary business logic
that makes use of FLaaS to train ML models on recorded
asset data. To support this, the IFL Client connects to the IFL
Services and creates an IFL task, which triggers subsequent
IFL process steps yielding a trained model at the end.

As described in the IFL process, the IFL client needs to
specify relevant metadata as the used asset, ML model etc.
beforehand. This metadata is stored along the used dataset
on a local data storage to ensure transparency on the history
of trained ML models and involved assets.

6

IFL Services

Asset Edge Device

Processor

Cohort
Builder

Database

Assets &
Asset
Types

Base
ML

Models

Population
Scheduler

IFL Architecture

Client
Registry

Local Storage
Datasets

IFL Client

Assets
Industry

Application ML Models

Worker
Node

Worker
Network

Message Broker

Tasks Populations Cohorts

Shop
Floor

IFL
Server

Database
Trained

ML Models

Fig. 2. IFL Architecture: Edge-based IFL Client and IFL Services

After submitting a task, the IFL Client starts a local
Worker Node that can run e.g., the ClientUpdate(t,m)
function (see line 18 in Algorithm 2). This function is called
by the server in the IFL Execution step as described in
Section 2.2.4. For this, the IFL Client provides the training
and test dataset to the Worker Node to optimize the model
m that is received from the server in the respective commu-
nication round. As a prerequisite, the Worker Node needs
to register at the Worker Network that is located on the
IFL Server. This enables that Worker Nodes can be found,
as a lookup on the server is initiated to invoke clients.
Worker Nodes are relevant in this architecture, since they
enable isolated training per task. This training can even be
outsourced to trusted Edge Devices by spawning Worker
Nodes on remote locations. This can be useful if resources
(e.g., CPU, Memory, GPU) are fully utilized on a given Edge
Device, but still further training is planned.

3.2 IFL Services

To provide FLaaS, the IFL process is supported on the server
side, which considers Client Registry, Population Scheduler,
Cohort Builder, and the Processor as independent services. We
further consider a database for assets, associated asset types,
and ML models. The latter are considered as base ML mod-
els, reflecting a deep learning neural network architecture
with untrained weights.

Using the Client Registry, the ML models can be created
by clients and used by other clients by referring to them in
the submitted tasks. For this, the Client Registry provides
an API that accepts assets, asset types, ML models and
tasks. The latter are validated with respect to a matching
data scheme of referred assets and the data scheme that is
required by the ML model before eventually saving it to the
Message Broker. This broker supports a publish/subscribe
messaging architecture to share processed output (i.e., vali-
dated tasks, built populations, and cohorts) between the ser-
vices. This asynchronous communication enables loosely-
coupled services, whose instances can be scaled up and
down considering varying loads of task submissions.

To support the population and cohort building as de-
scribed in Section 2.2.3, the population scheduler consumes

tasks from the Message Broker and assigns them to a popu-
lation. If provided federation criteria hold for all clients, the
population is published to the Message Broker for cohort
building. Hence, the Cohort Builder is triggered to create
cohorts that are again published to the Message Broker.
However, to create cohorts, the statistical moments of the
underlying data distributions are needed, as presented in
Algorithm 1. For this, the Cohort Builder makes use of
the Worker Network to access registered Worker Nodes
assigned to the clients. In this approach, the Cohort Builder
submits a query to the Worker Network to retrieve refer-
ences to the Worker Nodes. The query is used to retrieve
only Worker Nodes of clients that have submitted tasks
to the currently processed population. This is useful since
the selective approach does not invoke clients of other
populations blocking their resources.

To address the IFL Execution process step, as described
in Section 2.2.4, the Processor service subscribes to created
cohorts on the Message Broker. Hence, the cohort is loaded
and the seleted FL algorithm is applied by again accessing
the Worker Network. For this, the Processor sends the
ML model to respective Worker Nodes and retrieves the
updated model after training. After the last communication
round, the trained model is validated on test data by the
Worker Nodes. The validation metrics are stored along with
the trained ML model in a database. To deploy the model to
the shop floor, participating clients can download the model
as provided by the Processor API.

4 EVALUATION

In this section, we show the applicability of the IFL process
on different datasets including industrial data. We evaluate
our IFL system approach on IID and non-IID datasets.

In the following, we explain our evaluation setup (Sec-
tion 4.1). The characteristics of the datasets used for our
evaluation and the scenarios designed from these datasets
are described in Section 4.2. Our experimental design is
explained in Section 4.3. Finally, the evaluation results based
on the designed scenarios are reported in Section 4.4.

4.1 Experimental Setup
All the experiments are run on a Windows machine with
3.0 GHz Intel Xeon Scalable Processor with 8 CPU cores
and 32 GiB RAM, hosting the IFL Services. IFL Clients run
on a Windows machine with 3.3 GHz Intel Xeon Scalable
Processor with 2 CPU cores and 4 GiB RAM.

The implementation of the IFL system uses PySyft1,
an open source framework for private deep learning to
operate on data that resides on remote locations, i.e., the
server invokes PySyft to connect to the clients and to train
ML models on their local datasets. The Worker Nodes and
Worker Network communication, as desribed in Section 3, is
implemented using PyGrid2. PyGrid is based on PySyft and
adds the functionality for registering nodes and searching
for nodes in a network to eventually establish connection
between the IFL services and the Worker Nodes on the Edge
Devices.

1. https://github.com/OpenMined/PySyft
2. https://github.com/OpenMined/PyGrid

7

Fig. 3. Pump classification dataset: a schematic view of samples from
one sensor. Only the virtual Z-axis of the sensor is shown here. Each
color indicates an anomalous (hydraulic blockade failure, dry-run error,
and cavitation error) or a healthy (healthy stationary normal load, healthy
stationary partial load, and idle state) pump condition.

4.2 Datasets

We evaluate our proposed approach using two real-world
datasets from industry. In this section, we explain the
characteristics of each dataset and elaborate on the ML
approaches used on these datasets.

4.2.1 Pump Condition Classification Dataset
This dataset contains acceleration data from four pumps.
The data is obtained using an Industrial Internet of Things
(IIoT) sensor, namely the SITRANS multi sensor [23]. This
sensor provides 512 acceleration samples at three dimen-
sions every minute, thus providing a time series representa-
tion. In order to ensure that the model is not affected by the
orientation of the sensor that is mounted on the pumps, a
virtual sensor alignment based on the Kabsch algorithm [24]
is performed.

The time series data is labeled based on the conditions of
the pumps. Figure 3 shows a schematic view of the virtual Z-
axis from 70,000 samples obtained from one of the sensors.
As it can be seen, there are six classes indicating anomalous
or healthy conditions. The healthy conditions are healthy
stationary normal load (the load of pumped water at the
range of 50m3

h), healthy stationary partial load (the load is
[12.5m3

h , 37.5m3

h]), and idle state (the pump is turned off).
The anomalous conditions are hydraulic blockade failure
(nothing was pumped at the start of pumping), dry-run
error (nothing was pumped at the end of pumping), and
cavitation error (the water in a pump turns to a vapor at
low pressure).

We follow a sliding window approach for collecting data
with a window size of 512 and a step size of 256. We then
extract Mel-frequency Cepstral Coefficients (MFCC) from
the samples in each window. MFCC coefficients are widely
used as features for audio classification. We employ it here
for acceleration data as both having strong relation due
to air-borne and structure-borne sound transmission [25].
The MFCC represent the power spectrum of the short-term
Fourier transform on a nonlinear frequency scale inspired
by human biology uniformly spaced below 1 kHz and a
logarithmic scale above 1 kHz. The resulting 20 MFCC
coefficients are then considered as our features.

This dataset is suitable to demonstrate how clients with
real-world data, generated by connected assets (i.e., pumps),

and a condition monitoring ML model can be integrated
into the IFL process to support collaboration within cohorts
of distributed but similar clients.

Hence, we consider two evaluation scenarios for this
dataset: 1) pump classification IID where the distribution
of target data (i.e., pump conditions) is IID, the data is
shuffled and partitioned into 9 clients each receiving on
average 26,554 samples and 2) pump classification non-IID
where the data is shuffled and partitioned into 10 clients
each receiving on average 212,738 samples but with a non-
IID target distribution. In both cases, we have imbalanced
data.

As a learning approach, we use an Artificial Neural
Network (ANN) with two dense layers with 64 units each
using ReLu activations and followed by 40% dropout, and
a last output layer without any activation function (5,894
total parameters). We use this dropout-rate to avoid that the
model is biased towards a single client. We consider just two
dense layers to limit the number of parameters, which affect
training time and would require larger datasets. However,
to facilitate classification (i.e., linear separability), the num-
ber of units per layer (64) is chosen to be significantly greater
than the input features (20). This model is then considered
as our base model mp that is uploaded to the server and
used by tasks of population p for evaluation.

The data is normalized using a Gaussian distribution
before being fed into the model. Therefore, the client data
is adjusted to a common scale, which is necessary to train a
common model. The transformation can be described as:

z =
x− µ
σ

, (1)

where µ and σ are the mean and standard deviation of train-
ing samples, x stands for input sample (i.e., MFCC features),
and z indicates the normalized samples. The normalization
parameters µ and σ are computed for each client training
data separately and have been applied on the respective
client test data.

4.2.2 Material Classification Dataset
This dataset contains vibration data and material hardness
labels during machining metals from two machine tools.
The vibration data is obtained at a frequency of 1Hz, thus
providing 60 samples per minute. The objective here is to
classify material hardness based on vibration data. As it can
be seen in Figure 4, there are six material hardness classes
in this dataset.

It can be observed that some materials are only ma-
chined from one of the machine tools, thus the distribution
of hardness labels between the machines is not uniform.
Furthermore, the dataset is imbalanced, for example, the
material with hardness label A has been observed more
than the other material hardnesses. FL is reasonable and
applicable for this dataset because 1) both machines are
similar in construction and 2) non-IID distribution of mate-
rial hardness labels makes transferring one model for both
machines not applicable.

In this use case, we demonstrate how IFL can be applied
on a small scale, considering only two assets (i.e., machine
tools) generating non-IID data, and still enabling ML model
improvements.

8

Fig. 4. Material hardness labels for two machine tools. Each row shows
vibration time series data for one machine, colors indicate different
material hardness.

The input vibration time series data is split into se-
quences of maximum two continuous hours during the
operation time of the machines. These sequences are then
divided into training and test data, keeping 70% of sequence
data for training. Our data is obtained from these sequences
following a sliding window approach, with a window size
of 120 (i.e., samples of every two minutes). For training se-
quences, we have overlapping windows to cover the entire
data with a stepsize of 60, whereas for testing sequences,
we do not use any overlapping. We then compute Fast
Fourier Transform (FFT) [26] on the samples and consider
the magnitude of the computed FFTs as our features. This
yields a 120 dimensional feature vector for each training
data.

Although, ANNs can be used as feature learners as well,
we used FFT features, to reduce the number of parameters
that need to be trained according to Lin et al. [27]. In general,
we used ANNs in all scenarios since models can easily be
aggregated, e.g., by averaging parameters [7].

We consider one evaluation scenario for this dataset
using two clients, one for each machine tool. The target data
distribution (i.e., material hardness) is non-IID and the data
is imbalanced. We have a total number of 5,985 samples for
the first client and 7,136 samples for the second client.

As a learning approach, we employ an ANN with two
dense layers each with 256 units, each using ReLu activa-
tions and followed by 40% dropout, and a last output layer
without any activation function (98,310 total parameters).
This model is then considered as our base model in FL.

As in the pump classification dataset, we choose this
configuration to avoid biased models, and to facilitate linear
separability. Likewise, we normalize data to consider a
common scale for the two clients.

4.3 Experimental Design
All the scenarios as discussed in Section 4.2 are provided
in a JavaScript Object Notation (JSON) format. The scenario

JSON contains configuration for clients, tasks, assets, and
the used model.

The client configuration provides settings for the client’s
name, the path to a client dataset, the tasks associated with
a client, and additional organizational descriptions.

The task configuration has settings for the selected FL
algorithm algti (FedAvg or SeqFL), cohort strategy cbti (if
cohorts of similar clients should be built for federation and
the algorithm to be used for building cohorts), and feder-
ation criteria critti (e.g., the minimum number of required
clients that need to join a population to start the training).

The asset configuration gives settings for name, descrip-
tion, location, and environment description of an asset.

The model configuration provides settings for the path
of the base model to be used for federation, and the training
parameters (e.g., number of communication rounds, num-
ber of epochs per communication round, learning rate, batch
size, etc).

Based on the aforementioned configuration parsed from
the scenario JSON, the individual client processes indepen-
dently create their assets, refer to a common ML model, and
eventually submit tasks to the Client Registry API to join for
FL.

After FL is finished, resulting ML models are validated
using the classification accuracy. If applicable, we consider
classification accuracy on cohort test data (i.e., test data
from all the clients in a cohort) to ensure comparability
between models trained only on client data, models trained
on central data, and models trained with FL on cohorts.
To further compare cohort-based FL with FL not using
cohort building (i.e., FL algorithm is applied on the over-
all population), we consider classification accuracy on the
overall population. Finally, the clients download the model
using the Processor API to conclude the IFL process which
terminates the evaluation scenario.

4.4 Results

In this section, we report on experiments evaluating the
performance of our IFL system on multiple scenarios from
three datasets (as described in Section 4.2) using FedAvg
and SeqFL algorithms.

In all the experiments, our base model for training is an
ANN model. We use Pytorch [28] for training and predic-
tion. We compute loss using cross entropy loss function [29].
Since we deal with imbalanced data, we use a weighted
cross entropy loss function. The loss l is computed for each
class c separately and can be written as:

l(x, c) = weight[c]×− log
expx[c]∑
j expx[j]

(2)

= weight[c](−x[c] + log
∑
j

expx[j])

where x is an observation (i.e., the output logit of an
ANN for a sample whose size is equal to the number of
classes), and weight[c] is the class weight computed for
each client independently considering a balanced heuristic
inspired by [30].

9

(a) FedAvg (b) SeqFL

Fig. 5. Accuracy of federated model after each communication round on
the material classification dataset.

The class weight can be described as:

weight[c] =

{
NS

NC×NSc
, if NSc

> 0,

0, otherwise
(3)

where NS is the total number of samples for each client,
NC is the total number of classes provided as a training
parameter to each client because there can be classes which
are not present for a particular client, and NSc is the number
of samples for this class in a client dataset.

We perform batch optimization for training where train-
ing loss is computed on batches of data instead of the entire
data due to memory efficiency and overfitting problem. For
optimization, we use Adam optimizer [31] and a batch size
of 128. In order to compromise between time and perfor-
mance, we keep the learning rate 1e− 3 in our experiment.
A lower learning rate makes training much slower and a
higher learning rate might deteriorate the performance.

4.4.1 Impact of IFL on Non-IID Data

The material classification dataset as discussed in Sec-
tion 4.2.2 has non-IID data and target distribution. We
provided two scenarios for each FL algorithm with a default
cohort strategy (when no cohort is built) in JSON format.
We trained a federated model with two clients (one for each
machine tool). The training is done for 300 communication
rounds and one epoch per communication round for each
client. The average accuracy on the test data of this dataset
is shown in Figure 5. As it can be seen, the accuracy of the
federated model improves after each communication round
from an initial accuracy of 5%. We obtain for both clients
a slightly higher accuracy using the FedAvg algorithm. But
in both cases, we get the best accuracy of 76% in spite of
non-IID data distribution which underlines the usability of
our IFL system.

4.4.2 Impact of Cohort-based IFL on IID Data

We have shown the applicability of our IFL system on
industrial data with two clients. Next, we evaluate our
approach on pump classification IID dataset (Section 4.2.1)
with 9 clients where the data has an IID target distribution.
We made two scenarios in JSON format per FL algorithm
using cohort strategy based on input data distribution. Our
federation criteria in both scenarios is the minimum number
of clients for starting federation which we set as 9 (the total
number of clients).

(a) FedAvg

(b) SeqFL

Fig. 6. Client performance comparison on the pump classification
dataset with IID target distribution. Accuracy of FL model is compared
with individual training, cohort central training, and global FL on cohort
test data.

Figure 6 shows evaluation results of this scenario after 30
communication rounds and five epochs per communication
round. The performance of the federated model is compared
with three other evaluation approaches:

• No cohort IFL model: A federated model is trained
on the training data of all the clients and tested on
the test data of all the clients.

• Cohort central training: A model is trained on the
training data of all the clients in the same cohort and
is tested on cohort test data.

• Individual training: A model is trained on each client
and transferred to the other clients (i.e., testing on
cohort test data).

It can be seen in Fig. 6 that the accuracy of the cohort-
based FL model is higher than the global FL model. The
cohort building approach in this experiment is based on
input data. The result as depicted in Fig. 6 indicates that,
however the target distribution is IID, but the input data

10

(a) FedAvg (b) SeqFL

Fig. 7. Accuracy of federated model after each communication round on
the pump classification dataset for 9 clients with IID target distribution.

of pump conditions does not have IID distribution. More
precisely, the input data of some pump conditions are more
similar to each other than other pump conditions. Therefore,
we obtained a higher performance by learning separate FL
models on similar groups of clients. This result highlights
our contribution using a cohort-based IFL approach with
either FedAvg or SeqFL algorithms.

The best result achieved using federation on each cohort
is shown in Fig. 6 as cohort central performance. It can
be observed that we can achieve an accuracy close to the
central cohort performance using our IFL system. In order
to show the importance of using FL in this scenario, we
compared the accuracy of federated model on each cohort
with individual training. We can observe that our federated
model on average, improves the accuracy of each client
compared to the individual training. Using FedAvg, this
improvement can be seen more clearly than for SeqFL. This
emphasizes the applicability of FL for this experiment.

The average accuracy on the test data after each commu-
nication round is shown in Figure 7. It can be seen that the
federated model reaches to an accuracy above 80% just after
a few communication rounds. We can see that cohort 3 has
the highest accuracy than the other cohorts. The reason is
that this cohort has only one client, therefore FL performs
like a central model (without federation) for this model.
The accuracy of FL for the clients in cohort 1 is slightly
lower than others. As it can be seen in Fig. 6, the central
cohort accuracy for this cohort is also lower than the other
cohorts. Therefore, FL cannot achieve a higher accuracy. One
reason for the lower performance of cohort 1 is that, it has
more clients compared to the other cohorts which training a
suitable model more difficult.

4.4.3 Impact of Cohort-based IFL on Non-IID Data

We showed that cohorts can improve the performance of IFL
system on datasets with IID target distribution. We go one
step further and evaluate the performance of a cohort-based
IFL system on the pump classification non-IID (Section 4.2.1)
with non-IID target distribution with 10 clients. For this
experiment, we also provided two JSON scenarios, each
scenario considers one FL algorithm. The cohort strategy
in both scenarios is based on input data distribution. And
the federation criteria in both scenarios is the minimum
number of clients for starting federation which is set as 10
(the total number of clients). Figure 8 shows the evaluation
results after 30 communication rounds and five epochs per

(a) FedAvg

(b) SeqFL

Fig. 8. Client performance comparison on the pump classification
dataset with non-IID target distribution. Accuracy of FL model versus
individual training, cohort central training, and global FL on cohort test
data.

communication round. It can be seen that the federated
models achieve a high accuracy compared to their respec-
tive central cohort models. Furthermore, the cohort-based
approach gives on average a higher performance than the
no cohort federated model. This result also emphasizes the
impact of finding similarity between clients and using them
in federation.

Figure 9 shows the average accuracy on the client test
data of this dataset after each communication round. As it
can be observed, the federated model reaches at least 80%
accuracy just after a few communication rounds. It can be
seen that in cohorts with more clients such as cohort 2 in
Fig.9(a) or cohort 1 in Fig.9(b), the accuracy of some clients
is lower than the other clients in the same cohort. The reason
is that we used the individual client test datasets, a k-Means
clustering approach for building cohorts. The clusters are
initialized randomly and the clients get assigned to the
clusters with the minimum mean squared distance. The
random cluster initialization may result in outliers during

11

(a) FedAvg (b) SeqFL

Fig. 9. Accuracy of federated model after each communication round
on the pump classification dataset for ten clients with non-IID target
distribution.

assignment.

4.5 Discussion

As we have demonstrated in the evaluation, the IFL process
with the integrated cohort building and FL algorithms can
be applied to improve ML models for industrial scenarios.
Our FLaaS-based approach provides FL to client processes
by considering their IFL tasks and defined metadata as
described in 4.3. So, the clients explicitly submit the tasks
using the Client Registry API, and download the resulting
model using the Processor API. This invocation of the
service-based architecture and the IFL process addresses the
challenges of (i) individual, independent, and (ii) explicit
participation in FL with (iii) non-IID data. The individual
implications of the presented solutions are discussed in the
following:

4.5.0.1 Impact of datasets on defining clients: The
respective experiments are limited only to two industrial
datasets with a small number of assets and finding may
not be generalizable. For example, the pump condition
classification dataset only contains acceleration data from
four pumps, but resulted in 9-10 different clients. The rea-
son is that those pumps were completely dismantled and
rebuilt several times to achieve the most realistic possible
conditions for creating 9-10 clients with regard to feature
and label skews. Furthermore, the measurements and con-
ditions were recorded by different experts and due to the
asset complexity, partial load and error creation resulted in
additional data skews.

4.5.0.2 Impact of cohort-based FL: Our experimen-
tal evaluation proves the applicability of our cohort-based
IFL system especially on non-IID data. It can be seen that
the accuracy of a cohort-based approach is on average
higher than for FL models without considering cohorts.
However, a limitation is as shown in Figures 9(a), 9(b),
that the clusters are initialized randomly and the clients get
assigned to the clusters with the minimum mean squared
distance. The random cluster initialization may result in
outliers during assignment. Providing a dynamic cohort-
assignment approach, that enables changes in cohort assign-
ment between communication rounds, is left as our future
work. It is relevant to evaluate scenarios which consider
clients adopting and rejecting FL models of the cohort, and
switching cohorts on-demand. Similarly, it can be desirable
for industrial clients to incorporate model updates from

individually selected clients that are not necessarily in the
same cohort, e.g., by defining a query to select industrial
partners.

4.5.0.3 FL versus model transfer: The results re-
ported on industrial datasets (i.e., pump classification and
material classification datasets), indicate that FL is applica-
ble and reasonable for these datasets. Based on our results,
transferring a model from one client to the others is not
applicable for these datasets and does not give a higher
accuracy than FL. However, as it can be seen in Figure 6(b)
the individual training result of cohort 1 for task 761 per-
forms slightly better than the FL model. The potential reason
might be that this client has either more data or more variety
of data in this cohort. Making an adaptive approach, for
deciding if FL or model transferring should be used in a
cohort is left as our future work.

4.5.0.4 Impact of FL algorithm: FedAvg performed
better than SeqFL for all the scenarios. It can be explained
that in the FedAvg algorithm, the parameters from all the
clients are aggregated (i.e., averaged), therefore the aggre-
gated model fits better to all the clients. At the moment, both
of the algorithms are implemented without parallelization.
Parallelization would reduce training times significantly.
FedAvg is the only suitable algorithm for parallelization
among the both, thus more appropriate for our IFL system.
Due to small number of assets in our experiments, the
parallelization aspect would have neglectable impact on
training time, therefore is not considered currently. But it
will be considered in our future work with more assets.

4.5.0.5 Impact of resource-constrained edge-devices
on FL: In our evaluation all the clients are running on
machines with similar resource capabilities, therefore yet
we did not consider resource constraints and availability
of edge devices in the IFL process. Since our current focus
was on the applicability of the IFL system on edge devices,
we considered optimizing accuracy rather than optimzing
resources. Our IFL services will be extended in the future to
overcome this limitations.

5 RELATED WORK

Despite being a very recent research topic, FL has been
studied widely in various applications [32], [33], [34]. The
basic idea of FL as proposed in [7] is to federate a global
FL model among all the clients. However, one of the main
challenges in FL is that the client’s data especially in real
scenarios are non-IID. Thus, a global FL model might not
perform well for all the clients.

To overcome this problem, clustered FL approaches are
proposed where clusters (or cohorts) of similar clients are
identified and the model is personalized for each cluster.
Clustered FL approches can be classified into two categories:
centralized approaches where the server identifies client’s
assignment to a cluster [35], [36], and decentralized ap-
proaches where the clients choose and update the model
parameters that best fit them [37], [38]. We followed a
centralized cohort (clustered) FL approach by considering
features extracted from the client’s data. However, the IFL
clients can influence the cohort building by defining the
cohort building approach and by defining the federation
criteria that affects prior population building. In our work,

12

the server also identifies the number of required cohorts.
Building cohorts (clusters) on the server in our work is
efficient because only few features from clients are used.
As it is shown in Section 4.3, a cohort-based FL approach
yields a higher performance than a global FL especially for
scenarios with non-IID data distribution.

The FedAvg algorithm aggregates model parameters by
averaging the value of local parameters from clients at
each communication round [7]. Clients often have differ-
ent dataset sizes and data distributions, thus training an
effective global model with a good convergence in FedAvg
algorithm is challenging. Therefore, clients contribution in
aggregation operation of FedAvg is weighted either pro-
portional to their local dataset size [7] or using multiple
criteria such as diversity of dataset, data quality, and dataset
size of clients local dataset [39]. In our work, all clients are
weighted equally, but we used a weighted loss function to
deal with imbalanced data (Section 4.4). In this way, we do
not use any information about clients data on the server.

Selecting edge-based clients for participating in FL
rounds is an important aspect for reducing communication
cost and potentially long-lasting training times. This can
be due to heterogeneous compute capabilities provided on
resource-constrained edge devices. Clients may be selected
randomly [7], [40] or based on pre-defined criteria such as
availability of their resources [41]. In our approach, we fol-
low a clustered FL approach, using all the available clients
for building a FL population. As discussed in Section 4.1,
clients’ resources are similar in our evaluation setup. There-
fore, we did not need to include any resource-based criteria
on the server for selecting the clients. However, in the IFL
system, we consider client-defined federation criteria for
building FL populations. This could be used as a basis for
defining requirements on resources that are provided on
edge devices of potential FL partners.

Focusing on edge-based FL, Feraudo et al. [42] provide
an architecture that enables asynchronous FL for edge de-
vices using a publish/subscribe pattern. For this, the client
registers for FL by sending a message to a message broker,
which notifies the server, that waits until the end of a pre-
defined timespan to consider the start of FL rounds. Sim-
ilarly, Bonawitz et al. [39] proposed a FL system enabling
edge devices to declare their training intention on a central
server that starts FL as a required number of clients have
joined. Furthermore, the authors considers selection and
rejection of clients on the server. Hence, both approaches
address the challenge of a varying number of edge devices,
particularly unavailable edge devices. Our IFL services
enable clients to define, e.g., a minimum number of FL
partners, using custom federation criteria. This democratic
approach provides more power to the edge clients, e.g.,
by reducing the required minimum number of FL partners
if too less clients joined in previous FL attempts due to
potential unavailability.

To provide FLaaS to edge and mobile devices, Kourtel-
lis et al. [14] provide high-level APIs that can be invoked by
mobile apps to collaborate on common ML problems. The
authors propose a hierarchical scheme for collecting model
updates on local device services considering potentially
multiple apps. The updates can be forwarded to e.g., edge
nodes or central servers for aggregation. Furthermore, the

authors address challenges like the design of collaboration
accross (hierarchical) network topologies, permission and
privacy management, and forms of providing FL-based ML
models to clients. However, the approach does not provide
a service for building cohorts based on the client data
distribution, which is relevant for non-IID datasets.

6 CONCLUSION

In this paper, we have presented the IFL system, consisting
of the IFL services and the IFL client that provide FLaaS for
edge-based clients connected to industrial machines. The
machine data is used by the IFL client to collaboratively
train ML models together with other FL clients. For this,
we introduced the IFL process that includes a four-step
approach enabling cohort-based FL and therefore address-
ing the challenge of non-IID data. We proposed a service
architecture that supports the IFL process by providing APIs
to clients for participating in FL rounds.

As discussed, our IFL system has three main contribu-
tions, (i) explicit participation in FL on an on-demand basis,
(ii) an architecture supporting individual and independent
selection of ML models, and (iii) handling non-IID data
distributions using cohorts. To the best of our knowledge,
we provided the first FLaaS-based system that supports all
three contributions.

Evaluation on diverse and real-world industrial data is
missing in current FL literature. However, we showed the
high potential of our IFL system by applying it on two
completely diverse and large real-world industrial datasets,
used for pump condition classification and material classi-
fication. Our results also show the importance of a cohort-
based FL approach, yielding higher accuracies on average
compared to executing FL algorithms on the overall popu-
lation.

The proposed IFL system is an important step towards
incorporating FL in industrial applications and opens future
directions as discussed in Section 4.5 for FL research, e.g.,
adaptive cohort assignment considering resource optimiza-
tion on edge devices.

ACKNOWLEDGMENTS

We thank Stefan von Dosky and Thomas Bierweiler for the
vibration sensors and the data on the pump classification
use case, and Damian Jaeger, Stephanie Holly, and Michael
Ungersboeck for technical contributions in the evaluation.

REFERENCES

[1] Z. Ge, Z. Song, S. X. Ding, and B. Huang, “Data mining and
analytics in the process industry: The role of machine learning,”
IEEE Access, vol. 5, pp. 20 590–20 616, 2017.

[2] I. S. Candanedo, E. H. Nieves, S. R. González, M. T. S. Martı́n,
and A. G. Briones, “Machine learning predictive model for in-
dustry 4.0,” in Knowledge Management in Organizations, L. Uden,
B. Hadzima, and I.-H. Ting, Eds. Cham: Springer International
Publishing, 2018, pp. 501–510.

[3] S. Bagavathiappan, B. Lahiri, T. Saravanan, J. Philip, and T. Jayaku-
mar, “Infrared thermography for condition monitoring–a review,”
Infrared Physics & Technology, vol. 60, pp. 35–55, 2013.

[4] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,”
in 22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 2015, p. 1310–1321.

13

[5] S. Abt and H. Baier, “Are we missing labels? a study of the avail-
ability of ground-truth in network security research,” in 2014 Third
International Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security (BADGERS). IEEE, 2014, pp. 40–55.

[6] A. Diez-Olivan, J. Del Ser, D. Galar, and B. Sierra, “Data fusion
and machine learning for industrial prognosis: Trends and per-
spectives towards industry 4.0,” Information Fusion, vol. 50, pp.
92–111, 2019.

[7] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep networks
from decentralized data,” in 20th International Conference on Ar-
tificial Intelligence and Statistics (AISTATS). PMLR, 2016, pp. 1273–
1282.

[8] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust
distributed learning: Towards optimal statistical rates,” in 35th
International Conference on Machine Learning (ICML), vol. 80. Stock-
holmsmässan, Stockholm Sweden: PMLR, 10–15 Jul 2018, pp.
5650–5659.

[9] K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggregation
for federated learning,” arXiv preprint arXiv:1912.13445, 2019.

[10] P. Yu, L. Wynter, and S. H. Lim, “Fed+: A family of fusion
algorithms for federated learning,” arXiv preprint arXiv:2009.06303,
2020.

[11] T. Hiessl, D. Schall, J. Kemnitz, and S. Schulte, “Industrial fed-
erated learning – requirements and system design,” in Highlights
in Practical Applications of Agents, Multi-Agent Systems, and Trust-
worthiness. The PAAMS Collection. Springer International Publish-
ing, 2020, pp. 42–53.

[12] E. by: Peter Kairouz and H. B. McMahan, “Advances and open
problems in federated learning,” Foundations and Trends R© in Ma-
chine Learning, vol. 14, no. 1, 2021.

[13] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghan-
tanha, and G. Srivastava, “A survey on security and privacy of
federated learning,” Future Generation Computer Systems, vol. 115,
pp. 619–640, 2021.

[14] N. Kourtellis, K. Katevas, and D. Perino, “Flaas: Federated
learning as a service,” in Proceedings of the 1st Workshop on
Distributed Machine Learning, ser. DistributedML’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 7–13.
[Online]. Available: https://doi.org/10.1145/3426745.3431337

[15] M. Kritzler, J. Hodges, D. Yu, K. Garcia, H. Shukla,
and F. Michahelles, “Digital companion for industry,” in
Companion Proceedings of The 2019 World Wide Web Conference,
ser. WWW ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 663–667. [Online]. Available:
https://doi.org/10.1145/3308560.3316510

[16] X. M. Zhao, Q. H. Hu, Y. G. Lei, and M. J. Zuo, “Vibration-based
fault diagnosis of slurry pump impellers using neighbourhood
rough set models,” Proceedings of the Institution of Mechanical En-
gineers, Part C: Journal of Mechanical Engineering Science, vol. 224,
no. 4, pp. 995–1006, 2010.

[17] H. Kevin, P. Amar, M. Onur, and P. G. B., “The non-IID data
quagmire of decentralized machine learning,” in 36th International
Conference on Machine Learning (ICML). PMLR, 2019, pp. 4387–
4398.

[18] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Sil-
verman, and A. Y. Wu, “An efficient k-means clustering algorithm:
analysis and implementation,” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, vol. 24, no. 7, pp. 881–892, 2002.

[19] R. L. Thorndike, “Who belongs in the family?” Psychometrika,
vol. 18, no. 4, pp. 267–276, 1953.

[20] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, “Finding a
”kneedle” in a haystack: Detecting knee points in system behav-
ior,” in 2011 31st International Conference on Distributed Computing
Systems Workshops. IEEE, 2011, pp. 166–171.

[21] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis,” Journal of Computational and
Applied Mathematics, vol. 20, pp. 53–65, 1987.

[22] K. Chang, N. Balachandar, C. Lam, D. Yi, J. Brown,
A. Beers, B. Rosen, D. L. Rubin, and J. Kalpathy-Cramer,
“Distributed deep learning networks among institutions for
medical imaging,” Journal of the American Medical Informatics
Association, vol. 25, no. 8, pp. 945–954, 03 2018. [Online]. Available:
https://doi.org/10.1093/jamia/ocy017

[23] T. Bierweiler, H. Grieb, S. von Dosky, and M. Hartl, “Smart sensing
environment – use cases and system for plant specific monitoring

and optimization,” in Automation 2019. VDI Verlag, 2019, pp.
155–158.

[24] F. L. Markley, “Attitude determination using vector observations
and the singular value decomposition,” Journal of the Astronautical
Sciences, vol. 36, no. 3, pp. 245–258, 1988.

[25] L. Cremer and M. Heckl, Structure-borne sound: structural vibrations
and sound radiation at audio frequencies. Springer Science & Busi-
ness Media, 2013.

[26] R. N. Bracewell and R. N. Bracewell, The Fourier transform and its
applications. McGraw-Hill New York, 1986.

[27] S. Lin, N. Liu, M. Nazemi, H. Li, C. Ding, Y. Wang, and M. Pedram,
“Fft-based deep learning deployment in embedded systems,”
in 2018 Design, Automation Test in Europe Conference Exhibition
(DATE), 2018, pp. 1045–1050.

[28] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differ-
entiation in pytorch,” 2017.

[29] C. M. Bishop, Pattern recognition and machine learning. Springer
New York, NY, USA, 2007.

[30] G. King and L. Zeng, “Logistic regression in rare events data,”
Political Analysis, vol. 9, no. 2, pp. 137–163, 2001.

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[32] T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschalidis, and
W. Shi, “Federated learning of predictive models from federated
electronic health records,” International Journal of Medical Informat-
ics, vol. 112, pp. 59–67, 2018.

[33] M. J. Sheller, G. A. Reina, B. Edwards, J. Martin, and S. Bakas,
“Multi-institutional deep learning modeling without sharing pa-
tient data: A feasibility study on brain tumor segmentation,” in
International MICCAI Brainlesion Workshop. Springer, 2018, pp.
92–104.

[34] F. Fioretto and P. Van Hentenryck, “Privacy-preserving feder-
ated data sharing,” in 18th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS). International Founda-
tion for Autonomous Agents and Multiagent Systems, 2019, pp.
638–646.

[35] A. Ghosh, J. Hong, D. Yin, and K. Ramchandran, “Robust fed-
erated learning in a heterogeneous environment,” arXiv preprint
arXiv: 1906.06629, 2019.

[36] F. Sattler, K. R. Müller, and W. Samek, “Clustered federated
learning: Model-agnostic distributed multitask optimization un-
der privacy constraints,” IEEE Transactions on Neural Networks and
Learning Systems, pp. 1–13, 2020.

[37] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient
framework for clustered federated learning,” arXiv preprint arXiv:
2006.04088, 2020.

[38] Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh, “Three approaches
for personalization with applications to federated learning,” arXiv
preprint arXiv: 2002.10619, 2020.

[39] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecný, S. Mazzocchi, H. B. McMahan,
T. V. Overveldt, D. Petrou, D. Ramage, and J. Roselander, “To-
wards federated learning at scale: System design,” arXiv preprint
arXiv: 1902.01046, 2019.

[40] T. Nishio and R. Yonetani, “Client selection for federated learning
with heterogeneous resources in mobile edge,” in 2019 IEEE
International Conference on Communications (ICC). IEEE, 2019, pp.
1–7.

[41] S. A. Rahman, H. Tout, A. Mourad, and C. Talhi, “FedMCCS: Multi
criteria client selection model for optimal iot federated learning,”
IEEE Internet of Things Journal, vol. 8, pp. 4723–4735, 2020.

[42] A. Feraudo, P. Yadav, V. Safronov, D. A. Popescu, R. Mortier,
S. Wang, P. Bellavista, and J. Crowcroft, “Colearn: Enabling
federated learning in mud-compliant iot edge networks,” in
Proceedings of the Third ACM International Workshop on Edge
Systems, Analytics and Networking, ser. EdgeSys ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 25–30.
[Online]. Available: https://doi.org/10.1145/3378679.3394528

14

Thomas Hiessl received his diploma degree in
computer science from TU Wien in 2017. He
then joined Siemens Austria, working on the de-
velopment of industrial Internet of Things tech-
nology and distributed artificial intelligence. He
is currently pursuing the Ph.D. in computer sci-
ence at TU Wien. His research interests include
federated learning, cloud computing and edge
computing in Internet of Things applications.

Safoura Rezapour Lakani is a data scientist
by the Distributed AI System research group at
Siemens Technology in Vienna. She received
her PhD in computer science from the Univer-
sity of Innsbruck in 2018. Her research interests
includes machine learning, in particular transfer
and federated learning.

Jana Kemnitz is a senior data scientist and ma-
chine learning expert at the Distributed AI Sys-
tem research group at Siemens Technology in
Vienna. She received her PhD as a Marie Curie
fellow from the Paracelsus Medical University.
Her main interests are image- and signal pro-
cessing, machine learning and medical science.

Dr. Daniel Schall is head of the Distributed AI
System research group at Siemens Technology
in Vienna. His main interests are AI systems,
platforms, and applications that have real-world
impact. He published more than 80 journal and
conference papers and 3 books on service-
oriented computing. Daniel Schall received his
PhD in computer science from TU Wien in 2009.

Stefan Schulte is Associate Professor and head
of the Christian Doppler Laboratory Blockchain
Technologies for the Internet of Things at the
Faculty of Informatics at TU Wien. His research
interests span the areas of cloud computing
and Internet of Things, and the application and
extension of blockchain technologies. Findings
from his research have been published in more
than 100 refereed scholarly publications.

