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Abstract

Simulation on small circuits reveal, that the commonly used methods fail to provide a comprehensive picture of the possible

behavior. The Involution Delay Model, however, manages to fill this gap at a cost of increased simulation time.
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Abstract—State-of-the-art digital circuit design tools almost
exclusively rely on pure and inertial delay for timing simulations.
While these provide reasonable estimations at very low execution
time in the average case, their ability to cover complex signal
traces is limited. Research has provided the dynamic Involution
Delay Model (IDM) as a promising alternative, which was shown
(i) to depict reality more closely and recently (ii) to be compatible
with modern simulation suites. In this paper we complement these
encouraging results by experimentally exploring the behavioral
coverage for more advanced circuits.

In detail we apply the IDM to three simple circuits (a
combinatorial loop, an SR latch and an adder), interpret the
delivered results and evaluate the overhead in realistic settings.
Comparisons to digital (inertial delay) and analog (SPICE)
simulations reveal, that the IDM delivers very fine-grained
results, which match analog simulations very closely. Moreover,
severe shortcomings of inertial delay become apparent in our
simulations, as it fails to depict a range of malicious behaviors.
Overall the Involution Delay Model hence represents a viable
upgrade to the available delay models in modern digital timing
simulation tools.

Index Terms—Circuit models, glitch propagation, dynamic de-
lay models, pulse degradation, faithful digital timing simulation,
metastability analysis

I. INTRODUCTION

Modern circuit designs dedicate a major share of the over-
all development time to verification, in particular to answer
questions like: At which pace propagate signals through the
logic? How does their appearance change on their path? Can
they be properly sampled at the output by succeeding units?
To answer them simulations are heavily utilized.

The most accurate methods currently available to determine
the behavior of a circuit are analog simulation suites like
SPICE. These calculate time- and value-continuous signal
traces based on very elaborate physical models. This is,
however, a computationally expensive task such that analyses
of larger circuits quickly exceed reasonable execution times.

To reduce the overall complexity, simulations are, in gen-
eral, executed in the digital domain, where the analog trace are
abstracted by zero time transitions between the discrete values
LO and HI. Determining the temporal evolution of digital
signals throughout the circuit is done in various fashions: The
static timing analysis (STA) solely considers the static delay
of a single input transition. Deriving reasonable values for a
rising δ↑∞ and falling δ↓∞ transition is quite challenging, since
they depend on a lot of parameters and thus differ among gates.

This research was funded by the Austrian Science Fund (FWF) project
DMAC (P26436).

For this purpose extensive analog simulations are carried out
in advance, which then serve as basis for proper predictions.
Prominent examples are the Extended Current Source Model
(ECSM) by Cadence® [1] or the Complex Current Source
Model (CCSM) by Synopsys® [2].

STAs are well suited to determine, for example, the max-
imum clock frequency. However, other effects, like signal
degradation or interference that may result in very short
pulses, cannot be identified. For this purpose dynamic timing
simulations, which predict time and direction of a gate’s output
transitions based on time and direction of its input transitions,
are mandatory. Although several approaches are currently
available (see Section II), Függer et al. [3] revealed, that
solely the Involution Delay Model (IDM) is able to predict the
behavior of a circuit solving the short pulse filtration problem.
Recently Öhlinger et al. [4] practically applied the IDM to
basic circuits, however, primarily to evaluate the accuracy of
their introduced simulation framework. Consequently little is
known about the behavioral coverage and performance of the
IDM in realistic setups.

Main contributions: In this paper we are thus extending
the evaluation of the IDM to additional place & routed circuits:
For an OR Loop, an SR Latch and a ripple-carry Adder
(i) analog and digital simulations are run, (ii) the achieved
results are evaluated and finally (iii) the introduced overhead is
determined. Our analyses (1) confirm the simple applicability
of the IDM stated in [4], (2) show a high correlation between
IDM and analog simulation results and (3) reveal major
shortcomings of the approaches that are currently in use.
The realistic behavioral description, however, also leads to a
significant overhead in the simulation time of up to 250%.

This paper is organized as follows: In Section II we provide
a short introduction to existing delay models, first and foremost
to the IDM and its fundamental properties. Section III then
contains a description of the simulation setup and the investi-
gated circuits. A discussion of the achieved IDM results and
the shortcomings of inertial delay together with an evaluation
of the introduced overhead follows in Section IV. Finally, we
conclude the paper in Section V.

II. BACKGROUND

In this section we want to provide a short overview over
existing delay prediction methods, whereat we will focus in
greater detail on the basics of the Involution Delay Model
(IDM). For more details the interested reader is referred to
the original publication [3].

https://orcid.org/0000-0002-0965-5746
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Fig. 1. Output (∆o) over input (∆i) pulse width. Inspired by [7].

The most straight-forward approach for digital delay esti-
mation is clearly the pure delay which introduces a retardation
of δ↑∞ resp. δ↓∞. Obviously this leads to a linear relationship
between input (∆i) and output (∆o) pulse width, i.e., the
time difference between transitions of opposite directions.
Fig. 1 shows the relationships for up-pulses (falling after rising
transition) and down-pulses (falling before rising). The also
depicted inertial delay is very similar, with the difference that
pulses below a certain threshold are not propagated. Although
a comparable behavior is observable in analog SPICE simu-
lations, they mainly differ by a gradual degradation of ∆o.
Capturing this effect is mandatory to realistically model the
generation of glitches, i.e., very short pulses. Juan-Chico et
al. [5] showed that inertial delay is unfit for this task which
lead to the development of the Degradation Delay Model
(DDM) [6]. This approach predicts the delay value using
nonconstant delay functions δ↑(T ) resp. δ↓(T ). The parameter
T is thereby defined as the time span from the last output
transition to the current input transition, as is shown in Fig. 2.

For long input pulses (large values of T ), δ(T ) ≈ δ∞ can
be assumed to be constant, comparable to inertial/pure delay.
Decreasing the pulse width eventually leads to a decline of
δ(T ), cp. Fig. 1, and hence to significant degradation. Finally,
the equilibrium point −T = δ(T ) is reached, which generates
a zero-time glitch at the output. For even shorter input pulses
the model schedules the digital output transitions in the wrong
temporal order, e.g., when starting at LO a falling before a
rising transition. In this case we speak of cancellation and both
transition are removed. In the analog domain this corresponds
to sub-threshold trajectories.

Despite its removal during cancellation, the latest transition
time is still crucial, as it serves as reference point for the
calculation of the succeeding T . Since there are no more
threshold crossings at the output available, that could be used
to determine the delay, δ(.) has to be predicted. For this
purpose DDM simply extends the fitting of δ(T ) derived
for T > −δ(T ). While this seems, at a first glance, like
a legitimate choice it causes the delay estimation to fail in
certain circumstances. In detail Függer et al. [8] were able to
prove that all existing approaches, including DDM, pure and
inertial delay, cannot faithfully model a circuit that solves the
short-pulse filtration problem (SPF). In consequence the Invo-
lution Delay Model [3] was developed, with the distinguishing
property that input pulses with ∆i → 0 have diminishing effect
on the output. An interpretation of the model in the analog

in(t)

t

out(t)

t

T δ↑(T )

Fig. 2. The delay value δ↑ as function of T . Taken from [4].

domain is described by the authors in the following fashion:
The digital input signal first passes a pure delay component
and is then transformed to the analog domain using two unique
waveforms (f↑ from LO to HI, f↓ from HI to LO), which are
switched instantaneously upon a transition. Finally the analog
trajectory is fed into a comparator, which issues a digital
output event whenever the threshold voltage Vth is crossed.

Although DDM and especially IDM have much higher
expressive power modern circuit designs still heavily rely
on the simple pure and inertial delay models. This is not
surprising, given the very good integration in state-of-the-art
simulation suites and thus its simple applicability: Implemen-
tations based on popular hardware description languages like
VHDL Vital [9] or Verilog [10] are widespread. Albeit there
is a distinguished simulation tool for DDM [11] available,
it is shipped as a separate executable, making it demanding
to integrate the simulation into an existing design flow. To
circumvent this problem for the IDM, Öhlinger et al. [4] de-
veloped the InvTool, whose VHDL procedures simply have
to be linked and thus enforce no changes on the established
work flow.

III. EXPERIMENTAL SETUP

To determine the behavioral coverage and performance of
the IDM we chose to run analog and digital simulations.
The respective framework, which utilizes the 15 nm Nangate
Open Cell Library with FreePDK15TM FinFET models [12]
(VDD = 0.8 V), is described in the sequel. A presentation and
evaluation of the results follows in Section IV.

A. Design Flow

For the sake of realistic results we utilize the Cadence® tools
GenusTM and InnovusTM (version 19.11) to place & route the
design and automatically extract the parasitics (.spef format)
and static delay values (.sdf format). For analog transient
simulations we back-annotate the extracted parasitics to a
transistor level model, which is then executed using Cadence®

Spectre® (version 19.1). Note that these results serve as golden
reference for the digital predictions, which enables a quick
and simple evaluation regarding the correctness and behavioral
coverage.

The digital simulations are run with Mentor® ModelSim®

(version 10.5c), which reads the .sdf file to parameterize the
circuit netlist generated by InnovusTM. Two prediction ap-
proaches were executed: The default one provided by the tool
(INE), essentially an inertial delay, and the Involution Delay



Model (IDM). For the latter we used the InvTool1, to re-
trieve the desired exp-channel model (ea/p_exp_channel.vhd).
Note that the XOR gate could not be generated automatically
and had to be created manually. Since the .sdf file just defines
the static delays δ↑/↓∞ , we set, for the sake of simplicity, the
pure delay to a constant value of 1 ps.

We want to emphasize at this point that we were able to
confirm the simplicity of applying IDM to an existing design
flow. Starting from the test setup for INE we solely had
to compile and link the respective IDM files. Nevertheless,
we were not able to reuse our testbench since the IDM and
the tool’s delay model are implemented in differing hardware
description languages (Verilog vs. VHDL). Some commands,
such as forcing signals, do not properly work across language
boundaries, which made it necessary to duplicate the testbench
while, of course, conserving the same behavior.

B. Circuits

In the sequel we introduce the circuits used in our simu-
lations. Note that additional buffers, which we added at the
in- and output to emulate the settings far away from the chip
boundaries, are not shown.

...

A B
O

C

I

Fig. 3. OR Loop gate level implementation.

1) OR Loop: In its bare form the circuit shown in Fig. 3
has been used in [3] for proofing the faithfulness of IDM
regarding the SPF problem. It utilizes an arbitrary amount of
buffers to create a combinatorial loop, whereat up-pulses are
coupled in via a single OR-gate. Based on the input pulse width
∆I the signal may oscillate for a possibly infinite amount
of time before vanishing or setting the loop to HI. Depend-
ing on the length of the feedback path either distinguished
pulses or intermediate voltage values are observable. While
the former corresponds to a simple ring oscillator the latter
depicts metastability [13], which leads to a wide range of
problematic behaviors such as late output transitions or a
spurious mapping to LO and HI among succeeding gates. Thus
it is crucial to model metastable upsets in a suitable fashion in
the digital domain. To ease the descriptions of oscillations and
metastability we are going to use ∆HI

n and ∆LO
n to denote the

high respectively low time of the nth oscillation at node A.
To focus on different characteristics we ran simulations

with a varying number of buffers in the feedback path, which
effectively varies the loop delay. We are aware that the same
could also be achieved by adding capacitances, however, in
our setup this would lead to significantly different results
since a capacitance serves as a low pass filter and thus
suppresses short, high frequency, pulses very effectively. Using

1https://github.com/oehlinscher/InvolutionTool

multiple buffers in succession, on the contrary, conserves the
signal shape such that oscillating signals can be generated.
Nonetheless we artificially added a large capacitance at node
B, which enables us (i) to analyze the internal behavior and
(ii) to reveal shortcomings of the delay models more easily.

U

T

S

R

Q

Q

Fig. 4. SR Latch gate level implementation.

2) SR Latch: The second circuit we chose is the SR
Latch as shown in Fig. 4, a well-known circuit with the
possibility for metastability and slightly improved complexity.
Note that we added a single buffer on the coupling paths
between the NOR-gates, to pronounce the observable effects
and thus ease their detection.

The Set Reset Latch operates very intuitively: If the set (S)
input turns HI, Q switches to HI, for a HI on the reset (R)
input, Q changes to LO. Q represents the inverse of Q and
thus shows the opposite behavior. Both inputs set to HI leads
to an intermediate voltage value at nodes U & T and thus has
to be prevented. Note the similarities between SR Latch and
OR Loop: If one input is LO, the SR Latch behaves, w.r.t.
the other one, just like the OR Loop: Very short pulses are
blocked, very long ones immediately set the loop, while ones
in between may lead to metastability. Significantly different
behavior is possible, however, if both inputs are allowed to
change. While one steers the loop into a metastable state the
other one can either support or impair its resolution, a fact
that we will exploit in our simulations.

FA FA FA. . .

A0 B0

S0

A1 B1

S1

C2

An Bn

Sn

Cn

Sn+1
C1

0

Fig. 5. Adder gate level implementation.

3) Adder: To investigate the scaling of the IDM and its
predictions on loop-free circuits we also simulated a simple
ripple carry adder as shown in Fig. 5, whereat we used n = 4.
Each full adder block FA is defined on the gate level and
implements the equations

Si = Ci ⊕Ai ⊕Bi

Ci+1 = (Ci ∧ (Ai ⊕Bi)) ∨ (Ai ∧Bi)

Out of the manifold input possibilities, those leading to
a maximum number of transitions are the most interesting
for our analysis, as they allow an investigation of the whole
circuit in a single simulation run. For this purpose we chose

https://github.com/oehlinscher/InvolutionTool
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Fig. 6. Analog and digital simulation results for the OR Loop with long feedback.

B0B1B2B3 = 1111, A0A1A2A3 = 0000 and introduced an
up-pulse on signal A0. For a down-pulse on signal A0 we
used a very similar setup, with the sole difference of setting
A0A1A2A3 = 1000 initially.

IV. RESULTS

In this section we present and compare the analog resp.
digital simulation results for the circuits introduced in Sec-
tion III. We start by studying oscillatory behavior and its
digital counterpart for the OR Loop with long feedback delay.
Subsequently we remove the buffers from the feedback path
and investigate the effects on the (significantly changing)
analog and (only slightly differing) digital simulation results.
Afterwards we use the SR Latch to demonstrate the superior
modeling power of the IDM, which, in contrast to inertial de-
lay, predicts the metastable behavior quite well. Simulations of
the Adder confirm the superiority of the IDM but also reveal
inaccuracies. Finally we present an extensive comparison of
the overhead and thus the price that has to be paid.

A. OR Loop with Long Feedback
For our first experiments we added thirty buffers to the

feedback path. In this setup it is, for δ↑∞ = δ↓∞, possible to
generate multiple periodic signals in the loop since the signal
rise/fall time is significantly smaller than the overall delay
of the loop. However, the static delay values extracted after
place & route did not match: Rising transitions are delayed
less than falling ones, leaving exactly one ∆I that perfectly
compensates the increase in ∆HI

n by pulse degradation effects
and thus creates infinite oscillation.

1) SPICE: Fig. 6 (top) shows the analog simulation results
for an initially very short pulse that grows and eventually
settles the loop at VDD. Clearly visible is the impact of the
high capacitive load. Since the transitions at node A are very
quick compared to node B it actually seems as if charging and
discharging curves are switched immediately when an input
transition occurs2. Consequently the threshold (dashed line) is

2Recall that this perfectly matches the analog domain model of the IDM

crossed multiple times, whereat the time difference between
rising and falling trajectories strictly increases.

Noteworthy is the high sensitivity of the feedback loop in
this operation region and thus also the very low probability to
reach such a state. We had to vary ∆I in steps of 1 as in order
to eventually generate an oscillation trace inside the loop that
lasted at most 4 ns.

2) INE: At a first glance the inertial delay results shown
in Fig. 6 (middle) look comparable. The short initial pulse
increases until the loop is constant HI and thus also node B
gets HI. However, on closer examination a severe shortcoming
is revealed: The shown pulse is the shortest one that can be
inserted into the loop, as smaller ones are removed by a high-
delay buffer at the input. This indicates a general problem:
A gate with long delay at the front may remove a big share
of the input pulses, which can include highly relevant ones.
Consequently it is impossible to detect any infinite or decaying
oscillations for the shown circuit using INE.

Note that the rising transition at node B only occurs after the
loop has fully settled, i.e., the oscillations have ceased. This
can again be explained by the big delay of the succeeding
gate, which thus serves as a metastability filter. This does,
however, not correspond well to the analog simulations, where
the threshold is already crossed way before the loop is fully
locked. Therefore INE is not suited to properly describe
the exact behavior of the circuit in such circumstances. In
particular, it is impossible to achieve pulses at node B for the
inertial delay model: only a single transition is observed or
none at all.

3) IDM: Compared to INE the Involution Delay Model
achieves a much more fine grained behavioral description.
First and foremost, any value of ∆HI

0 can be generated, also
ones that quickly decay. Fig. 6 (bottom) shows a simulation
with increasing ∆HI

n for ascending n: Considering the model
representation in the analog domain presented in Section II
this corresponds to utilizing f↑ for an increasing and f↓ for
a decreasing amount. Consequently the mean analog value
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Fig. 7. Increase of the pulse train high time compared to its initial value.

steadily rises, eventually crossing Vth and resulting in the
digital oscillations on node B shown in the figure.

By properly tuning ∆I it is even possible to achieve an
infinite pulse train, i.e., one that perfectly recreates itself. Note
that, although the loop is highly unstable in this configuration,
not a single transition on B could be observed, which reveals
a problem of the IDM: Depending on the value of the
discretization threshold voltage Vth, zero, one or infinitely
many transitions are indicated for the same analog trajectory.

4) Comparison: IDM and INE also handle the evolution
of ∆HI

n , shown in Fig. 7, differently. Consider that the rate
of growth is determined as the gap between falling and
rising transition delay, which is constant for INE due to fixed
delay values. Consequently a linear increase of ∆HI

n can be
observed. SPICE and IDM, however, show a quite different
behavior: For small n, ∆HI

n increases only marginally, as the
circuit initially operates near the metastable point, i.e., where
pulses recreate themselves. With increasing pulse width the
rate, however, quickly ramps up.

Very interesting is the nonlinear increase of the IDM.
Intuitively, ∆HI

n is expected to settle at a constant rate, since
for large values of T the IDM and inertial delay are equal.
While this is true, one has to consider that the increase in
∆HI

n causes a drop of ∆LO
n , which eventually experiences

pulse width degradation and thus further enhances the increase
rate of ∆HI

n .

B. OR Loop with Direct Feedback

Recall that the buffer count in the feedback path is a
very sensitive parameter with major implications: Reducing
the delay of the loop moves rising and falling transitions
closer together, while leaving the rise and fall time untouched.
Eventually the single transitions will merge meaning that
GND/VDD are not reached any more.

The effects on the infinite oscillatory behavior are as fol-
lows: As long as there is at least one gate in the loop still
performing full range switching, which is possible due to
differing parasitics, oscillations with a reduced amplitude, i.e.,
within the range [VL, VH ] with VL > GND and VH < VDD, are
possible (cf. Section IV-C). Due to the lower amplitude, the
time between succeeding threshold crossings declines and thus
the oscillation frequency increases. Further reducing the delay
finally leads to a damped oscillation, whereat the damping

0 5 10 15 20 25 30

Vth

time [ps]

SPICE

INE

IDM

Fig. 8. Analog and digital simulation results of node A for the OR Loop
with direct feedback path.

factor is increased with decreasing delay. For the simulations
presented in the sequel we removed all gates and thus force a
direct transition to the constant metastable voltage.

1) SPICE: Analog simulations confirm our intuitive expla-
nation. Fig. 8 shows two traces on node A, which stay at a
constant value near Vth for some time and then resolve to
LO in one case and to HI in the other one. The facts that
the corresponding ∆I only differ by 1 as and, nonetheless,
it is only possible to stay in the metastable state for a few
picoseconds, indicate the very high sensitivity of this circuit
configuration.

2) INE: As described in Section IV-A the shaping gates
at the input filter many incoming pulses. In fact, only those
longer than the delay of the storage loop are able to pass,
causing an immediate switch to HI. Consequently, for INE,
the simulation either delivers a single rising transition on all
wires or none at all. While this might seem reasonable at a
first glance, the metastable state, and thus the increase in delay,
are not revealed, suggesting falsely a settled and well defined
behavior.

3) IDM: Although the analog simulations did not show any
Vth crossing during metastability, the IDM again delivers an
oscillatory behavior, which seems to be awfully wrong. Con-
sidering, however, the analog representation, more specifically
the switching between f↑ and f↓, it becomes apparent that the
closest the analog trajectory in the IDM can get to a constant
intermediate value is to oscillate around it. Therefore a pulse
train is used to indicate metastability.

The fact that the IDM used a pulse train to describe both
real oscillations in Section IV-A as well as metastability begs
the question: How can these scenarios be distinguished? The
answer is discouraging. Solely based on the digital predictions
this is impossible. The major difference among oscillatory
traces are ∆HI

n respectively ∆LO
n , which, however, do not

yield much information on their own. Only in combination
with the switching waveforms f↑ & f↓ or the static delays
δ
↑/↓
∞ it is possible to estimate the voltage gain during the HI

resp. LO period. As s rule of thumb one has to expect damping
if ∆HI

n (∆LO
n ) is approximately or lower than δ↑∞ (δ↓∞).

In our setup we extracted δ↑∞ = 4.6 ps and δ↓∞ = 5.8 ps
for the OR-gate, which is clearly more than ∆HI

n respectively
∆LO

n in Fig. 8. Although this seems very disadvantageous
for the IDM be advised that also for INE comparisons with
the delay values are necessary to determine if a pulse is
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Fig. 9. Simulation results showing metastability in the SR Latch.

close to suppression. Since knowing the peak values in the
analog domain is so important we are currently working on
an extension of the IDM that is able to indicate the underlying
analog waveform. This is, however, only suited for rough
estimations and is not intended to replace analog simulations.

Overall it has to be stated that an oscillating simulation trace
does not automatically indicate an undesired behavior. Just as
periods reach a circuit dependent range ill shaped pulses or
even metastability have to be inferred.

C. SR Latch

After studying the general behavior of digital simulation
approaches on the rather synthetic OR Loop, we now turn
to the common SR Latch. Interestingly, INE again fails
to cover very important parts of the real behavior and thus
delivers overly optimistic results, while the IDM stays close
to the analog trace. The latter even enables us to explore
unfavorable input conditions, which we will use to artificially
prolong metastability.

1) Set or Reset Input Pulse: Since setting either S or R
LO degrades the SR Latch to the OR Loop w.r.t. the other
input, simulations shown in Fig. 9 lead to similar results.
For INE the shortest pulse, that is able to pass the input
buffers, once again immediately sets the loop, leading to a
single output transition. This strongly contradicts the analog
simulation, which shows (non full-range) oscillations on all
wires. As discussed earlier, such a behavior is possible if one
of the gates in the path, in this case the buffers, still issue full
range waveforms.

In contrast, the IDM describes the behavior in, and also
the resolution out of, metastability faithfully, which enabled
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Fig. 10. Simulation results of steering the SR Latch back into metastability.

us to search for “malicious” input conditions that prolong the
metastable state. In Fig. 9 a very long HI phase (∆HI

5 ) on
node T is visible as Q switches to constant HI. To prevent the
oscillation from resolving it would be necessary to decrease
∆HI

5 and simultaneously increase ∆LO
5 . Reiher et al. [14]

described a similar effect when “kicking” synchronizers, i.e.,
abruptly changing an internal voltage value, which also led to
a potential extension of the metastable state.

It can be easily retraced that a properly placed up-pulse
on the reset input R does the trick. Essential for success is
the time of the rising transition, as it determines the width of
∆HI

5 . On the contrary the falling transition can be issued at
any point in time during the HI period of the other NOR-gate
input, since in this case the reset input is masked anyway.

2) Set and Reset Input Pulse: To verify our predictions,
we extended the previous simulation by a pulse on input R.
Results for INE, shown in Fig. 10 (top), reveal solely one
additional output transition and thus suggest a fully settled
circuit, while completely hiding the potential instabilities.

On the contrary, SPICE simulations shown in Fig. 10
(middle) confirm our predictions. Not only is metastability
extended but also a resolution to HI is forced. We want to
emphasize that the signal on R used to prolong metastability
is too short to have any impact on a fully settled memory
loop, which was revealed by further simulations. Only in
combination with this particular unstable circuit state a change
in value becomes possible. Consequently, a close observation
of unstable states and short pulses is very important.

Finally an execution of the IDM shown in Fig. 10 (bottom)
delivers exactly the predicted behavior. Cutting ∆HI

5 indeed
sets the loop back into metastability, resulting in a very
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Fig. 11. Simulation results of the Adder with an input glitch.

realistic representation of the underlying analog behavior.

D. Adder

At last we turn to the four Bit Adder to evaluate the scaling
potential of the IDM. Analog SPICE simulation results [see
Fig. 11 (top)] clearly show the propagation of the input pulse
through the unit and the corresponding degradation. Whether
a pulse is observed on output Si depends on (i) the initial
input pulse width on signal A0 and (ii) the path length from
Si to A0. The longer the path the bigger the input signal has to
be to still have an impact. Interestingly the carry signals Ci+1

seem to be faster than the ones representing the corresponding
sum value Si, which can be seen very clearly by comparing
S3 and S4 (the latter is actually the carry signal of the last full
adder). While S3 still barely crosses the threshold S4 already
reaches all the way to GND/VDD.

Overall these results show the threat caused by glitches: Due
to the differing path lengths through the circuit the input signal
generates a varying number of output pulses with decreasing
pulse widths on signals Si which elevate the chance to violate
the setup and hold times of succeeding flip-flops. Furthermore
we want to emphasize that in this circuit a metastable input
value has the chance to spread to five output signals and
thus the effect of a single upset gets multiplied. This shows,
once more, the importance of faithfully predicting glitches and
metastability in the first place.

For INE a very inconsistent buildup of transitions can be
observed: Increasing the pulse width of an input, that only
induced a pulse on S1, by 1 fs, caused a pulse propagation all
the way up to S4. This is a direct consequence of the fact, that
INE suppresses pulse widths below a certain threshold, as was

TABLE I
SIMULATION TIME MEAN AND VARIANCE σ OF THE ADDER .

INE IDM
# x [s] σ [s] y [s] σ [s] overhead [%]
1 4.80 0.92 8.65 0.90 80.23
2 5.95 2.03 12.00 0.41 101.58
4 6.78 0.90 18.80 0.86 177.16
10 11.74 0.24 37.75 1.15 221.43
20 20.02 0.42 69.24 2.09 245.93
40 37.30 1.15 132.53 1.31 255.27
100 91.13 2.19 419.47 105.57 360.33
200 216.17 59.28 1492.03 317.88 590.20
400 1098.69 242.03 3674.48 584.66 234.44

shown in Fig. 1. For down-pulses on A0 INE even delivers
very nonphysical results as signal S0 only starts to change
after every other signal had been triggered. We retraced this
to an unfortunate series of delays causing the signal closest to
the input switch last, which is the actual opposite of what is
seen in analog simulations. Finally note the constant shifts in
pulse widths, i.e., once a pulse appears on a signal its pulse
width differs from the input pulse solely by a constant additive
value. These values are very similar for each output such that
very similar output traces are achieved.

A smooth increase of pulse widths is naturally much better
modeled by the IDM. In the simulations we even observed a
strict causality among S0 to S4, i.e, Si showed a transition
after all Sj , j < i had also switched. Compared to INE
this is a big improvement. Compared to SPICE, however,
some inaccuracies are still observable. For example the quick
increase on S4 in relation to S3 is not well depicted. Possible
causes are inaccurate delay values extracted from the design
(as reported in [4]) or the still nonoptimal description of
multi-input gates. Nonetheless, due to its accurate pulse width
degradation coverage, the IDM is able to provide overall
realistic results.

E. Overhead

Calculating delay values for the IDM, which includes expo-
nential and logarithmic operations, is obviously computation-
ally more expensive than applying constant values paired with
some minor removal checks for INE. To evaluate the overhead
we ran extensive simulations and measured the execution time
(Intel Xeon X5650, 1600 MHz, 32 GB RAM, CentOS 6.10).
As test circuits we chose to use the Adder and the Clock
Tree of an open source MIPS processor [15] that comprises
of 227 inverters which drive 123 flip-flops. To also generate
results for larger circuits we simply instantiated each unit
multiple times.

For comparable results we had to ensure that INE and
the IDM process the same amount of transitions. Since their
behavior mainly differs for high input frequencies we used
rather long pulses to assure no internal cancellations, whereat
overall 2× 105 input transitions were applied per simulation
run. The results are shown in Table I for the Adder and
in Table II for the Clock Tree, whereat the first column
denotes how often the circuit had been instantiated. First and



TABLE II
SIMULATION TIME MEAN AND VARIANCE OF THE CLOCK TREE .

INE IDM
# x [s] σ [s] y [s] σ [s] overhead [%]
1 26.07 2.18 41.46 1.12 59.06
2 41.17 0.46 69.58 1.56 69.01
4 71.32 1.27 122.09 1.25 71.17
10 188.27 49.26 368.30 127.09 95.62
20 1016.23 265.44 1294.92 451.77 27.42
40 2430.30 406.60 3554.59 576.95 46.26

foremost we want to note that due to a rather high variance
σ we ran each simulation 30 times and calculated the average
x respectively y. Furthermore be advised that the presented
values serve as lower bound, since real input signals may lead
to very short internal pulses which increases the workload of
IDM compared to INE.

In essence the results show that the improved coverage
of the IDM definitely comes at a price. For the Adder the
overhead increases with circuit size, while for 40 instances it
is almost 260 %. The significant elevated values for 100 and
200 instances show a bottleneck of the computational platform
that is not experienced by both methods in the same fashion,
making them not representative. For the Clock Tree the
overhead is lower and more constant, ranging from 27 to
almost 100 %. We explain the deviation by the fact that only
simple inverters are utilized, again showing that there is still
a lot to be done in the IDM regarding multi-input gates.

F. Summary

Our simulation results have shown that INE fails to model
wide ranges of undesired behaviors in the form of high
frequency oscillations or metastable intermediate voltages.
The causes are single gates with larger delays, which have
to be expected in almost every real world circuit. Relying
exclusively on these predictions thus leads to a false sense
of security. Investing sometimes considerably more compu-
tational effort by applying the IDM leads to a much better
behavioral coverage and, in consequence, more trustworthy
results. We therefore claim that the Involution Delay Model is
able to enhance digital simulations significantly.

V. CONCLUSION AND FUTURE WORK

In this paper we evaluated the Involution Delay Model
(IDM), an elaborate alternative to classic digital timing anal-
ysis approaches. To motivate this statement we ran analog
(SPICE) and digital (inertial delay, IDM) simulations on three
different circuits (simple OR-loop, an SR-latch and an adder)
and compared the derived results. Appropriate interpretation
of the predictions by the IDM confirmed the high behavioral
coverage, especially for short pulses. On the contrary a single
high delay gate, which blocks a large share of incoming pulses,
caused massive mispredictions for inertial delay. Consequently
state-of-the-art simulation suites tend to miss potentially ma-
licious circuit states like infinite oscillations or metastability.
Although an evaluation of the overhead introduced by the IDM
showed a significant increase in simulation time, we still think

that the IDM poses a viable alternative to existing approaches,
especially if confined to the most critical parts.

In the paper we argued, that a proper interpretation of
the digital results, i.e., whether a signal shows malicious
behavior, is only possible by considering the internal analog
representation. Thus, future work will be devoted to devel-
oping an extension that allows the designer to take a look
at the underlying analog traces on top of the digital results.
Furthermore, we are considering ways to improve the coverage
of metastable behavior that is currently not detectable at the
digital output and of course performance improvements.

One point deliberately neglected in this paper is accuracy.
Investigations by Öhlinger et al. [4] and Maier et al. [7]
revealed that deriving appropriate description is a nontrivial
task. Furthermore, characterizing each single gate by relying
heavily on analog simulations is computationally expensive.
Approaches that yield reasonable results based on available,
or easily achievable, data are instrumental for making the IDM
a truly competitive alternative to existing delay models.
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