
P
os
te
d
on

29
J
u
n
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
48
52
65
2
.v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

Deep Clustering with Self-supervision using Pairwise Data

Similarities

Mohammadreza Sadeghi 1 and Narges Armanfard 2

1McGill University
2Affiliation not available

October 30, 2023

Abstract

Deep clustering incorporates embedding into clustering to find a lower-dimensional space appropriate for clustering. Most

of the existing methods try to group similar data points through simultaneously minimizing clustering and reconstruction

losses, employing an autoencoder (AE). However, they all ignore the relevant useful information available within pairwise data

relationships. In this paper we propose a novel deep clustering framework with self-supervision using pairwise data similarities

(DCSS). The proposed method consists of two successive phases. First, we propose a novel AE-based approach that aims to

aggregate similar data points near a common group center in the latent space of an AE. The AE’s latent space is obtained

by minimizing weighted reconstruction and centering losses of data points, where weights are defined based on similarity of

data points and group centers. In the second phase, we map the AE’s latent space, using a fully connected network MNet,

onto a K-dimensional space used to derive the final data cluster assignments, where K is the number of clusters. MNet is

trained to strengthen (weaken) similarity of similar (dissimilar) samples. Experimental results on multiple benchmark datasets

demonstrate the effectiveness of DCSS for data clustering and as a general framework for boosting up state-of-the-art clustering

methods.

1

1

Deep Clustering with Self-supervision using
Pairwise Data Similarities

Mohammadreza Sadeghi∗, Narges Armanfard

Abstract—Deep clustering incorporates embedding into clustering to find a lower-dimensional space appropriate for clustering. Most
of the existing methods try to group similar data points through simultaneously minimizing clustering and reconstruction losses,
employing an autoencoder (AE). However, they all ignore the relevant useful information available within pairwise data relationships. In
this paper we propose a novel deep clustering framework with self-supervision using pairwise data similarities (DCSS). The proposed
method consists of two successive phases. First, we propose a novel AE-based approach that aims to aggregate similar data points
near a common group center in the latent space of an AE. The AE’s latent space is obtained by minimizing weighted reconstruction
and centering losses of data points, where weights are defined based on similarity of data points and group centers. In the second
phase, we map the AE’s latent space, using a fully connected network MNet, onto a K-dimensional space used to derive the final data
cluster assignments, where K is the number of clusters. MNet is trained to strengthen (weaken) similarity of similar (dissimilar)
samples. Experimental results on multiple benchmark datasets demonstrate the effectiveness of DCSS for data clustering and as a
general framework for boosting up state-of-the-art clustering methods.

Index Terms—Deep clustering, Autoencoder

F

1 INTRODUCTION

IN many science and practical applications, information
about category (aka label) of data samples is non-

accessible or expensive to collect. Clustering, as a major
data analysis tool in pattern recognition and machine learn-
ing, endeavors to gather essential information from unla-
beled data samples. Clustering can address many issues
in different real-world applications, such as the celestial
data analysis [1], the medical analysis [2] the tumor’s gene
analysis [3], and the data retrieval [4, 5, 6, 7]. The main
goal of clustering methods is to partition data points based
on a similarity metric. Although recently a wide variety
of clustering algorithms have been developed, the more
traditional clustering algorithms k-means [8] and fuzzy c-
means [9] are still appealing due to their simplicity. Nev-
ertheless, these algorithms do not provide proper cluster-
ing performance when dealing with uneven distribution
of samples. Moreover, they usually fail to properly cluster
high-dimensional data points due to the curse of dimen-
sionality; this makes them inappropriate in many recent
applications where data points have many features [10].
Nowadays, novel deep-learning-based clustering methods
have been widely developed in many applications such as
image segmentation [11], social network analysis [12], face
recognition [13], and machine vision [14]. The ultimate goal
of these methods is to embed original data samples into a
lower-dimensional space (aka latent space), where groups

• M. Sadeghi and N. Armanfard are with the Department of Electrical and
Computer Engineering, McGill University, Montreal, Quebec, Canada.
E-mail: {mohammadreza.sadeghi, narges.armanfard}@ mcgill.ca.

• M. Sadeghi and N. Armanfard are also with Mila-Quebec AI Institute,
Montreal, Quebec, Canada.

• * Corresponding author.
• This work has been submitted to the IEEE for possible publication.

Copyright may be transferred without notice, after which this version may
no longer be accessible.

𝜇2

𝜇1

Original Data Space

𝜇3

Dog

Cat

Bird

Dog

Cat

Bird

Dog

Cat

Bird

𝑞

Fig. 1. The motivation of the proposed DCSS method. Arrows show a
nonlinear mapping, using an AE, from the original input space to the
AE’s latent space (i.e the u space). In the first phase of DCSS, we aim
to gathering data points near their corresponding group centers in the u
space. In the second phase, DCSS employs pairwise samples similarity
and dissimilarity to create a new space q in which similar pairwise
samples are tightly packed together and dissimilar pairwise samples sit
as far away as possible. Similar samples are connected with solid lines
and dashed lines represent dissimilar samples/clusters.

of data points could be distinguished by applying common
algorithms such as k-means and fuzzy c-means. In literature,
many research studies have been devoted to find an optimal
lower-dimensional space in an unsupervised manner using
different autoencoder (AE) structures [15, 16, 17]. This pro-
vides a highly nonlinear transformation of data points. An
AE consists of two networks: 1) an encoder network that
maps the original input space to a lower-dimensional space;
2) a decoder network that tries to reconstruct the original
space using the output of the encoder network. Accordingly,
encoder and decoder networks are trained to minimize
reconstruction loss. As is discussed in Section 2, almost all
conventional deep-learning-based algorithms aim to group-
ing data points near their corresponding cluster center using
an AE. They attempt to include clustering loss in addition
to the reconstruction loss of the AE to make the latent
representation more suitable for data clustering [18, 19, 20].
The main common disadvantages of these algorithms are:

2

(1) At each training epoch, they first perform crisp cluster
assignment, i.e. assign each data point to only one cluster,
then compute the data clustering loss using the obtained
crisp assignments assuming they are correct assignments.
This is not a correct assumption because of the unsupervised
nature of the clustering task where the true cluster labels are
unknown during the training phase. This issue would be
more serious when the non-crisp (aka soft) K-dimensional
cluster assignment vector obtained prior to snapping to the
one-hot vector is far from the one-hot vector imposed by
the crisp assignment, because this results in misleading of
the training process. K is the number of clusters. (2) In
all of the former methods, a single common loss function
is utilized for all data clusters, without considering the
possible existence of differences between characteristics of
the different clusters (3) All the conventional deep-learning-
based clustering algorithms seek an optimal latent space
suitable for data clustering. To this end, they try to locate
data points close to their corresponding cluster center with-
out considering relations between the data points, a relation
such as pairwise data similarities.

In this paper, we propose a deep clustering with self-
supervision using pairwise data similarities (DCSS) frame-
work. DCSS employs similar and dissimilar pairwise sam-
ples to supervise the training process, where similarities are
measured in reliable subspaces. DCSS performs clustering
in two phases. First, the original data points are mapped
into a reliable latent space u, i.e. latent space of an AE,
in which samples of the same cluster are encouraged to
form a group through sitting close to the corresponding
group center. The second phase is to create an improved
subspace q which is trained under supervision of similar
and dissimilar pairwise samples. Since similar and dissimi-
lar samples are not recognizable in the original input feature
space, due to the curse of dimensionality [21], we propose
to use the (partially) trained subspaces u and q for similarity
measurement. More specifically, at the q training outset,
similar and dissimilar pairwise samples are determined
within the u subspace which is previously trained in the
first phase. After a few training epochs, when the subspace
q becomes a reliable space, the similarities are measured in
the q subspace itself. The subspace q is trained such that
similar pairwise samples are tightly packed together in the
q space and dissimilar pairwise samples sit in q as far away
as possible. Pairwise samples that are neither similar nor
dissimilar, i.e. those that are in ambiguous region, do not
contribute in the second phase of DCSS. Our experimental
results confirm that as the training in the second phase
progresses, through performing more and more training
epochs, more and more pairwise samples contribute to the
training, i.e. very few pairs remain in the ambiguous region
at the end of the training phase. Our experiments show that
such training process results in sample representations, in
the q space, that are very close to one-hot vectors where
the active element of the vector indicates the true cluster
assignment, assuming the dimension of the q subspace is
equal to the true number of data clusters K. An intuitive
motivation of the proposed method is illustrated in Fig.
1. Theoretical supports for the proposed DCSS method are
provided in Appendixes A. Training at both of the DCSS
phases is performed in an end-to-end manner employing

gradient descent and back-propagation. In the second phase
which is mainly for q training, the u space also receives
small updates to be refined and more helpful for the q space
training.

In the first phase of DCSS, to obtain the subspace u,
we propose to train an autoencoder by simultaneously
minimizing two losses: samples reconstruction loss and
centering loss; these two losses are linearly combined in
a weighted manner and form the final loss function. The
latent space of the trained AE is then taken as the DCSS’s
u subspace. Minimizing the reconstruction loss helps to
preserve the local structure of the data points [20] and
constraints too much manipulation of the AE latent space
by the centering loss. Since pairwise similarities measured
in the u space are used for supervising the q space training,
data distribution in the u space should be close to the
desired data distribution in the q space, i.e. having dense
pure groups of similar data in q. This goal is realized by
incorporating the data centering loss in the loss function of
Phase 1. The subspace u is trained in K successive runs
where at each run a specific loss function, corresponding
to a specific data group, is minimized. More specifically,
at the kth run, k ∈ 1, ...,K , the AE network focuses on
centering and reconstruction of those samples that are more
likely to belong to the kth data group. This implicitly means
that, at the kth run, those AE’s parameters are optimized
that have more impact on centering of the kth data group,
around their corresponding center, in the u space. Despite
the previous deep clustering methods that use their esti-
mated crisp assignments for training a latent space, we
propose to train the u subspace employing the original soft
group assignments (without snapping to 0 and 1). The soft
assignments are used as samples weight when computing
the reconstruction and centering losses. Block diagram of
Phase 1 for training the u space is shown in Fig. 2(a).
Throughout this paper, we refer to the proposed method
for finding u as Deep Successive Learning (DSL). Details of
the DSL formulation are presented in Section 3.1.

In the second phase of the proposed DCSS method,
despite the conventional AE-based clustering methods that
define the final cluster assignments based on the data
representations in the AE’s latent space [18, 19, 20, 22],
we propose to employ the pairwise relationship between
the data points as a supervisor to map the u space repre-
sentations to an improved space q. Such map is realized
through a fully connected network called mutual net (MNet)
that its objective is to strengthen pairwise similarities and
dissimilarities, where the inner product is used for similarity
measurement. Overview of the second phase of the DCSS
method is shown in Fig. 2(b). Final cluster assignment is
then performed in the discriminative space q (see Fig. 2(c)).

To sum up, the main contributions of this work are:

• We discover the novel framework of employing
similarities of pairwise samples as a means of self-
supervision for data clustering.

• To realize this, since the original data space suffers
from the curse of dimensionality, we propose to
measure the similarities in two reliable subspaces u
and q that are trained successively.

• To create the reliable space u, we propose a novel AE-

3

based subspace learning approach DSL that trains
the AE through minimizing weighted reconstruction
and centering losses of data points, where soft group
assignments are used as samples weight. See Fig.
2(a). The latent space of the AE is used as the u space
required in the DCSS.

• We propose to create the more reliable subspace q,
through appending a fully connected network MNet
to the encoder part of the AE trained by DSL, where
the process of training q (and refining u) is super-
vised by the similarity of the pairwise samples. See
Fig. 2(b).

• Final crisp cluster assignment of a given data point
is realized by mapping it to the q space. The map
is performed by feeding the data to the trained
encoder followed by the trained MNet. Our exper-
iments show that samples representation in the q
space, are very close to one-hot vectors. Assuming
the dimension of the q space is set to the true number
of clusters K, the index of the maximum element of
the q vector indicates the input data cluster label. See
Fig. 2(c).

• The proposed method can be considered as a gen-
eral framework that can be employed to improve
the clustering performance of the existing subspace-
based clustering methods such as [22, 20, 19, 18].
More specifically, the reliable subspace u can be
obtained with other state-of-the-art methods (instead
of DSL) followed by the proposed MNet.

• We performed an extensive set of experiments, on
seven benchmark datasets, to demonstrate the ef-
fectiveness of the proposed DCSS (and DSL). Our
results outperform both traditional and state-of-the-
art deep network-based clustering methods.

Appendix A presents mathematical proofs that show,
under certain assumptions, DCSS can effectively capture
pairwise similarities and dissimilarities; hence DCSS per-
forms a final reasonable cluster assignment. We proved that
samples’ q vector is very close to an one-hot vector (Corol-
lary 1.2), similar samples are assigned to the same cluster
(Theorem 2), dissimilar samples are assigned to different
clusters (Corollary 1.3), and if two samples are similar to
another sample then the two samples are not dissimilar
(Theorem 3).

The rest of this paper is organized as follows. In Section
2, we present a brief review of conventional and deep-
learning-based clustering methods. Section 3 presents de-
tails of our proposed DCSS framework. Extensive exper-
imental results that demonstrates the effectiveness of the
DCSS is presented in Section 4. Section 5 conveys the gist of
this paper.

2 RELATED WORK

Clustering have been widely studied in machine learning
from different aspects such as feature selection [23, 24, 25],
distance metric [26, 27], and categorizing methods [28, 29,
30]. K-means [8] and fuzzy c-means [9] are the two popular
conventional methods that are applicable to a wide range of
tasks [31, 32, 33]. However, because of their distance metric,
they only can extract local information of the data dealing

with high dimensional feature spaces. Some conventional al-
gorithms, such as [34], aim to handle this difficulty by jointly
performing subspace selection and a clustering algorithm
in an iterative manner. At each iteration, they group data
points using k-means and endeavor to maximize the inter-
cluster variance employing the data projected in a lower-
dimensional space. They repeated this process until con-
vergence. Another group of conventional methods, called
spectral clustering such as [35, 36], address the high input
dimension issue by embedding the high dimensional data
into a lower-dimensional space. They then apply clustering
algorithms in the new space. For their embedding phase,
first, they construct a weighted graph in which nodes are
data samples and weights are defined based on pairwise
relationship between them in the original space. Then, they
define a minimization problem using the Laplacian matrix
of the weighted graph. Although they could surpass the
clustering performance of k-means in different applications,
the complexity of solving the optimization problem limited
the application of these algorithms to only small datasets. In
order to make spectral clustering more applicable on large
datasets, [37, 38] propose stochastic optimization methods
that try to estimate the original optimization problem.
However, these conventional methods only consider lin-
ear embedding that is not successful when dealing with
complex datasets. In order to take into consideration the
nonlinear embedding of the data points, deep clustering
has been broadly studied during the past few years. They
utilize deep autoencoders to embed original data points in
a lower-dimensional space. In some algorithms, learning
the lower representation of the data points is separated
from the clustering task. For example, deep embedding
network (DEN) [39] uses an AE to find a lower-dimensional
representation of data points by enforcing group sparsity
and locality-preserving constraints. They then obtain cluster
assignments by applying k-means algorithm to the obtained
lower-dimensional space. As another example, [40] takes
advantage of a deep autoencoder to find lower-dimensional
representation of a graph; it then utilizes k-means algo-
rithm to define clusters. In order to further improve clus-
tering performance, more recent algorithms simultaneously
embed data points in a lower-dimensional feature space
and perform clustering algorithms to assign data points to
different clusters using the new feature space. E.g. Deep
embedded clustering (DEC) [22] initializes parameters of
a stacked autoencoder layer by layer using [41, 42]. After
removing the decoder part, it then updates encoder part
of the AE through minimizing a Kullback–Leibler (KL)
divergence loss consisting of soft assignments and estimated
target distributions. Soft assignments measure degree of
similarity between data points and cluster centers using
Students’ t-distribution following [43]. In an unsupervised
learning problem, since true cluster assignments (aka target
distributions) of data points are unknown, they perform
a form of self-training [44] to estimate target distributions
using the soft cluster assignments. There have been a few
research studies, e.g [19, 18, 20], proposed to take advantage
of the decoder part of an AE to combine reconstruction
loss with clustering loss to maintain the local structure
of the original data points. For example, improved deep
embedding clustering (IDEC) [20] improved the clustering

4

performance of DEC by considering the reconstruction loss
of an AE besides the KL divergence loss of DEC to preserve
local dependencies and structures between the original data
points. Deep convolutional embedded clustering (DCEC)
[45] could enhance the performance of IDEC by changing
the fully connected structure of IDEC to a deep convolu-
tional autoencoder. Moreover, DCEC proposed an end-to-
end pre-training scheme by minimizing the reconstruction
loss instead of pre-training a stacked autoencoder proposed
in DEC and IDEC. Some other works, instead of applying
self-training using soft cluster assignments, improve clus-
tering performance of DEC by proposing an independent
approach of finding target distributions. For example, im-
proved deep embedding clustering with fuzzy supervision
(IDECF) [46] aims to estimating the target distributions by
training a deep fuzzy c-means network, which is specifically
designed and trained for this purpose. Deep clustering
network (DCN) [19] method, which jointly learns lower-
dimensional feature representation and performs clustering,
aims to find a new representation of data points in which
data points are separable by applying k-means algorithm.
To this end, DCN updates an autoencoder’s parameters by
minimizing a combination of the reconstruction loss and the
objective function of k-means algorithm; this is to find a k-
means friendly space. DCN updates AE’s parameters and
cluster centers separately. The latter is based on solving a
discrete optimization problem. However, in deep k-means
(DKM) [18], which has the same objective function as DCN
while minimizing the parameters of an AE, weights and
cluster centers are updated through minimizing a continu-
ous optimization problem using stochastic gradient descent
(SGD). Some recent works such as Deep Spectral Clustering
(DSC) [47] proposed a joint learning framework to create a
discriminative embedded space using a dual autoencoder.
They devise a common encoder part and two decoder parts
for their autoencoder. The first decoder tries to reconstruct
the original input and the second encoder endeavors to de-
noise the encoder latent space. They consider reconstruction,
mutual information, and spectral clustering losses while up-
dating parameters of their network. They utilized mutual in-
formation to exploit more discriminative information from
the inputs. Moreover, a deep spectral clustering approach
is applied to extract the mutual relationship between data
points in the latent space. Contrastive learning methods,
such as [48, 49], have been widely attracted researchers’
attention in the recent year due to their promising perfor-
mance. They first construct negative and positive pairs by
applying data augmentation on data points. Then, they map
them in the feature space and endeavor to maximize simi-
larity (minimize dissimilarity) between positive (negative)
pairs. For example, contrastive clustering (CC) [48] defines
instance- and cluster-level losses respectively on rows and
columns of the feature space in order to maximize similarity
while minimizing dissimilarity.

3 PROPOSED METHOD

Consider a K-clustering problem which aims to partitioning
a given dataset X = {x1, x2, ...xN} into K disjoint clusters,
where xi indicates the ith data sample, N is the number of
data points, and K is a predefined user-settable parameter.

DCSS utilizes an AE, consisting of an encoder and a decoder
network respectively represented by f(.) and g(.). Latent
representation of X is denoted by U = {u1, u2, ..., uN},
where ui = f(xi; θe) ∈ Rd, d indicates dimension of the
latent space, and θe denotes parameters of the encoder
network. The reconstructed output of the AE is denoted by
x̂i = g(ui; θd), where θd represents the decoder parameters.
Center of the kth data group in the u space is denoted by
µ(k). As aforementioned, in the second phase of DCSS, to
investigate the mutual relationship between the data points,
we propose to employ a fully connected network MNet,
which takes the latent representation of the AE for each
data point, i.e. ui, as input and maps it to a K-dimensional
vector qi which its kth element indicates the probability of
xi belonging to the kth data cluster. In this paper, the output
of MNet for the ith data point is denoted by qi =M(ui; θM),
where M(.) and θM respectively shows MNet and its corre-
sponding parameters.

3.1 The first phase of DCSS (DSL)

To obtain a reliable low dimensional space u in which
detection of the similar and dissimilar samples is possible,
we propose to train an AE with a novel and effective loss
function consisting of weighted reconstruction and center-
ing losses. The latent space of the AE is in fact the DCSS’s
u space. At each training data batch, we propose to train
the AE in K successive runs where at the kth run, the AE
focuses on reconstruction and centering of the data points
that are more probable to belong to the kth data group.
Note that data clustering is an unsupervised task and the
group/cluster membership of the data points is unknown
at the problem outset. As such, at the kth run of DSL, we
use Euclidean distance between ui and µ(k) (obtained in the
previous training iteration), i.e. ||ui − µ(k)||2, as a means
of measuring the degree of membership of xi to the kth
data group in the u space. The group memberships are used
as the sample weight in the (k+1)th run. More specifically,
the closer a sample is to the group center µ(k), the higher
contribution that sample has in minimizing the loss function
at the kth run.

Formulation of the proposed DSL method is shown in
equation set (1). (1a) presents the DSL’s loss function at
the kth run, i.e. L(k)

u , where weighted summation of the
samples reconstruction and centering losses are respectively
denoted by L(k)

r and L(k)
c . α is a hyperparameter indicating

the importance of centering loss vs. the reconstruction loss.
m indicates the level of fuzziness and is set to 1.5 in all
experiments. In the kth run, to motivate the AE to concen-
trate on the kth group data points, in L(k)

r and L(k)
c , higher

weights are assigned to the samples closer to the group
center µ(k). Membership of the ith data point to the kth
data group, in the u space, is shown as pik defined in (2).
pik is used as the weight of the ith sample reconstruction
and centering losses, at the kth run of DSL.

L(k)
u = L(k)

r + αL(k)
c (1a)

L(k)
r =

∑
xi∈B p

m
ik||xi − x̂i||22 (1b)

L(k)
c =

∑
xi∈B p

m
ik||ui − µ(k)||22 (1c)

5

𝟏{𝑝𝑖
𝑇𝑝𝑗 ≤ 𝛾}

𝟏{𝑞𝑖 . 𝑞𝑗 ≤ 𝛾}

𝟏{𝑝𝑖
𝑇𝑝𝑗 ≥ 𝜁}

𝟏{𝑞𝑖
𝑇𝑞𝑗 ≥ 𝜁}

×

×

𝑞𝑖
𝑇𝑞𝑗

1 − 𝑞𝑖
𝑇𝑞𝑗

𝟏{iter2 ≤ T2}

𝐿𝑜𝑠𝑠Shared Weights

𝑞𝑖

𝑥𝑖

𝑝𝑖

𝑢𝑖

Encoder MNet

𝑝𝑗

𝑞𝑗

𝑥𝑗

𝑢𝑗

Loss Evaluation

(b) The second phase of DCSS

𝑞

𝑞𝑞𝑞

(c) Clustering phase

Dataset

𝑢𝑖

ℒ𝑢
1

ℒ𝑢
2

ℒ𝑢
𝐾

.

.

.
𝜇(2)

𝜇(𝐾)

. .
.

𝜇(1)

𝑥𝑖 ො𝑥𝑖

Encoder Decoder

(a) The first phase of DCSS (DSL)

𝑢 Space

Fig. 2. (a) Training scheme of the first phase of DCSS, called deep successive learning (DSL). (b) Training procedure of the second phase of
DCSS. At the outset, when iter2 ≤ T2, MNet is trained based on the pairwise similarities defined in the u space – i.e. The similarity between two
data points xi and xj is determined using the dot product of pi and pj . At the later stage of MNet training, when iter2 > T2, the pairwise similarities
are measured in the q space itself using qTi qj . (c) Visualization of the final cluster assignment using DCSS. After completing the training phase
shown in (a) and (b), we cluster a data point xi by locating the largest element in qi.

Every T1 training iterations, we update the group centers
to average of weighted samples in the u space, as is
shown in (3); i.e. samples closer to µ(k) contribute more in
updating.

pik =

1

||ui−µ(k)||
2/(m−1)
2∑K

j=1
1

||ui−µ(k)||
2/(m−1)
2

(2)

µ(k) =
∑
xi∈X

pmikui∑
xi∈X

pmik
(3)

Block diagram of the DSL framework is shown in Fig.
2(a). A preliminary version of DSL is presented in [50].

3.2 The second phase of DCSS
After completing the first phase of the DCSS method, we
discard the decoder part of the DSL’s autoencoder and ap-
pend a fully connect network MNet to the trained encoder.
More specifically, the MNet’s input is the latent space of the
DSL’s encoder, i.e. the u space. We take pairwise samples
similarity to supervise the MNet training phase. The MNet
output space q is used for data clustering; hence, it is trained
to strengthen similarities and dissimilarities. The MNet’s

output layer, i.e. the q space, consists of K neurons where
each neuron corresponds to one data cluster. We utilize the
softmax function at the output layer to obtain probability
values for clusters assignment. More specifically, for input
sample xi, the output value at the jth neuron, i.e. qij , is the
probability of xi belonging to the jth cluster.

At the problem outset, MNet parameters, θM , are initial-
ized with random values. Hence, at the first few epochs of
the q training process, when q is not yet a reliable space,
we measure pairwise similarities in the u space, using the
inner product of the group assignments shown in (2). More
specifically, knowing that pi = [pi1, .., piK]T represents the
assignment vector of the ith data point xi to the different
data groups in the u space, the inner product of pi and pj
shows the pairwise similarity of the two data points xi and
xj . The loss function proposed for the MNet training at the
first T2 training epochs is shown in (4) where ζ and γ are
two user-settable hyperparameters, and 1{.} is the indicator
function.

6

LM =
∑

xi,xj∈B
1{pTi pj ≥ ζ}(1− qTi qj) + 1{pTi pj ≤ γ}(qTi qj)

(4)

As can be inferred from (4), only similar and dissimilar
samples contribute in the MNet training phase – i.e., a pair
of samples contributes to the training if their similarity
is greater than ζ or less than γ. A Pair of samples with
a similarity value between ζ and γ, i.e. in the ambiguity
region, does not contribute to the current training epoch.
Therefore, minimizing LM strengthens (weakens) the simi-
larity of similar (dissimilar) samples. Note that, along with
training the MNet parameters, the encoder parameters θe
are also updated through back-propagation, in an end-to-
end manner. Group centers in the u space, i.e. µ(k) are also
updated using (3) after completing each training epoch.

After training MNet (and refining encoder) parameters
through minimizing LM for T2 epochs, when q becomes a
reliable space for pairwise similarities measurement, we use
the loss function L′M defined in (5) to complete the MNet
training. Similar to (4), a pair contributes in L′M if its cor-
responding similarity value is not in the ambiguity region.
As is shown in Section 4, as the MNet training progresses,
more and more pairs contribute to the training procedure.
Again, the u space receives small updates through the
backpropagation process when minimizing L′M .

L′M =
∑

xi,xj∈B
1{qTi qj ≥ ζ}(1− qTi qj) + 1{qTi qj ≤ γ}(qTi qj)

(5)

As is proved in Appendix A, a proper choice for of
hyperparameters ζ and γ is 2

3 < ζ and γ < ζ2. In our
experiments ζ and γ are set to 0.8 and 0.2, respectively.

Fig. 2(b) shows the overall training procedure of the
DCSS’s second phase. Moreover, Appendix A presents sev-
eral mathematical proofs that show, under certain assump-
tions, the final q vector for a query sample is very close to
an one-hot vector where the index of the maximum element
of the vector indicates the cluster label. This also shows
that similar (dissimilar) samples tend to sit in the same
(different) data cluster(s).

3.3 Final cluster assignments

To determine the final cluster assignment of a data point
xi, we utilize the trained encoder and MNet networks to
compute the data representation in the K-dim q space, i.e.
qi. xi is assigned to the most probable cluster, i.e. the index
corresponding to the highest qi element. This clustering
assignment process is shown in Fig. 2(c).

The pseudo-code of the DCSS algorithm is presented in
Algorithm 1.

4 EXPERIMENTS

In this section, the effectiveness of our proposed DCSS
framework is demonstrated on seven benchmark datasets
through conducting a rigorous set of experiments. The DCSS
clustering performance on these seven benchmark datasets

Algorithm 1 Clustering procedure using DCSS

Input: Data points X , θe, θd, θM , µ(k) for k = 1, . . . ,K
Output: θe, θM

The first phase:
1: Initialize θe and θd with a pre-trained network (see

Section 4.4).
2: for iter1 ∈ {1, 2, ...,MaxIter1} do
3: for k ∈ {1, 2, ...,K} do
4: Compute soft group assignments pik using (2), for
i ∈ B

5: Update AE’s parameters by employing (1a) as loss
function

6: end for
7: Every T1 iterations, update cluster centers using (3)
8: end for

The second phase:
9: for iter2 ∈ {1, 2, ...,MaxIter2} do

10: if iter2 ≤ T2 then
11: Compute soft group assignment vectors pi for i ∈

B
12: Compute soft cluster assignments vectors qi for i ∈

B
13: Update θe and θM to minimize (4)
14: Update group centers µ(k), k = 1, . . . ,K , using (3)
15: else
16: Compute qi for i ∈ B
17: Update θe and θM to minimize (5)
18: end if
19: end for

Final Cluster Assignments:
20: Compute qi for xi, i = 1, . . . N
21: Assign each data sample to the most probable cluster

is compared with ten conventional and state-of-the-art deep-
learning-based clustering methods. The DCSS code is avail-
able: https://github.com/Armanfard-Lab/DCSS.

4.1 Datasets
The effectiveness of the proposed method is shown on
seven widely used datasets. Considering unsupervised
nature of the clustering task, we concatenate training and
test sets when applicable. Combining train and test datasets
is a common practice in the clustering research field [22, 18,
20, 19, 47]. The datasets are:
(1) MNIST [51] consists of 60,000 training and 10,000 test
gray-scale handwritten images with size 28 × 28. This
dataset has 10 classes.
(2) Fashion MNIST [52] has the same image size and
number of samples as of MNIST. However, instead of
handwritten images, it consists of different types of fashion
products. This makes it fairly more complicated for data
clustering compared to the MNIST dataset. It has 10 classes
of data.
(3) 2MNIST is a more challenging dataset created through
concatenation of the two MNIST and Fashion MNIST
datasets. Thus, it has 140,000 gray-scale images from 20

https://github.com/Armanfard-Lab/DCSS

7

TABLE 1
ACC and NMI (in parenthesis) on the benchmark datasets for different clustering methods.

`````````̀Method
Datasets MNIST Fashion MNIST 2MNIST USPS CIFAR-10 STL-10 CIFAR-100

k-means 53.20 (50.00) 47.40 (51.20) 32.31 (44.00) 65.67 (62.00) 22.90 (8.70) 19.20 (12.50) 13.00 (8.40)
LSSC 71.40 (70.60) 49.60 (49.70) 39.77 (51.22) 63.14 (58.94) 21.14 (10.89) 18.75 (11.68) 14.60 (7.92)
LPMF 47.10 (45.20) 43.40 (42.50) 34.68 (38.69) 60.82 (54.47) 19.10 (8.10) 18.00 (9.60) 11.80 (7.90)
DEC 84.30 (83.72) 51.80 (54.63) 41.20 (53.12) 75.81 (76.91) 30.10 (25.70) 35.90 (27.60) 18.50 (13.60)
IDEC 88.13 (83.81) 52.90 (55.70) 40.42 (53.56) 75.86 (77.68) 36.99 (32.53) 32.53 (18.85) 19.61 (14.58)
DCN 83.00 (81.00) 51.22 (55.47) 41.35 (46.89) 73.00 (71.90) 30.47 (24.58) 33.84 (24.12) 20.17 (12.54)
DKM 84.00 (81.54) 51.31 (55.57) 41.75 (46.58) 75.70 (77.60) 35.26 (26.12) 32.61 (29.12) 18.14 (12.30)
DSC 97.80∗(94.10∗) 66.20∗(64.50∗) 42.36 (46.53) 86.90∗(85.70∗) 22.50 (8.65) 25.60 (15.69) 21.12 (13.00)

AE + k-means 86.03 (80.25) 57.94 (57.15) 44.01 (62.80) 75.11 (74.45) 80.11 (70.35) 95.89 (91.75) 49.86 (48.57)
CC 88.56 (84.21) 64.52 (61.45) 42.15 (58.89) 81.21 (79.45) 79.00 (70.50) 85.00 (76.40) 42.90 (43.10)
DSL 95.99 (89.95) 62.90 (63.58) 45.31∗(63.00∗) 82.93 (81.84) 83.40∗(71.32∗) 96.02∗(91.90∗) 50.30∗(49.80∗)

DCSS 98.00 (94.71) 66.40 (66.94) 48.57 (67.80) 87.21 (86.10) 85.32 (73.35) 97.58 (93.74) 51.10 (50.59)

TABLE 2
ACC and NMI (in parenthesis) on the benchmark datasets when employing DCSS as a framework to improve state-of-the-art AE based clustering

methods.

`````````̀Method
Datasets MNIST Fashion MNIST 2MNIST USPS CIFAR-10 STL-10 CIFAR-100

DEC+MNet 89.13 (86.97) 61.25 (56.30) 44.25 (57.35) 77.58 (78.15) 83.40 (69.25) 96.10 (92.00) 48.86(50.11)
IDEC+MNet 90.51 (85.42) 60.12 (57.16) 44.83 (58.00) 76.58 (78.14) 83.95 (69.93) 96.18 (92.89) 47.86 (50.00)
DCN+MNet 87.49 (83.25) 54.23 (58.69) 45.62 (48.24) 76.90 (77.59) 71.23 (62.38) 92.59 (86.23) 47.92 (45.81)
DKM+MNet 88.31 (84.52) 57.23 (56.26) 44.34 (49.50) 77.13 (78.02) 82.26 (69.50) 96.00 (91.88) 40.22 (49.81)

classes.
(4) USPS [53] contains of 9,298 16 × 16 handwritten images
from the USPS postal service. It contains 10 classes of data.
(5) CIFAR-10 [54] is comprised of 60,000 RGB images of 10
different items, where the size of each image is 32× 32.
(6) STL-10 [55] is a 10-class image recognition dataset
comprising of 13,000 96× 96 RGB images.
(7) CIFAR-100 [54] is similar to the CIFAR-10, except it
has 20 super groups based on similarity between images
instead of 10 classes.

4.2 Evaluation Metrics

We utilize two standard metrics to evaluate clustering per-
formance, including clustering accuracy (ACC) [57] and
normalized mutual information (NMI) [58]. ACC finds the
best mapping between the true and predicted cluster labels.
NMI finds normalized measure of similarity between two
different labels of the same data point. The ACC and NMI
formulations are shown below:

ACC = maxm
∑N
i=1 1{li=map(ci)}

N (6a)

NMI = I(l;c)
max{H(l),H(c)} (6b)

where li and ci denote the true and predicted labels
for the data point xi. map(.) indicates the best mapping
between the predicted and true labels of data points.
I(l; c) denotes the mutual information between true la-
bels l = {l1, l2, ..., lN} and predicted cluster assignments
c = {c1, c2, ..., cN} for all data points. H(.) presents the
entropy function. ACC and NMI range in the interval [0,1]
where higher scores indicate higher clustering performance.

4.3 Networks Architecture
The proposed DCSS method includes an autoencoder and
a fully connected MNet. This section presents structure of
these networks. We use two variations of autoencoders,
depending on the dataset nature (i.e. RGB or gray-scale),
when training the proposed DCSS framework.

For gray-scale datasets, we propose to use an asymmetric
autoencoder; where, following [56], we propose to use the
bottleneck layer shown in Fig. 3(c) in the encoder structure.
Fig. 3(a) and (b) respectively show the encoder and decoder
structures of the proposed asymmetric AE. Employing such
asymmetric structure provides a more discriminative latent
space. Hyperparameters of the proposed AE for each dataset
are indicated in Section 4.4

For the RGB datasets, we first apply a ResNet-152 [56],
pre-trained on ImageNet [59], to extract abstract features.
Then we feed the extracted features to a symmetric fully
connected AE. Inspired by [22], we set the AE architecture
to 2048-500-500-2000-d for RGB datasets, where ReLU acti-
vation function is utilized in all layers.

MNet is a fully connected network that takes the d
dimensional latent space of the AE (u space) as input and
generates a K dimensional output q. The architecture of
MNet is d-128-128-128-K for all datasets except CIFAR-100.
Since CIFAR-100 is a more complicated dataset, it needs
a more complex MNet architecture; so we set the MNet
architecture for CIFAR-100 to d-1000-1000-1000-K. Batch
normalization and ReLU activation function is utilized in
for all datasets in all layers of MNet except the last layer in
which we used softmax function.

4.4 Implementation Details
In this section, we discuss hyperparameter values and im-
plementation details of DCSS.

Network’s hyperparameters n, p1, s1, p2, s2, p3, s3, f1,
and f2 (shown in Fig. 3) are respectively set to 28, 2, 2, 1,

8

(a) Encoder

5
×
5

C
o

n
v,

 3
2

𝑝
𝑎
𝑑
𝑑
𝑖𝑛
𝑔
=
𝑝
1
𝑠𝑡
𝑟𝑖
𝑑
𝑒
=
𝑠 1

In
p

u
t
(𝑛

×
𝑛
)

B
o

tt
le

n
ec

k

5
×
5

C
o

n
v,

 6
4

𝑝
𝑎
𝑑
𝑑
𝑖𝑛
𝑔
=
2
𝑠𝑡
𝑟𝑖
𝑑
𝑒
=
2

B
o

tt
le

n
ec

k

3
×
3

C
o

n
v,

 1
2

8
𝑝
𝑎
𝑑
𝑑
𝑖𝑛
𝑔
=
0
𝑠𝑡
𝑟𝑖
𝑑
𝑒
=
2

B
o

tt
le

n
ec

k

1
1

5
2

, F
C

𝑑
, F

C

O
u

tp
u

t
(𝑑
)

(b) Decoder

In
p

u
t

(𝑑
)

1
1

5
2

, F
C

3
×
3

D
ec

o
n

v,
 1

2
8

𝑝
𝑎
𝑑
𝑑
𝑖𝑛
𝑔
=
0
𝑠𝑡
𝑟𝑖
𝑑
𝑒
=
2

𝑓 1
×
𝑓 1

D
ec

o
n

v,
 6

4
𝑝
𝑎
𝑑
𝑑
𝑖𝑛
𝑔
=
𝑝
2
𝑠𝑡
𝑟𝑖
𝑑
𝑒
=
𝑠 2

f 2
×
𝑓 2

D
ec

o
n

v,
 3

2
𝑝
𝑎
𝑑
𝑑
𝑖𝑛
𝑔
=
𝑝
3
𝑠𝑡
𝑟𝑖
𝑑
𝑒
=
𝑠 3

O
u

tp
u

t
(𝑛

×
𝑛
)

(c) Bottleneck

In
p

u
t

(J
)

1
×
1

C
o

n
v,

 6
4

3
×
3

C
o

n
v,

 6
4

1
×
1

C
o

n
v,

 J

+

O
u

tp
u

t
(J

)

Fig. 3. Structure of the proposed asymmetric autoencoder. In the encoder part, in order to obtain an informative lower-dimensional representation
of data points, we proposed to use a Bottleneck layer. Following [56], we use the bottleneck layer after 5 × 5 and 3 × 3 convolutional layers. the
value of hyperparameters is presented in Section 4.4.

2, 2, 2, 5, and 4 for MNIST, Fashion MNIST, and 2MNIST;
these parameters are set to 16, 1, 1, 2, 2, 0, 1, 4, and 5 for the
USPS dataset. The latent space dimension d is set to 10 for
gray-scale images and 20 for RGB images.

Following [18, 19, 20, 22], in order to initialize the pa-
rameters of DSL’s, i.e. θe, θd and µ(k) for k = 1, . . . ,K ,
we train an autoencoder where the end-to-end training is
performed by only minimizing the samples reconstruction
losses. Adam optimization method [60], with the same
parameters mentioned in the original paper are used for
training. θe, θd are then initialized with the parameters of
the trained autoencoder’s parameters. We apply k-means
algorithm [8] to the latent space of the trained autoencoder
and initialize µ(k), k = 1, . . . ,K to the centers defined by
k-means.

For all datasets, in the first phase of DCSS, α, Maxiter1,
T1, and m are respectively set to 0.1, 200, 2, and 1.5. The
second phase hyperparameters ζ , γ, T2, and MaxIter2 are
respectively set to 0.8, 0.2, 5, and 20. We utilize Adam
optimizer for updating weights of the AE and MNet and
their learning rates are set to 10−5 and 10−3, respectively.

All algorithms were implemented in Python using Py-
Torch framework. All codes are run on Google Colaboratory
GPU (Tesla K80) with 12GB RAM. The proposed algorithm
codes are included in the supplementary materials.

4.5 Clustering Performance
The effectiveness of our proposed DCSS method is com-
pared against ten well-known algorithms, including con-
ventional and state-of-the-art deep-learning-based cluster-
ing methods, using the commonly used evaluation metrics
ACC and NMI.

The conventional clustering methods are k-means [8],
large-scale spectral clustering (LSSC) [61], and locality
preserving non-negative matrix factorization (LPMF) [62].
Deep-learning based algorithms are deep embedding clus-
tering (DEC) [22], improved deep embedding clustering
(IDEC) [20], deep clustering network (DCN) [19], deep k-
means (DKM) [18], deep spectral clustering (DSC) [47], and
the very recent contrastive clustering method (CC) [48]. In
addition, we report clustering performance of a baseline
method AE + k-means in which k-means is simply applied
to the latent representation of an AE, with similar architec-
ture as of the AE used in the DCSS method, trained based
on minimizing the dataset reconstruction loss. More details
about the comparing algorithms can be find in Section 2.

We also demonstrate the success of the DSL method,
presented in Section 3.1, in creating a reliable subspace u
where the data points are effectively grouped around their
corresponding center. To this end, we only implement the
first phase of the DCSS algorithm – i.e. we train the DCSS’s
AE through minimizing the loss function presented in (1),
where the AE architecture and its initialization are similar
to those presented in Section 4.3 . After training the u space,
we perform a crisp cluster assignment by considering each
data group, in the u space, as a data cluster and assigning
each data point to the cluster (group) with closest center.

the clustering performance of our proposed DSL and
DCSS along with our comparison algorithms are shown in
Table 1. For the comparison methods, if the ACC and NMI
results for a dataset are not reported in the corresponding
original paper, we ran the released code with the same
hyper-parameters discussed in the original paper. The best
result for each dataset is shown in bold. The second top
results are shown with *. Several observations can be made
from this table. (1) The proposed DCSS method outperforms
all of our comparison methods on all datasets. (2) The pro-
posed DSL approach effectively centers the data around the
group centers. This can be inferred from its ACC and NMI
results. Indeed DSL outperforms all the clustering methods
except DSC which is one of the very most recent state-of-the-
art AE-based clustering methods. DSL outperforms DSC in 4
out of the 7 datasets and provides competitive results on the
remaining three ones. (3) Effectiveness of the second phase
of the proposed DCSS framework, where we append MNet
to the latent space of the DSL, can be inferred by comparing
DCSS with DSL. It can be seen that DCSS significantly
outperforms DSL on all the datasets. (4) Effectiveness of
the AE loss function proposed in equation (1) compare to
the case of training AE with only reconstruction loss can
be inferred by comparing the DSL performance with the
baseline method AE+K-means. As can be seen, the DSL
clearly outperforms AE+K-means on all the datasets.

4.6 t-SNE visualization
Fig. 4 illustrates the effectiveness of different phases of our
proposed DCSS framework for all datasets, where t-SNE
[63] is used to map the output of DCSS’s encoder/MNet to
a 2D-space. The different colors correspond to the different
data groups/clusters.

The first row of Fig. 4 shows the representation of
different data points in the u space, i.e. the latent space of the

9

TABLE 3
ACC and NMI (in parenthesis) for different extracted features.

Dataset Method Resnet-34 Resnet-50 Resnet-101 Resnet-152
DEC 90.10 (83.40) 91.50 (84.20) 95.30 (90.20*) 95.88 (91.01)
IDEC 92.70 (84.00) 93.40 (86.15) 95.81* (89.41) 96.00 (92.14)
DCN 78.12 (77.51) 80.25 (81.12) 90.14 (86.43) 90.25 (84.03)

STL-10 DKM 92.40 (88.20*) 91.10 (88.14*) 92.51 (88.57) 95.50 (91.30)
AE+kmeans 92.60 (86.00) 93.20 (87.10) 95.00 (89.90) 95.89 (91.75)

DSL 92.85* (86.26) 93.51* (87.63) 95.20 (90.07) 96.02* (91.90*)
DCSS 94.51 (88.35) 94.60 (89.37) 96.40 (92.00) 97.58 (93.74)
DEC 72.51 (64.21) 73.25 (61.10) 78.24 (67.41) 81.10 (68.21)
IDEC 71.41 (64.01) 74.41 (62.30) 79.65 (68.00) 81.24 (68.57)
DCN 54.71 (53.29) 56.20 (51.23) 71.00 (46.20) 64.20 (59.02)

CIFAR-10 DKM 69.52 (60.41) 70.20 (61.25) 80.31 (68.00) 81.90 (69.10)
AE+kmeans 78.80 (67.81) 75.60 (62.80) 82.90 (70.80) 80.11 (70.35)

DSL 79.02* (68.01*) 76.00* (62.95*) 83.12* (71.20*) 83.40* (71.32*)
DCSS 79.80 (70.61) 76.40 (64.21) 84.50 (73.13) 85.32 (73.35)
DEC 41.56 (47.52*) 45.10 (44.25) 43.25 (46.61) 45.38 (49.41)
IDEC 42.51 (46.41) 45.61 (45.00) 43.45 (47.29) 44.91 (49.25)
DCN 40.36 (42.58) 41.25 (41.58) 43.15 (42.64) 44.68 (43.00)

CIFAR-100 DKM 36.80 (46.82) 35.61 (40.29) 37.84 (47.25) 37.40 (46.20)
AE+kmeans 47.30 (46.10) 47.36 (45.09) 47.35 (47.01) 49.86 (48.57)

DSL 47.66* (46.52) 47.80* (45.44*) 47.43* (47.53*) 50.30* (49.80*)
DCSS 50.10 (48.90) 48.76 (46.40) 48.82 (49.00) 51.10 (50.59)

DCSS’s AE, only after completing the first phase discussed
in Section 3.1. As it can be seen, after completing the first
phase of DCSS, different groups of data points are fairly
separated and sit near group centers; however, this phase is
not adequate for defining cluster assignments. For example,
in the USPS dataset, data groups shown in pink, purple, and
magenta are mixed together. This indicates insufficiency of
the reconstruction and centering losses.

The second row of Fig. 4 shows the data representations
in the u space after completing the second phase of DCSS
discussed in Section 3.2, where u is refined by minimizing
(4) and (5). As can be seen, refining the u space employing
pairwise similarities results in a more clear and separate
group distributions. For example, the pink, purple, and
magenta groups of USPS are now well distinguishable in
the new refined u space. As another example, see samples
from three groups shown in red, olive, and brown of the
2MNIST dataset. These groups are more separated in the
refined u space, shown in the second row, compare to the
representation shown in the first row of Fig 4.

The last row in Fig. 4 depicts the output space of MNet
(q space), in which we make decisions about cluster assign-
ments of data points. As is expected, clusters in this space
have low within- and high between- cluster distances. As an
example, consider the navy blue and the purple groups of
the Fashion MNIST dataset, at the end of the second phase.
Although these groups are mixed in the u space, they are
completely isolated in the q space.

4.7 Effect of Pre-trained Network

In this section, we investigate the effect of the structure of
the employed pre-trained network for extracting features
from RGB images. To this end, we compare the clustering
performance of all the deep-learning-based algorithms pre-
sented in Section 4.5 using four different ResNet architec-
tures, namely ResNet-34 [56], ResNet-50 [56], ResNet 101
[56] and ResNet-152 [56]. All ResNets are pre-trained on
the ImageNet dataset [56]. The corresponding ACC and
NMI are reported in Table 3. The best result for each
dataset is shown in boldface and the second top results are
shown with *. As can be seen, regardless of the employed
structure, the proposed DCSS method outperforms all other

algorithms on all datasets. In addition, the DSL method is
the second top method in 19 out of the 24 reported values.

4.8 Loss function convergence
Fig. 5. depicts the average, over different groups on different
batches of data points, of the reconstruction, centering, and
total losses corresponding to the first phase of DCSS (i.e.
DSL) shown in (1). As can be seen, all losses are converged at
the end of training. The noticeable reduction in the centering
loss shows the effectiveness of our proposed approach in
creating a reliable u space in which the data points are
gathered around the group centers. Moreover, the figures
show that at the first training epochs, our method trades the
reconstruction loss for an improved centering performance.
This proves insufficiency of the reconstruction loss in creat-
ing a reliable latent space.

In Fig. 6, we investigate convergence of the second
phase’s loss of our proposed DCSS method, shown in equa-
tions (4) and (5). Since we initialize the MNet randomly, at
the first few epochs, MNet knows nothing about the lower-
dimension representation of the data points in the q space;
thus, we face a high loss value. As the q training process
progresses, the loss value drops and converges to zero at
the end of the training process. In the first 5 epochs, the
algorithm minimizes the loss presented in (4) and minimizes
(5) in the remainings. The continuity of the loss reduction
over epochs along with the sharp loss drop at the 5th
epoch, confirms the effectiveness of our proposed strategy
in employing the reliable space u for supervision in the
early epochs and then employing the skilled space q for
supervision in the later epochs.

4.9 DCSS as a General Framework
In this section, we demonstrate the effectiveness of the DCSS
as a general framework where the u space can be trained
with other AE-based clustering techniques. To this end, we
substitute the DSL technique proposed in Section 3.1 with
other deep-learning-based techniques that train an effective
subspace using an AE for the purpose of data clustering.
Among our comparison methods, algorithms DEC, IDEC,
DCN, and DKM are AE-based. For each dataset, we train
AEs using these algorithms, then take their encoder part
and append our proposed MNet to their latent space. Then
we run the second phase of DCSS. Results of such imple-
mentation are reported in Table 2 where X+MNet indicates
the performance of DCSS employing the X method’s latent
space as the DCSS’s u space. Note that, for the RGB datasets,
we construct features using the pre-trained ResNet-152.
Comparing the clustering results reported in Tables 1, 3
and 2 confirms the effectiveness of DCSS as a general
framework to improve the existing state-of-the-art AE-based
clustering methods. On average, MNet improves clustering
performance of DEC, IDEC, DCN, and DKM respectively
by 3.58% (1.87%), 2.93% (1.54%), 4.04% (2.98%), and 2.56%
(1.65%) in terms of ACC (NMI).

4.10 Performance on Imbalanced Dataset
To demonstrate effectiveness of our proposed DCSS method
on imbalanced dataset, we randomly collect five subsets

10

𝑢
sp

ac
e

(
1

st
P

h
as

e)
𝑞

sp
ac

e

STL-10Fashion MNIST USPS CIFAR-10 CIFAR-1002MNISTMNIST

𝑢
sp

ac
e

(
1

st
&

 2
n

d
P

h
as

e)

Fig. 4. The grouping and clustering visualization of different phases of DCSS using t-SNE, for different benchmark datasets. The first row shows
the grouping result of the first phase of DCSS, where a sample sits close to its corresponding group center by minimizing weighted reconstruction
and centering losses. The final u space of DCSS, obtained by completing the first and second phases of DCSS, is shown in the second row. In the
second phase, DCSS aims to refining the u space (obtained in the first phase) and training the q space by employing pairwise similarity between
data points. The last row depicts the final output of MNet (q space) for all data points. Axes range from -100 to 100.

ℒ𝑅ℒ𝑐 ℒ𝑢

Fig. 5. The reconstruction loss Lr , centering loss Lc, and total loss Lu of the first phase of DCSS (DSL) vs. training epochs, for different datasets. At
the earlier epochs, the latent representation of the data points are irregularly scattered around the group centers, which causes the high centering
loss value. During the first step of DCSS, our proposed algorithm aims to simultaneously minimizing centering and reconstruction losses; this leads
to an increase in the reconstruction loss (and decrease in the centering loss), in the later training epochs. When the first phase is complete, the
latent representation of data points sit close to the group centers, which causes convergence of centering loss to a small value.

Fig. 6. The second phase’s loss function of DCSS for different bench-
mark datasets. In the first T2 epochs, when MNet is naı̈ve, we make use
of the u space to measure pairwise similarities; hence, the first T2 = 5
epochs show the loss value defined in (4). After the first T2 epochs all
datasets show an eye-catching decrease in the loss values since we
switch from using the u space to using the more reliable space q when
measuring pairwise similarities by minimizing the loss defined in (5).

of the MNIST dataset with different retention rates r ∈
{0.1, 0.2, 0.3, 0.4, 0.5}, where samples of the first class are
chosen with probability of r and the last class with proba-
bility of 1, with the other classes linearly in between. Hence,
on average, the number of samples for the first cluster is r

DEC
IDEC
DCN
DKM

AE+kmeans
DSC

CC

DCSS
DSL

Fig. 7. The clustering performance of different methods on imbalanced
samples of MNIST.

times less than that of the last cluster. As is shown in Fig.
7, our proposed DCSS framework significantly outperforms
our comparison methods for all r values. This indicates the
robustness of DCSS on imbalanced data. As is expected, in
general, for all methods, increasing r results in a higher
performance because the dataset gets closer to a balanced
one.

4.11 Visualization of representations in the q space
Fig. 9 shows the q vector corresponding to samples from
different data clusters. As can be seen, the proposed method

11

####

𝑅 𝑅 𝑅 𝑅

###

𝑅 𝑅 𝑅

Fig. 8. Histogram plot of Ri = ||Ii − qi||1, i = 1, . . . , N where Ii is the
one-hot crisp assignment corresponding to qi.

usually results in q space representations close to an one-hot
vector. Note that the kth element of qi shows the probability
of sample xi being in the kth cluster. The closer qi is to the
one-hot vector, the more confident crisp assignment can be
performed. As is proved in Corollary 1.2 of Appendix A, if
a data point has at least one similar neighbor, the maximum
element of its corresponding q is greater than ζ . In our
experiments, ζ is set to 0.8. This can justify aggregation of
the data points near one-hot representations in the q space.

To further demonstrate convergence of the q represen-
tations to one-hot vectors, histogram of residuals Ri =
||Ii − qi||1, i = 1, . . . , N for all datasets are shown in Fig.
8; where ||.||1 indicates the `1-norm and Ii is the one-hot
crisp assignment corresponding to qi – i.e. the index of
the non-zero element of Ii is equal to the index of the
maximum element of qi. As it can be seen in Fig. 8, the q
representation of almost all data points are very close to
their corresponding one-hot vector.

4.12 Hyperparameters Sensitivity
In Fig. 10, we investigate the effect of different hyperparam-
eters on DCSS clustering performance. For hyperparameters
of the first phase (i.e. α, m and T1), we report performance
of clustering using DSL (as is presented in Section 4.5).

In Fig. 10(a), we explore importance of the centering loss
in the first phase’s loss function shown in (1) by changing
α ∈ {0, 0.01, 0.1, 1} for the MNIST dataset. As is shown
in this figure, by increasing the value of α from 0 to 0.01,
our DCSS performance significantly enhances in terms of
ACC and NMI, which demonstrates the effectiveness of
incorporating the centering loss beside the reconstruction
loss in the first phase’s loss function. The best clustering
performance is achieved for α = 0.1 for the MNIST dataset.

Fig. 10(b) shows the impact of the level of fuzzi-
ness m on clustering performance of DSL, where m ∈
{1.1, 1.3, 1.5, 1.7}. In case m→ 1 (m→ ∞), group member-
ship vectors converge to one-hot (equal probability) vectors.
As it is shown in this figure, the best performance is ob-
tained for m = 1.5 for the Fashion MNIST dataset.

In Fig. 10(c), we scrutinize the effect of update interval
T1 in clustering performance of the first step for T1 ∈
{2, 5, 10, 15}. As is expected, better clustering performance
in terms of ACC and NMI is acquired for smaller value of
T1, i.e. T1 = 2.

In Fig. 10(d), we change the number of training epochs
T2, defined in Section 3.2, where T2 ∈ {1, 5, 10, 20}. As
is expected, for very small T2 value, e.g. T2 = 1, where
training the q space is mainly supervised by the q space itself

even at the MNet training outset, DCSS cannot provide a
proper q space, since q is not a reliable subspace to be used
for self-supervision. The figure also shows that for a very
large T2 value, e.g. T2 = 20, when we only trust the u space
for supervising the q space, we cannot train an effective q
space. As it is shown, the best clustering performance is
obtained when T2 is set to a moderate value, e.g. T2 = 5.
This demonstrates the effectiveness of the proposed strategy
in supervising the MNet training using both u and q spaces.

In Fig. 11, we change ζ and γ in range [0,1], where
ζ + γ = 1, to observe model convergence and accuracy
for different lengths of the ambiguity interval, defined as
ζ − γ, ranging from 1 (when ζ = 1) to 0 (when ζ = 0.5).
Fig. 11(a) shows the number of pairs participating in mini-
mizing the loss functions defined in (4) and (5). As can be
seen, at the beginning of the second phase, our model can
make a decisive decision only about a few pairs, and the
remaining pairs are in the ambiguous region. As the second
phase training process progresses, more and more pairs are
included in the loss functions optimization process. Finally,
at the end of the second phase, almost all pairs contribute to
the training.

Furthermore, in Fig. 11(b), we investigate the influence
of ζ and γ in clustering performance. As it can be seen,
as is desired, the final clustering performance of our DCSS
framework is not highly sensitive to the choice of ζ and γ
when are set to reasonable values. In all our experiments
ζ = 0.8 and γ = 0.2.

4.13 Features visualization

In order to investigate the effectiveness of our model in
extracting useful features for different datasets, we train a
deep neural network with the same structure as we pro-
posed in Section 4.3 in a supervised manner, and then we
compare the output of the first convolutional layers for the
trained model and our proposed DCSS model. As it can be
seen in Fig. 12, our DCSS learns a variety of low- and high-
frequency features, which are similar to features learned in
a supervised manner. This demonstrates the effectiveness
of our framework in finding informative features in an
unsupervised manner.

5 CONCLUSION

In this research study, we developed a novel and effective
AE-based deep-clustering framework, i.e. deep clustering
with self-supervision (DCSS), which considers pairwise
similarity and dissimilarity between data points for data
clustering task. DCSS is based on a two-phase training
procedure. In the first phase, through K successive runs,
DCSS tries to obtain an optimal lower-dimensional rep-
resentation for data points, where at the kth run, DSL
concentrates on reconstruction and grouping of those data
points that are more probable to belong to the the kth
data group. In the second phase, DCSS aims to finding
the pairwise relationship between data points employing
the lower-dimensional representations obtained in the first
step. To this end, we train a fully connected network, i.e.
MNet, in an unsupervised manner through minimizing a
novel and effective loss function that only considers similar

12

(a) MNIST

(b) Fashion MNIST

(c) STL10

(d) CIFAR10

Fig. 9. Visualization of q for samples from (a) MNIST, (b) Fashion MNIST, (c) STL-10, and (d) CIFAR-10 datasets. The q vector (i.e. the MNET
output) for each image is depicted beside the image. The vertical axes range from 0 to 1.

(a) Effect of 𝛼 on clustering performance
(b) Effect of 𝑚 on clustering performance

(c) Effect of 𝑇1 on clustering performance (d) Effect of 𝑇2 on clustering performance

Fig. 10. Sensitivity of DCSS to different hyperparameters.

and dissimilar pairs identified in the AE’s latent space or
the output space of the MNet itself. We evaluate our DCSS
framework on several benchmark datasets. Empirical results
show that DCSS outperforms state-of-the-art data cluster-
ing methods. The effectiveness of the proposed method is
also supported by severe mathematical proofs discussed in
Appendix A. Moreover, the results shown in Section 4.9
demonstrate the effectiveness of the DCSS framework in
improving the clustering performance of the state-of-the-art
AE-based clustering algorithms.

APPENDIX A

Notation clarification: Representation of the ith sample in
the q space is shown by qi. The kth element of qi is shown by
qik, k = 1, . . . ,K , where K is the number of data clusters.
Note that qi is the MNet output when the input sample is xi.
Since we employed soft-max as the final layer of MNet, 0 ≤
qil ≤ 1 and the `1-norm of qi is equal to 1. Furthermore, as
is discussed before, parameters ζ and γ are values between
0 and 1.

Definition A.1. Two data points, i.e. i and j, are adjacent

13

(a) Number of data samples participating in the second phase of DCSS

(b) ACC and NMI for different 𝛾 and 𝜁

𝜁 = 1 , 𝛾 = 0 𝜁 = 0.9 , 𝛾 = 0.1 𝜁 = 0.8 , 𝛾 = 0.2 𝜁 = 0.7 , 𝛾 = 0.3 𝜁 = 0.6 , 𝛾 = 0.4 𝜁 = 0.5 , 𝛾 = 0.5

Fig. 11. Changing hyperparameters ζ and γ for different datasets. (a) Number of data pairs participating in the second phase of DCSS. In the first
epochs, MNet can barely recognize relation between data points using soft group assignments defined in the u space. After completing the first
T2 = 5 epochs, we switch to measure similarities in the more reliable space q hence the number of participating pairs increases dramatically. In
the final epochs for different values for ζ and γ, almost all pairs contribute in the loss function defined in (5). For the maximum ambiguity region
1, i.e. ζ = 1 and γ = 0, all pairs do not participate in the second phase of DCSS and stay on the ambiguity region. Hence, 0 pairs contributes in
this phase. (b) Clustering performance in terms of ACC and NMI for different datasets for different value of ζ and γ. The clustering performance of
DCSS is less sensitive to the choice of ζ and γ in range of [0.5,0.9] and [0.1,0.5], respectively.

Fa
sh

io
n

 M
N

IS
T

2
M

N
IS

T

a) Original Image b) DCSS c) Supervised Features

M
N

IS
T

U
SP

S

Fig. 12. (a) samples of MNIST, Fashion MNIST, 2MNIST, and USPS. The
output of the first convolutional layer using (b) the unsupervised DCSS
method, (c) a supervised manner employing the same network structure
as of DCSS shown in Section 4.3.

(aka similar) if and only if qTi qj ≥ ζ .

Definition A.2. Two data points, i.e. i and j, are in the same
cluster if and only if the index of the maximum value in
their corresponding q (i.e. qi and qj) are equal.

Theorem 1. Consider the ith and jth data points. Then :

qTi qj ≤ min
{
max
l
{qil},max

l
{qjl}

}
(7)

where qTi qj is the inner product of the two vector qi and qj . qil
and qjl denote the lth element of qi and qj , respectively.

Proof. Assume q∗j is a maximal vector that satisfies the below
inequality:

qTi qj ≤ qTi q∗j , (8)

where ||q∗j ||1 = 1. In addition, assume the index of the
maximum element of qi is r:

r = argmax
l
{qil} (9)

In the following, we first prove by contradiction that q∗j must
be a one-hot vector. Then we prove (7).
Assume q∗j is not a one-hot vector. Therefore, there exists at
least one index, i.e. e, that its corresponding element q∗je is
non-zero:

∃ e : e 6= r and q∗je 6= 0. (10)

Now, let’s define a vector q̂j as follows:

q̂jl =

q∗je + q∗jr if l = r

0 if l = e

q∗jl O.W

, (11)

where q̂jl denotes the lth element of q̂j . Since ||q∗j ||1 = 1,
we can immediately show that ||q̂j ||1 = 1. Moreover, we
can represent the inner products qTi q

∗
j and qTi q̂j as shown in

(12) and (13), respectively.

qTi q
∗
j = qirq

∗
jr + qieq

∗
je +

∑
l 6=r,e

qilq
∗
jl (12)

qTi q̂j = qir(q
∗
jr + q∗je) + qie × 0 +

∑
l 6=r,e

qilq
∗
jl (13)

Since qir is the maximum element of qi, we can readily show
that qTi q

∗
j ≤ qTi q̂j , which contradicts the assumption shown

in equation (8); thus, q∗j must be a one-hot vector. Therefore:

qTi q
∗
j ≤ max

l
{qil} (14)

14

Considering (14) and (8), we have:

qTi qj ≤ max
l
{qil}. (15)

Similarly, for the ith sample, we can show that q∗i
T qj ≤

maxl{qjl}, hence:

qTi qj ≤ max
l
{qjl}. (16)

(15) and (16) proves (7).

Corollary 1.1. If two samples i and j are adjacent, the maximum
value among their elements is greater than ζ .

Proof. This statement is a corollary of Theorem 1, that can
be proved from (7), (15), (16) and the adjacency definition
provided in Definition A.1. In other words:

ζ ≤ qTi qj ≤ min(qir, qjo) −→
{
ζ ≤ qir
ζ ≤ qjo

(17)

where the index of the maximum element of qi and qj are
respectively shown by r and o – i.e., r = argmaxl{qil} and
o = argmaxl{qjl}.

Corollary 1.2. If a data point has at least one adjacent neighbor,
the maximum element of its corresponding q is greater than ζ .

Proof. We first empirically test the validity of the employed
assumption, i.e. existence of at least one adjacent (i.e. simi-
lar) sample for a data point, on our datasets. Fig. 13 shows
the number of data samples that are not similar to any other
data points in the q space. As it can be seen, at the beginning
of the second phase of DCSS, since MNet is initialized ran-
domly, many data points do not have any adjacent neighbor
(i.e. almost ∀ i, j, i 6= j : qTi qj < ζ .). By minimizing (4) and
(5) in the second phase of DCSS, similar samples are tightly
packed in in the q space; therefore, almost all samples have
at least one adjacent neighbor. For example, there are only
330 data points, out of the 60,000 samples of the CIFAR-100
dataset, that are not similar to any other data samples at the
end of the second phase. Note that CIFAR-100 presents the
worst case among the other datasets shown in Fig 13. All in
all, we can roughly assume that each data point has at least
one adjacent sample.

Lets consider an arbitrary data point i, and one of its
adjacent data points j. From Corollary 1.1, we can conclude
that: {

ζ ≤ maxl{qil}
ζ ≤ maxl{qjl}

. (18)

Thus, we proved that the maximum element of qi, where i
is an arbitrary data point, is greater than ζ .

Corollary 1.3. Assume each data point has at least one adjacent
neighbor and γ < ζ2. If two data points i and k are dissimilar, i
and k are not from the same cluster.

Proof. We prove this corollary by contradiction where the
contradiction assumption is: i and k are dissimilar, yet from
the same cluster where γ < ζ2.
Since i and k are in the same cluster, the index of the
maximum element of qi and qk are the same. (i.e. β =
argmaxl{qil} = argmaxl{qkl}). Since each data point has

at least one adjacent neighbor, from Corollary 1.2, we can
conclude that: {

ζ ≤ qiβ
ζ ≤ qkβ

. (19)

and we can represent qTi qk as follow:

qTi qk = qiβqkβ +
∑
l 6=β

qilqkl (20)

Therefore, qiβqkβ ≤ qTi qk. Also, we know i and k are
dissimilar. From (19), we can conclude that:

ζ2 ≤ qiβqkβ ≤ qTi qk ≤ γ (21)

(21) contradicts the assumption of γ < ζ2. Hence, i and k
are in different clusters.

Theorem 2. For 2
3 ≤ ζ , if i and j are adjacent, they are in the

same cluster – i.e. r is equal to o where r = argmaxl{qil} and
o = argmaxl{qjl}.

Proof. First we find an upper bound for qTi qj , when the ith
and jth samples are adjacent, but from different clusters.
Since i and j are not from the same cluster, we can represent
qTi qj as follows:

qTi qj = qirqjr + qioqjo +
∑
l 6=o,r

qilqjl

∀l: qjl≤qjo−−−−−−−→ ≤ qirqjr + qioqjo +
∑
l 6=o,r

qilqjo

= qirqjr + qjo
(∑
l 6=r

qil
)

∑
l6=r qil=1−qir−−−−−−−−−−→ = qirqjr + qjo(1− qir)
qjr≤1−qjo−−−−−−−→ ≤ qir(1− qjo) + qjo(1− qir)

from (17)−−−−−→ ≤ qir(1− ζ) + qjo(1− ζ)
{qir, qjo}∈[0,1]−−−−−−−−−−→ ≤ 2(1− ζ). (22)

Note that qjr ≤ 1 − qjo because
∑
l 6=o qjl + qjr + qjo = 1.

Note that all elements of a q vector are probability values
between 0 and 1.
Hence, as is shown (22), if two samples are not from the
same cluster then the inner product of their corresponding
q has an upper bound of 2(1− ζ). Therefore, if two samples
i and j are adjacent (see Definition 1) but from different
clusters, then:

ζ ≤ qTi qj ≤ 2(1− ζ)

−→ζ ≤ 2(1− ζ) −→ ζ ≤ 2

3
. (23)

Thus, for 2
3 < ζ , i and j cannot be from two different clusters.

In other words, if two samples i and j are adjacent AND the
user-settable parameter ζ is set to a value greater than 2

3 ,
then the two samples are from similar clusters, i.e. r = o. In
this paper we set ζ = 0.8 > 2

3 .

Corollary 2.1. Assume ζ > 2
3 . Consider three data points i, j,

and k. If i and j also i and k are adjacent, then j and k are from the
same cluster.

15

Fig. 13. Number of data points that do not have any adjacent neighbors
during DCSS training in the second phase.

Proof. Since i and j (i and k) are adjacent and ζ > 2
3 , from

Theorem 2, we can conclude that i and j (i and k) are in the
same cluster; hence, the three samples i, j, and k all are in
the same cluster.

Theorem 3. Consider three data points i, j, and k where i and j
also i and k are adjacent (aka similar). Assume ζ > 2

3 . If γ < ζ2,
then the two samples j and k are not dissimilar (i.e. qTj qk ≮ γ).

Proof. Considering Theorem 2, i and j and k are in the same
cluster. Therefore, we do not want to include the pair of
j and k samples as a dissimilar pair when minimizing the
loss function defined in equation (5).
Since j and k are in the same cluster and knowing that the
index of the maximum element in a q vector shows cluster
of the corresponding sample, we have:

η = argmax
l
{qjl} = argmax

l
{qkl}. (24)

Thus,

qTj qk =
∑
l 6=η

qjlqkl + qjηqkη. (25)

Therefore,

qTj qk ≥ qjηqkη. (26)

Since ζ ≤ qTi qj and ζ ≤ qTi qk, we can infer (27) from (17).{
ζ ≤ qjη
ζ ≤ qkη

. (27)

From (26) and (27), we can obtain below:

ζ2 ≤ qjηqkη ≤ qTj qk. (28)

Thus, if we choose γ < ζ2, we will not include the pair of
samples j and k as a dissimilar pair in equation (5). In this
paper γ is set to 0.2, i.e. γ = 0.2 < 0.82.

REFERENCES

[1] Ashley J Ross et al. “The clustering of the SDSS DR7
main Galaxy sample–I. A 4 per cent distance measure
at z= 0.15”. In: Monthly Notices of the Royal Astronomical
Society 449.1 (2015), pp. 835–847.

[2] Nguyen Dang Thanh, Mumtaz Ali, et al. “Neutro-
sophic recommender system for medical diagnosis
based on algebraic similarity measure and clustering”.
In: 2017 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE). IEEE. 2017, pp. 1–6.

[3] S Selva Kumar and H Hannah Inbarani. “Analysis of
mixed C-means clustering approach for brain tumour
gene expression data”. In: International Journal of Data
Analysis Techniques and Strategies 5.2 (2013), pp. 214–
228.

[4] Florian Schroff, Dmitry Kalenichenko, and James
Philbin. “Facenet: A unified embedding for face recog-
nition and clustering”. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. 2015,
pp. 815–823.

[5] Kaiye Wang et al. “Joint feature selection and sub-
space learning for cross-modal retrieval”. In: IEEE
transactions on pattern analysis and machine intelligence
38.10 (2015), pp. 2010–2023.

[6] Linan Feng and Bir Bhanu. “Semantic concept co-
occurrence patterns for image annotation and re-
trieval”. In: IEEE transactions on pattern analysis and
machine intelligence 38.4 (2015), pp. 785–799.

[7] Syed Sameed Husain and Miroslaw Bober. “Improv-
ing large-scale image retrieval through robust aggre-
gation of local descriptors”. In: IEEE transactions on
pattern analysis and machine intelligence 39.9 (2016),
pp. 1783–1796.

[8] Stuart Lloyd. “Least squares quantization in PCM”.
In: IEEE transactions on information theory 28.2 (1982),
pp. 129–137.

[9] James C Bezdek, Robert Ehrlich, and William Full.
“FCM: The fuzzy c-means clustering algorithm”. In:
Computers & Geosciences 10.2-3 (1984), pp. 191–203.

[10] M Pavithra and R Parvathi. “A survey on clustering
high dimensional data techniques”. In: International
Journal of Applied Engineering Research 12.11 (2017),
pp. 2893–2899.

[11] John R Hershey et al. “Deep clustering: Discriminative
embeddings for segmentation and separation”. In:
2016 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE. 2016, pp. 31–35.

[12] Xia Hu, Qiaoyu Tan, and Ninghao Liu. “Deep rep-
resentation learning for social network analysis”. In:
Frontiers in Big Data 2 (2019), p. 2.

[13] Mei Wang and Weihong Deng. “Deep face recognition
with clustering based domain adaptation”. In: Neuro-
computing (2020).

[14] Mathilde Caron et al. “Deep clustering for unsuper-
vised learning of visual features”. In: Proceedings of the
European Conference on Computer Vision (ECCV). 2018,
pp. 132–149.

[15] Seunghyoung Ryu et al. “Convolutional autoencoder
based feature extraction and clustering for customer
load analysis”. In: IEEE Transactions on Power Systems
35.2 (2019), pp. 1048–1060.

[16] Chunfeng Song et al. “Auto-encoder based data clus-
tering”. In: Iberoamerican congress on pattern recognition.
Springer. 2013, pp. 117–124.

[17] Pierre Baldi. “Autoencoders, unsupervised learning,
and deep architectures”. In: Proceedings of ICML work-
shop on unsupervised and transfer learning. JMLR Work-
shop and Conference Proceedings. 2012, pp. 37–49.

[18] Maziar Moradi Fard, Thibaut Thonet, and Eric
Gaussier. “Deep k-means: Jointly clustering with

16

k-means and learning representations”. In: Pattern
Recognition Letters 138 (2020), pp. 185–192.

[19] Bo Yang et al. “Towards k-means-friendly spaces:
Simultaneous deep learning and clustering”. In: inter-
national conference on machine learning. 2017, pp. 3861–
3870.

[20] Xifeng Guo et al. “Improved deep embedded cluster-
ing with local structure preservation.” In: International
Joint Conference on Artificial Intelligence(IJCAI). 2017,
pp. 1753–1759.

[21] Jerome H Friedman. “On bias, variance, 0/1—loss,
and the curse-of-dimensionality”. In: Data mining and
knowledge discovery 1.1 (1997), pp. 55–77.

[22] Junyuan Xie, Ross Girshick, and Ali Farhadi. “Un-
supervised deep embedding for clustering analysis”.
In: International conference on machine learning. 2016,
pp. 478–487.

[23] Christos Boutsidis, Petros Drineas, and Michael W
Mahoney. “Unsupervised feature selection for the k-
means clustering problem”. In: Advances in Neural
Information Processing Systems. 2009, pp. 153–161.

[24] Huan Liu and Lei Yu. “Toward integrating feature
selection algorithms for classification and clustering”.
In: IEEE Transactions on knowledge and data engineering
17.4 (2005), pp. 491–502.

[25] Salem Alelyani, Jiliang Tang, and Huan Liu. “Feature
selection for clustering: A review”. In: Data Clustering
(2018), pp. 29–60.

[26] Eric P Xing et al. “Distance metric learning with
application to clustering with side-information”. In:
NIPS. Vol. 15. 505–512. Citeseer. 2002, p. 12.

[27] Shiming Xiang, Feiping Nie, and Changshui Zhang.
“Learning a Mahalanobis distance metric for data
clustering and classification”. In: Pattern recognition
41.12 (2008), pp. 3600–3612.

[28] James MacQueen et al. “Some methods for classifi-
cation and analysis of multivariate observations”. In:
Proceedings of the fifth Berkeley symposium on mathemat-
ical statistics and probability. Vol. 1. 14. Oakland, CA,
USA. 1967, pp. 281–297.

[29] Ulrike Von Luxburg. “A tutorial on spectral cluster-
ing”. In: Statistics and computing 17.4 (2007), pp. 395–
416.

[30] Tao Li, Sheng Ma, and Mitsunori Ogihara. “Entropy-
based criterion in categorical clustering”. In: Proceed-
ings of the twenty-first international conference on Ma-
chine learning. 2004, p. 68.

[31] Meng Jianliang, Shang Haikun, and Bian Ling. “The
application on intrusion detection based on k-means
cluster algorithm”. In: 2009 International Forum on
Information Technology and Applications. Vol. 1. IEEE.
2009, pp. 150–152.

[32] OJ Oyelade, OO Oladipupo, and IC Obagbuwa. “Ap-
plication of k Means Clustering algorithm for pre-
diction of Students Academic Performance”. In: arXiv
preprint arXiv:1002.2425 (2010).

[33] Mahnaz EtehadTavakol, Saeed Sadri, and EYK Ng.
“Application of K-and fuzzy c-means for color seg-
mentation of thermal infrared breast images”. In: Jour-
nal of medical systems 34.1 (2010), pp. 35–42.

[34] Jieping Ye, Zheng Zhao, and Mingrui Wu. “Discrimi-
native k-means for clustering”. In: Advances in neural
information processing systems 20 (2007), pp. 1649–1656.

[35] Andrew Y Ng, Michael I Jordan, and Yair Weiss. “On
spectral clustering: Analysis and an algorithm”. In:
Advances in neural information processing systems. 2002,
pp. 849–856.

[36] Santo Fortunato. “Community detection in graphs”.
In: Physics reports 486.3-5 (2010), pp. 75–174.

[37] Y. Han and M. Filippone. “Mini-batch spectral clus-
tering”. In: 2017 International Joint Conference on Neural
Networks (IJCNN). 2017, pp. 3888–3895.

[38] M. El Gheche, G. Chierchia, and P. Frossard. “Stochas-
tic Gradient Descent for Spectral Embedding with
Implicit Orthogonality Constraint”. In: ICASSP 2019 -
2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2019, pp. 3567–3571.

[39] Peihao Huang et al. “Deep embedding network for
clustering”. In: 2014 22nd International conference on
pattern recognition. IEEE. 2014, pp. 1532–1537.

[40] Fei Tian et al. “Learning deep representations for
graph clustering”. In: 28th AAAI Conference on Artificial
Intelligence. 2014.

[41] Pascal Vincent et al. “Stacked denoising autoencoders:
Learning useful representations in a deep network
with a local denoising criterion.” In: Journal of machine
learning research 11.12 (2010).

[42] Geoffrey E Hinton and Ruslan R Salakhutdinov. “Re-
ducing the dimensionality of data with neural net-
works”. In: science 313.5786 (2006), pp. 504–507.

[43] Laurens Van Der Maaten. “Accelerating t-SNE us-
ing tree-based algorithms”. In: The Journal of Machine
Learning Research 15.1 (2014), pp. 3221–3245.

[44] Kamal Nigam and Rayid Ghani. “Analyzing the effec-
tiveness and applicability of co-training”. In: Proceed-
ings of the ninth international conference on Information
and knowledge management. 2000, pp. 86–93.

[45] Xifeng Guo et al. “Deep clustering with convolutional
autoencoders”. In: International conference on neural
information processing. Springer. 2017, pp. 373–382.

[46] Mohammadreza Sadeghi and Narges Armanfard.
“IDECF: Improved Deep Embedding Clustering With
Deep Fuzzy Supervision”. In: IEEE International Con-
ference on Image Processing (ICIP). 2021, accepted to be
published.

[47] Xu Yang et al. “Deep spectral clustering using dual
autoencoder network”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.
2019, pp. 4066–4075.

[48] Yunfan Li et al. “Contrastive Clustering”. In: arXiv
preprint arXiv:2009.09687 (2020).

[49] Ting Chen et al. “A simple framework for contrastive
learning of visual representations”. In: International
conference on machine learning. PMLR. 2020, pp. 1597–
1607.

[50] Mohammadreza Sadeghi and Narges Armanfard.
“Deep Successive Subspace Learning for Data Clus-
tering”. In: The International Joint Conference on Neural
Networks (IJCNN). 2021, accepted to be published.

17

[51] Yann LeCun et al. “Gradient-based learning applied
to document recognition”. In: Proceedings of the IEEE
86.11 (1998), pp. 2278–2324.

[52] Han Xiao, Kashif Rasul, and Roland Vollgraf.
“Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms”. In: arXiv preprint
arXiv:
1708.07747 (2017).

[53] Jonathan J. Hull. “A database for handwritten text
recognition research”. In: IEEE Transactions on pattern
analysis and machine intelligence 16.5 (1994), pp. 550–
554.

[54] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning
multiple layers of features from tiny images”. In:
(2009).

[55] Adam Coates, Andrew Ng, and Honglak Lee. “An
analysis of single-layer networks in unsupervised fea-
ture learning”. In: Proceedings of the fourteenth inter-
national conference on artificial intelligence and statistics.
JMLR Workshop and Conference Proceedings. 2011,
pp. 215–223.

[56] Kaiming He et al. “Deep residual learning for image
recognition”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770–
778.

[57] Yi Yang et al. “Image clustering using local discrimi-
nant models and global integration”. In: IEEE Transac-
tions on Image Processing 19.10 (2010), pp. 2761–2773.

[58] Wei Xu, Xin Liu, and Yihong Gong. “Document clus-
tering based on non-negative matrix factorization”.
In: 26th annual international ACM SIGIR conference on
Research and development in informaion retrieval. 2003,
pp. 267–273.

[59] Jia Deng et al. “Imagenet: A large-scale hierarchical
image database”. In: 2009 IEEE conference on computer
vision and pattern recognition. IEEE. 2009, pp. 248–255.

[60] Diederik P Kingma and Jimmy Ba. “Adam: a method
for stochastic optimization”. In: arXiv preprint arXiv:
1412.6980 (2014).

[61] Xinlei Chen and Deng Cai. “Large scale spectral clus-
tering with landmark-based representation”. In: 25th
AAAI conference on artificial intelligence. 2011.

[62] Deng Cai et al. “Locality preserving nonnegative ma-
trix factorization”. In: Twenty-first international joint
conference on artificial intelligence. 2009.

[63] Laurens Van der Maaten and Geoffrey Hinton. “Vi-
sualizing data using t-SNE.” In: Journal of machine
learning research 9.11 (2008).

Mohammadreza Sadeghi is currently a Ph.D.
Candidate at the Department of Electrical and
Computer Engineering, McGill University. He
is also affiliated with Mila Quebec AI-Institute,
Montreal, QC, Canada. He received his B.Sc.
degree in Electrical Engineering from University
of Tehran, Tehran, Iran, in 2019. His research in-
terest includes deep learning, machine learning,
and deep subspace learning for data clustering.

Narges Armanfard is currently an Assistant
Professor (tenure-track) at the Department of
Electrical and Computer Engineering, McGill
University and Mila Quebec AI-Institute, Mon-
treal, Quebec, Canada. She received her Ph.D.
degree in Electrical and Computer Engineer-
ing from McMaster University, Hamilton, ON,
Canada, in 2016. She completed her postdoc-
toral studies at the University of Toronto and
University Health Network in 2018. She performs
fundamental and applied research in machine

learning. Her current research interests include machine learning and
related areas in computer vision, reinforcement learning, subspace
learning for data clustering and classification, and anomaly detection.

	Introduction
	Related Work
	Proposed Method
	The first phase of DCSS (DSL)
	The second phase of DCSS
	Final cluster assignments

	Experiments
	Datasets
	Evaluation Metrics
	Networks Architecture
	Implementation Details
	Clustering Performance
	t-SNE visualization
	Effect of Pre-trained Network
	Loss function convergence
	DCSS as a General Framework
	Performance on Imbalanced Dataset
	Visualization of representations in the q space
	Hyperparameters Sensitivity
	Features visualization

	Conclusion
	Appendix A
	Biographies
	Mohammadreza Sadeghi
	Narges Armanfard

