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Abstract

Machine learning based intrusion detection systems monitor network data streams for cyber attacks. Challenges in this space

include detection of unknown attacks, adaptation to changes in the data stream such as changes in underlying behaviour, the

human cost of labeling data to retrain the machine learning model and the processing and memory constraints of a real-time

data stream. Failure to manage the aforementioned factors could result in missed attacks, degraded detection performance,

unnecessary expense or delayed detection times. This research evaluated autoencoders, a type of feed-forward neural network, as

online anomaly detectors for network data streams. The autoencoder method was combined with an active learning strategy to

further reduce labeling cost and speed up training and adaptation times, resulting in a proposed Split Active Learning Anomaly

Detector (SALAD) method. The proposed method was evaluated with the NSL-KDD, KDD Cup 1999, and UNSW-NB15

data sets, using the scikit-multiflow framework. Results demonstrated that a novel Adaptive Anomaly Threshold method,

combined with a split active learning strategy offered superior anomaly detection performance with a labeling budget of just

20%, significantly reducing the required human expertise to annotate the network data. Processing times of the autoencoder

anomaly detector method were demonstrated to be significantly lower than traditional online learning methods, allowing for

greatly improved responsiveness to attacks occurring in real time. Future research areas are applying unsupervised threshold

methods, multi-label classification, sample annotation, and hybrid intrusion detection.
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Abstract—Machine learning based intrusion detection systems monitor network data streams for cyber attacks. Challenges in this
space include detection of unknown attacks, adaptation to changes in the data stream such as changes in underlying behaviour, the
human cost of labeling data to retrain the machine learning model and the processing and memory constraints of a real-time data
stream. Failure to manage the aforementioned factors could result in missed attacks, degraded detection performance, unnecessary
expense or delayed detection times. This research evaluated autoencoders, a type of feed-forward neural network, as online anomaly
detectors for network data streams. The autoencoder method was combined with an active learning strategy to further reduce labeling
cost and speed up training and adaptation times, resulting in a proposed Split Active Learning Anomaly Detector (SALAD) method. The
proposed method was evaluated with the NSL-KDD, KDD Cup 1999, and UNSW-NB15 data sets, using the scikit-multiflow framework.
Results demonstrated that a novel Adaptive Anomaly Threshold method, combined with a split active learning strategy offered superior
anomaly detection performance with a labeling budget of just 20%, significantly reducing the required human expertise to annotate the
network data. Processing times of the autoencoder anomaly detector method were demonstrated to be significantly lower than
traditional online learning methods, allowing for greatly improved responsiveness to attacks occurring in real time. Future research
areas are applying unsupervised threshold methods, multi-label classification, sample annotation, and hybrid intrusion detection.

Index Terms—Active Learning, Online Learning, Autoencoders, Anomaly Detection, Intrusion Detection System.
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1 INTRODUCTION

Intrusion Detection Systems (IDS) monitor a computer net-
work for cyber attacks. Traditional intrusion detection tech-
niques rely on human subject matter experts to carefully
produce signatures that can accurately detect a cyber attack
at the network layer. For over a decade research has focused
on improving IDS with machine learning (ML) methods in
order to reduce the overall demand for human effort [1].
The majority of this research has centred around misuse
detection whereby the ML based IDS is trained using a data
set in which all cyber attacks are labeled, the drawback of
this being that only the labeled attacks will be known to the
model, missing unknown or new attacks, and that labeling
of the initial data set is a time consuming and complex task
prone to human error. An alternative to misuse detection is
to use an anomaly detector whereby only the ‘normal’ net-
work data is learned and any significant deviations treated
as an anomaly meaning that new attacks will be detected,
a challenge with this approach is the potential for false
positives.

IDS capture network packet data directly from the net-
work, requiring efficient real-time processing of each new
packet as part of a continuous data stream. This network
data stream is non-stationary and can change over time,
a characteristic known as concept drift, which requires the
ML model to adapt in order that detection performance is
not degraded [2]. Adaptation requires detecting a change
in the posterior probability of a class label, necessitating
the ground truth to be known. Active learning (AL) is an

attempt to lower the labeling cost, and speed up the adap-
tion times, of change detection by employing uncertainty or
random strategies according to a labeling budget [3]

An hypothesis that this research aims to test is that
anomaly detectors monitoring non-stationary network data
streams will experience increased false positives over time,
which can be corrected by applying adaptation techniques
to update the anomaly detector. This will be expanded
by a further hypothesis that active learning strategies can
provide good adaptation with minimal labeling cost, and
reduced learning times, for anomaly detection.

Unsupervised learning allows for a model to be trained
without all the class labels being known, typically achieved
by learning a representation of the underlying data struc-
ture. Common unsupervised techniques, such as cluster-
ing, are impeded by high degrees of time complexity and
memory usage [4]. Models based on neural networking
are gaining increased attention in the IDS field and a type
of feed-forward neural network, the autoencoder, is able
to learn the representation of data without class labels by
encoding a latent representation of the data, which can be
utilised for anomaly detection by calculating the error of
the decoded output from the original, and comparing to a
predetermined anomaly threshold [5]. This research aims to
test the hypothesis that autoencoders provide an effective
online anomaly detector for network data streams when
combined with active learning methods.

The remainder of this paper is organised as follows:
Section 2, introduces related work; Section 3, describes the
proposed Split Active Learning Anomaly Detector (SALAD)
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method; Section 4, presents the evaluation results; Section
5, discusses how SALAD provides a low cost anomaly
detector for network data streams; and Section 6, presents
conclusions.

2 RELATED WORK

2.1 Neural Networking Anomaly Detection
Intrusion detection systems can be either anomaly based or
misuse based, where the former learns the normal behaviour
and detects deviations, allowing for detection of previously
unseen, unknown attacks, and the latter learns known attack
signatures resulting in high levels of detection accuracy
[6]. A challenge with network data streams is that they
generate large volumes of data that become increasingly
expensive for a human expert to analyse and correctly
label. Anomaly detectors are beneficial because they only
need to learn the representation of a single ‘normal’ class
from which anomalies can be distinguished meaning that
new, previously unseen, attacks can be detected without
requiring new data labels and re-training of the model [6].
Unsupervised machine learning methods are well suited
to the anomaly detection task as they can learn the repre-
sentation of the underlying data to determine normal and
anomaly classes [6], as well as learning useful features that
better separate the classes. Buczak and Guven [1] have
provided a comprehensive survey of IDS machine learn-
ing techniques, including anomaly detection, in most cases
misuse and anomaly detection are combined into a hybrid
system. This review briefly introduces recent studies within
the unsupervised anomaly detection space, adopting neural
networking methods familiar to the visual processing area,
for comparison to the proposed approach.

Alrawashdeh and Purdy [7] evaluated Restricted Boltz-
mann Machines (RBM) arranged into a deep belief net-
work combined with a logistic regression classifier trained
using back propagation. Although the study claims to be
‘anomaly’ based the model is actually trained to identify
known classes so would be more ‘misuse’ based in its
approach. The accuracy of their model, with the 10% KDD
Cup 1999 data set, is 97.91% [7]. The authors further build on
there work by replacing the RBM activation function with a
novel ‘Adaptive Linear Function’ (ALF) for intrusion detec-
tion with the aim of improving accuracy and convergence
time [8]. Evaluated with KDD Cup 1999 and NSL-KDD data
sets, the accuracy was 98.59% and 96.2% respectively [8].

Roshan et al. [9] proposed a novel intrusion detection
approach using a Clustering Extreme Learning Machine
(CLUS-ELM) method. This method allows for both unsuper-
vised and supervised updates to the model, using a decision
maker element to perform informed change detection based
on the cluster output, in this design unsupervised refers
to guessing the correct cluster for a given data sample as
opposed to being told the label by a ‘human expert’. The
mean square error calculation used by the decision maker
will still require the ground truth to be known. Results were
evaluated using the NSL-KDD data set, with a detection
rate for known attacks of 84% and 81% for unsupervised
and supervised modes, 77% and 84% for unknown attacks,
where the false positive rate was less than 3% [9]. The
author remarks that the better unsupervised detection rates

for known attacks compared to the supervised ones are
unexpected and could be due to inaccuracies in the NSL-
KDD data set [9].

Chen, Cao and Mai [10] proposed an offline anomaly
detection method whereby Convolutional Neural Networks
(CNN) are used to extract features which are then con-
densed into a spherical hyperplane by a deep Support Vec-
tor Data Description (deep-SVDD) technique. The method
is trained on normal samples only so that such normal
samples concentrate around the center of the sphere and
attack samples concentrate on the outside as outliers allow-
ing them to be detected as a one-class anomaly detector.
Their method was evaluated with the KDD Cup 1999 data
set, achieving an accuracy of 96% when all attack types are
present.

Hassan et al. [11] proposed a combined CNN for feature
reduction and Weight Dropped, Long Short Term Mem-
ory (WDLSTM) network for representation of dependencies
among features, using the connection drop out regularisa-
tion method. The proposed supervised learning network
was evaluated with the UNSW-NB15 data set, returning an
F1-Score of 0.88 for abnormal samples and overall accuracy
of 97.17% via offline holdout training.

The reviewed studies all demonstrate different network
topologies for cyber intrusion detection, all of which have
elements of supervised learning and traditional offline batch
training. They do not address the problem of a truly unsu-
pervised anomaly detector for online data streams as will be
explored in this paper.

2.2 Autoencoder Anomaly Detection

An autoencoder is a type of feed-forward neural network
that uses an encoding function to produce a latent code
representation of the input data, and a decoding function to
reconstruct the input from the code representation [12]. The
mean square error between the reconstructed output and
original input can be calculated using equation 1, where f
is the encoding function and g is the decoding function [12],
which can then be compared to an anomaly threshold to
label a sample as either normal or anomalous.

X̂ = g(f(X))

RE =
1

n

n∑
j=1

(Xj − X̂j)
2 (1)

In our previous work [12], we reviewed autoencoder
based anomaly intrusion detection methods, whereby single
layer denoising models [13], Long Short Term Memory
(LSTM), Recurrent Neural Network [14], [15], ensembled
stacked autoencoders [16], [17], and sparsely connected
networks [18], [15] were demonstrated across a range of
IDS data sets. Vaiyapuri and Binbusayyis [19] evaluated a
number of autoencoder network architectures for anomaly
detection, finding the use of a contractive penalty to regulate
the network provided the best performance when evaluated
offline using the NSL-KDD and UNSW-NB15 data sets.

A number of methods were proposed in the literature
to determine the anomaly threshold, an important param-
eter in deciding whether to label a sample as a positive
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detection. The threshold can be set to the average RE value
observed during training [19]. Naı̈ve Anomaly Threshold
(NAT) sets the threshold at the maximum observed RE
during training [16]. Stochastic Anomaly Threshold (SAT)
[13] sets the threshold based on the best observed accuracy
when stepping through threshold values between the mean
and 3 * standard deviation of the normal sample distribu-
tion. Nicolau and McDermott [13] proposed an anomaly
threshold method using Kernel Density Estimation.

Aiming to find an optimal network configuration, we
evaluated in [12], an undercomplete autoencoder, regulated
with connection dropout, with a prequential online test
using the KDD Cup 1999 and UNSW-NB15 data sets. Ap-
plying a single layer autoencoder with dropout probability
of 0.1, using the Stochastic Anomaly Threshold method,
provided an accuracy of 98% and F1-score of 0.812, using
the KDD Cup 1999 data set, with a significantly improved
running time compared to traditional Naı̈ve Bayes (NB) and
Hoeffding Adaptive Tree (HAT) online methods. Evaluation
on the UNSW-NB15 data set using a 3-layer network and
dropout probability of 0.2 returned an accuracy of 79.1% and
F1-score of 0.703. The results showed that the SAT threshold
performed better than the NAT, and that more complex data
sets benefit from experimenting with the number of layers
and regularisation of the network.

2.3 Concept Drift Detection with Active Learning

Non-stationary network data streams may experience real
concept drift [2], whereby the posterior probability of classes
will change over time due to changes in network behaviors,
the cause of which could be either benign or adversarial in
nature. The posterior probability is defined as p(y|X) which
represents the probability of class y given an observation
X [2]. Autoencoders determine outliers using the RE-score,
based on the hypothesis that adversarial behaviour deviates
from the learned ‘normal’ representation resulting in scores
above the anomaly threshold. Real concept drift presents a
challenge that the aforementioned hypothesis will weaken
overtime, with changing benign data also scoring above
threshold, raising the false positive rate. Increasing the
anomaly threshold does not present an optimal solution
as although the false positive rate may lower, the false
negative rate could increase and so is not recommended.
The hypothesis of this research was that a change in under-
lying ‘benign’ network behaviour will result in a raised false
positive rate and that learning the representation of the new
behaviour will remedy this effect. Note that the change in
benign activity could be from an unplanned change such as
a network fault, in which case the usefulness of the anomaly
detector is extended to a fault detector, however for the
purposes of this research this will not be considered further.

Change detection is a set of methods that proactively
monitor the data stream for concept drift [2]. Traditional
methods such as adaptive windowing and statistical process
control (SPC) [2], rely on fully supervised labels and are
therefore not well suited to applications where data label-
ing is expensive, such as network data streams. Moreover
unsupervised techniques that rely solely on monitoring a
change compared to a reference distribution will not always
detect real concept drift [20]. Sethi and Kantardzic [21]

proposed a semi-supervised Margin Density Drift Detector
(MD3) to reduce labeling costs through an active learning
approach. First, using an unsupervised method, samples
that fall below an uncertainty threshold are added to the
margin. Density of the margin is compared to a training
reference distribution to detect drift before confirming by
testing accuracy with data labels, sensitivity can be adjusted
through a varying factor of the reference distribution’s stan-
dard deviation. A fading factor is utilised to give greater
importance to more recent samples within a moving average
of margin density [21]. MD3 can work with ensembles,
calculating if a sample should be included within the margin
by comparing the distance between the mean predicted class
probabilities to the margin threshold (θ), given by equation
2. A possible benefit of this approach would be that the
change in density of uncertain samples that are borderline
outliers could indicate a concept drift that requires further
analysis, prompting further action such as re-training. As
the anomaly detector only requires labeled normal data to
re-train, this would be a cheaper approach to other methods
that require fully labeled data. A possible drawback is that
the frequency of drifts could demand increased human
expertise. Evaluation with the NSL-KDD data set reported
an accuracy of 89.4 and 89.9 % using the SVM and random
subspace ensemble methods, respectively where the first
15% of the data stream is used as a training set. The total
labeling cost was 7.9%.

(p(ŷc1|X)− p(ŷc2|X)) ≤ θ (2)

Shan et al. [22] also proposed an AL change detection
strategy based on margin uncertainty, ‘OALEnsemble’, how-
ever in this approach the ensemble members are trained on
different windows of the data set, with a stable classifier
and a series of short window ‘dynamic’ classifiers that are
continually replaced as new blocks of the data stream are
processed, to balance the detection of both sudden and grad-
ual concept drifts. Similar to [21], labeling is restricted to
samples within the uncertainty margin, with the addition of
a random labeling algorithm to randomly include samples
outside of the margin where drift may also be occurring [22].
The stable classifier is incrementally trained with all new
data, whilst dynamic classifiers are only trained on the most
recent block and given a weight, providing importance to
more recent data [22]. The incremental update of the stable
classifier is restricted to models that feature local replacement
such as very fast decision trees (VFDT) [2], and so would
not be appropriate for autoencoder methods. The labeling
rate is constrained by pro-actively adjusting the sensitivtiy
threshold in order to manage the cost of the algorithm
during periods of high uncertainty. Random sampling is
desirable as it enables the classifier to be trained from the
whole distribution, reducing bias [3]. The idea of gradu-
ally retraining the autoencoders with new ‘normal’ data
in response to concept drift, whilst retaining the previous
models for a period of time, moderating their importance
with a weight scheme, could allow for the detection of
both gradual and sudden changes in benign behaviour,
however the problem of global replacement must be carefully
considered as training on small data sets could degrade the
autoencoders ability to represent normal data.
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Dang [23] evaluated AL for IDS, using a novel strategy
with the Naı̈ve Bayes classifier, selecting instances with the
greatest distance from the population distribution of proba-
bilities under the hypothesis that a bigger change of P (A|B)
reflects a rare event that should be learned. The method
was evaluated with the CICIDS 2012 data set, achieving an
AUC-score of 90% compared to 85% with the uncertainty
strategy with 10% of labeled data, and performance decreas-
ing beyond this. The author argues that this indicates that
good quality data is more important over larger volumes of
data [23]. It may also be true that the method reduces class
imbalance by proactively sampling examples with weaker
performance that could reflect minority classes.

Zhang et al. [24] evaluted an Open-CNN method trained
by AL labeling the ‘unknown’ detected attacks. Accuracy
with the CTU data set was near equivalent to 100% label cost
at just 1% of labeled attacks using an uncertainty strategy,
demonstrating that only a low label cost is necessary to train
the ML model.

Žliobaitė et al. [3] discussed three requirements for AL
strategies: 1) balancing the labeling budget over time, 2)
detect changes anywhere within the problem space and 3)
preserve the distribution for unbiased change detection. A
number of strategies were evaluated against these require-
ments, including fixed uncertainty as demonstrated by [21],
and uncertainty with randomisation, whereby the sensitivity
threshold is randomly selected from a standard distribution
to occasionally include samples outside of the uncertainty
margin. Fixed uncertainty is only able to satisfy requirement
one, and randomised uncertainty satisfies requirement one
and two, but neither can preserve the probability density of
labeled data compared to the original distribution, which
can bias the model [3]. A further split strategy is intro-
duced which satisfies all three requirements by splitting
the the data stream into two, using uncertainty and ran-
dom strategy exclusively on either stream. Both streams
are used for training, but only the randomised stream is
used for change detection [3]. Shan et al. [22] presents a
split strategy, although in this approach adaptation is blind,
based on incrementally updating the ensemble members
with both uncertainty and random labels, offering no pro-
active change detection, this could reduce overall adaptation
speeds [2].

An objective of this research was to satisfy all three
AL requirements outlined by Žliobaitė et al. [3]. MD3 [21]
will be biased towards uncertain samples and will miss
change occurring outside of the margin which will affect
overall detection performance. The work of Shan et al. [22]
could be further improved by introducing pro-active change
detection method to the randomly labeled data as suggested
by Žliobaitė et al. [3] in order to increase adaptation time. In
this research random, uncertainty, variable uncertainty, split
and blind strategies are compared. The proposed hypothesis
is that only the split strategy with informed change detec-
tion approach will be able to satisfy all three requirements
and that the change detection approach will offer faster
adaptation times to a blind approach. The informed ap-
proach can use a well known change detector such as Drift
Detection Method (DDM) [25] to monitor the classification
error of the anomaly detector.

3 METHODS

The aim of this research was to explore that autoenoders
can provide a low cost online anomaly detection solution
when combined with AL methods. In our previous work
[12] we evaluated dropout probability, NAT with decay and
SAT anomaly thresholds, and single vs stacked network
structure, to find optimal autoencoder parameters. Build-
ing on this work, in this paper, we further introduced a
novel Adaptive Anomaly Threshold (AAT) method and also
evaluated an AL based Active Stream Framework (ASF)
[3] with which we compared blind, random, uncertainty,
variable uncertainty and split AL strategies. The uncertainty
strategy was adapted for use with autoencoders using a
novel distance from RE method. All methods were evalu-
ated using a prequential, interleaved test-then-train method
[2], whereby the model is first tested on a previously unseen
sample before training in a chunk wise fashion [12], after an
initial period of pre-training. Results were compared against
traditional Naı̈ve Bayes (NB) and Hoeffding Adaptive Tree
(HAT) online learning methods using the KDD Cup 19991

10% [26] and UNSW-NB152 [27] data sets.
The Keras3 neural networking [28], version 2.3.1, and

Scikit-Multiflow4 stream learning [29], version 0.4.1, frame-
works for Python were used for this evaluation. Evaluations
were ran on a Windows 10 64bit PC with Intel i7 1.8GHz
processor and 8GB RAM.

Observed metrics during evaluation included: accuracy,
F1-score, kappa and total running time. For prequential
evaluation the scikit-multiflow default of updating evalu-
ation metrics every 200 samples was used.

3.1 Adaptive Anomaly Threshold
From evaluating the make up of the data stream and per-
formance achieved with both the NAT and SAT threshold
methods [12] a proposed hypothesis was that chunks of
the data stream that contained only normal samples benefit
from a naı̈ve approach whereby the maximum RE is used,
therefore all samples will fall below this value, giving an
accuracy of 100%. For anomaly samples the second hypoth-
esis was that between the maximum value and the mean
observed RE a threshold can be found that best splits normal
and anomaly samples, similar to the stochastic approach. A
third hypothesis was that the mean RE will change overtime
due to concept drift, and so will become less sensitive to
more recent samples when taken over a long stream.

To address the above three hypothesis an ‘Adaptive
Anomaly Threshold’ (AAT) method was proposed that
combines the NAT, SAT and Fading Factor [30] methods.
The proposed method is given in algorithm 1. Normal
samples were used to update the fading average RE-score
over the stream, using a fading factor α [30] in order to give
more importance to more recent sample values, satisfying
hypothesis 3 above. The maximum RE of normal samples
over the data stream is also recorded and used to find
the first value of the anomaly threshold φ. If the initial

1. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
2. https://www.unsw.adfa.edu.au/unsw-canberra-

cyber/cybersecurity/ADFA-NB15-data sets/
3. https://keras.io/
4. https://scikit-multiflow.github.io/
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maximum value of φ achieves an accuracy of 1.0 or 100%,
then this fulfilled the first hypothesis that all samples are
normal and no further action was required. Otherwise
hypothesis 2 is assumed and a stochastic approach was
then used to step through potential threshold values until
the highest accuracy is found.

Algorithm 1: Adaptive Anomaly Threshold
Input : autoencoder m, X , y, threshold φ, step size

v ← [> 0], fading factor α
Output: φ
/* Initialise fading sum, fading

increment, and max RE variables */
1 S0 ← 0;N0 ← 0;REmax ← 0;

/* Find the fading mean RE of normal
samples */

2 Xy←0 ⊆ X ;
3 REi ← predictRE(m, Xy←0);
4 Si ← REi + α ∗ Si−1;
5 Ni ← 1 + α ∗Ni−1;
6 REµα ← Si

Ni
;

/* Find the maximum normal sample RE of
the data stream */

7 if REi > REMAX then
8 REMAX ← REi;
9 end
/* Set threshold to the maximum

observed RE */
10 φ← REMAX;
/* Calculate accuracy, only attempt to

find a lower threshold if accuracy
is not 100% */

11 ŷ ← predict(m,φ,X);
12 accw ← calcAccuracy(ŷ,y);
13 if accw < 1.0 then

/* Step through to the fading mean
of the stream RE to find
threshold that yeilds the highest
accuracy */

14 φw ← φ;
15 while φ > REµα do
16 φ← φ− v;
17 ŷ ← predict(m,φ,X);
18 acc← calcAccuracy(ŷ,y);
19 if acc > accw then
20 φw ← φ;
21 accw ← acc;
22 end
23 end
24 φ← φw;
25 end

The proposed autoencoder anomaly detector is depicted
in figure 1. The sampleX is inputted to the autoencoder net-
work from which a Reconstruction Error (RE) is produced
based on the loss value between the approximate output
and the original input. The RE is compared to an anomaly
threshold value with samples scoring above threshold being

labeled as an ‘anomaly’ and those below being ‘normal’ or
benign. If a label Y is provided then the anomaly thresh-
old is updated using a novel adaptive anomaly threshold
method, which also maintains a memory of the population
mean RE throughout the data stream by using a fading fac-
tor [2] memory mechanism to prioritise more recent samples
for faster adaptation. The adaptive anomaly threshold is
demonstrated to be superior to fixed and other threshold
determination methods from the literature. Note that the
use of labels to find the anomaly threshold results in a semi-
supervised method.

Fig. 1: Autoencoder Anomaly Detector

3.2 Active Stream Framework

The proposed autoencoder anomaly detector is a semi-
supervised method requiring class labels to be known.
Class annotation is also important to detect changes in the
data stream that require learning to occur in order for the
model to adapt. Given the infinite nature of a data stream,
labeling all samples is infeasibly expensive, therefore AL
methods were explored to minimise the labeling cost for
both updating the model and threshold, whilst identifying
and adapting to changes in the data stream.

Žliobaitė et al. [3], proposed an active stream framework,
which combines change detection with a labeling strategy
and a fixed budget B. Algorithm 2 gives the active stream
framework evaluated in this research. The active learning
strategy is an important part of the framework as it deter-
mines whether or not the current data sample Xi, yi should
be labeled. Blind, random, uncertainty, variable uncertainty
and split strategies were evaluated in this research [3], [21],
[22]. The framework maintains a running estimate of label
usage ûi over a fading window, calculated by equation 3,
where w is the size of the fading window and labeli is
the labeling decision either 0 or 1 at time i. The spending
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estimate b̂ is then calculated from ûi over w, given in
equation 4 [3]. During this evaluation, w was set to 1000.

The labeled samples are then used to train the model and
perform change detection. If a warning signal is received
then a new autoencoder (AEL) is trained with the most
recent examples, and when a change is signaled, the current
model is replaced with AEL, completing adaptation to the
new concept. For this evaluation the Drift Detection Method
(DDM) [25] change detector was used.

ûi = ûi−1 ∗
(w − 1)

w
+ labeli (3)

b̂ =
ûi
w

(4)

Algorithm 2: Active Stream Framework
Input : Autoencoder AE, Labeling budget B,

budget window w, strategy(parameters),
Change Detector D

Output: AE
/* Initialise active stream framework

*/
1 b̂← 0; û0 ← 0;

/* Check if current spending estimate
is below budget and strategy decides
to label */

2 if b̂ < B AND strategy(parameters) = 1 then
3 Update label estimate ûi (equation 3) where

labeli = 1;
/* Incrementally fit the autoencoder

and predict current label */
4 AE← partialFit(AE, Xi, yi);
5 ŷi ← predict(AE,Xi);

/* Update the change detector
statistics */

6 updateChangeDetector(D, yi 6= ŷi);
7 if AEL then

/* If an alternative AE exists
then update this with the
labeled samples */

8 AEL ←partialFit(AELXi, yi);
/* If change is detected then

replace the current AE with the
alternate */

9 if changeSignalled(D) then
10 Replace AE with AEL;
11 end
12 else if warningSignalled(D) then

/* If warning is signalled then
create new alternate AE and
train */

13 Create new AEL;
14 AEL ←partialFit(AEL, Xi, yi);
15 else
16 Update label estimate ûi (equation 3) where

labeli = 0;
17 end
18 Update spending estimate b̂ (equation 4);

3.3 Active Learning Strategies

The following section outlines the active learning strategies
evaluated in this research. Žliobaitė et al. [3] outlined three
objectives of active learning strategies, which will need to
be met by any proposed strategies:

1) balance the labeling budget B over infinite time;
2) detect changes anywhere in the instance space;
3) preserve the distribution of incoming data for de-

tecting changes.

A random active learning strategy randomly selects a
sample to label based on Bernoulli probability with a given
budget B. The random strategy satisfies all three objectives
of [3].

The uncertainty strategy labels a sample based on the level
of uncertainty from the classifier compared to a threshold,
and attempts to label the samples where there is the least
confidence [3]. A common approach is to use the classifier’s
predicted probability for class c compared to the threshold
θ: P (yc|X) ≤ θ [3], [21], [22].

Autoencoders do not provide a direct class probability,
instead they provide a reconstruction error from which a
normal or anomaly classification decision can be made. This
research proposed a novel method whereby the RE squared
difference from the anomaly threshold φ is used as a mea-
sure of uncertainty, equation 5, assuming the hypothesis
that the lower the difference compared to the average of the
population, then the greater the uncertainty for the sample.
The difference is squared to make all values positive.

di = (φ−REXi)2 (5)

In order to accommodate changes in the data stream and
avoid a scenario where the strategy stops learning due to
high variance, a fading factor α was used to produce a
fading average of differences davg , calculated using equation
6. This allowed for the more recent samples to have a greater
bearing on the strategy outcome.

Si = di + α ∗ Si−1
Ni = 1 + α ∗Ni−1

davg =
Si
Ni

(6)

Using davg the fading standard deviation dstd of the
stream was calculated using equation 7.

Vi = (di − davg)2 + α ∗ Vi−1

dstd =

√
Vi
Ni

(7)

Finally, the strategy returned a labeling decision of 1
where di < davg − dstdθ, equation 8, requiring a sample
to be below the average by so many θ standard deviations,
where θ was the confidence threshold. θ = 2 should capture
samples where the difference is the lowest 5% of all samples.

labeling =

{
1, di < davg − dstdθ
0, otherwise

(8)
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Fig. 2: Split Active Learning Anomaly Detector

The uncertainty strategy algorithm is given in 3,
whereby the autoencoder AE model is used to predict the
RE for sample Xi, and the fading average and standard
deviation of the difference from the anomaly threshold φ
over the stream used to provide a label output of 0 or 1
based on equation 8. On its own, an uncertainty strategy
cannot satisfy all three active learning objectives as: the
number of labeled samples will depend on the amount of
uncertainty within the data stream and could vary above
the intended budget, this is instead limited by line 2 of
algorithm 2; only samples within the uncertainty margin
are labeled, changes occurring outside of the margin will
be missed; and change detection will be based on the
distribution of uncertain samples that are trained on [3].
The strategy should reflect regions where real concept drift
is occurring as higher uncertainty could reflect a change,
resulting in faster adaptation times [21], [22].

Variable uncertainty is based on the uncertainty strategy,
but instead of using a fixed confidence θ, this is instead
varied depending on the amount of labeling that is being
requested from the strategy, so that more labels will increase
the confidence and fewer will decrease to attenuate the
labeling and better manage budget [3]. This approach also
has the benefit that it is not limited to a fixed labeling ceiling

Algorithm 3: Uncertainty Strategy
Input : Confidence θ, Fading Factor α, X,

autoencoder AE, Threshold φ
Output: label

1 S0 ← 0;N0 ← 0;V0 ← 0; label← 0;

2 REi ← predictRE(AE, Xi);
3 Calculate difference di of REi from φ, using equation

5;
4 Calculate the fading average difference davg , using

equation 6;
5 Calculate the fading standard deviation of

differences dstd using equation 7;
6 if di < davg − dstdθ then
7 label← 1;
8 end

and can better utilise higher budgets to accurately identify
concept drift [22]. Similar to the uncertainty strategy this
also does not satisfy all three requirements [3].

The split strategy, given in algorithm 4, combines the
random and variable uncertainty strategies to benefit from
their respective strengths of accessing the entire stream
distribution for change detection, and adapting to potential
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change in higher regions of uncertainty. Due to the incor-
poration of the random strategy, this also meets all three
requirements of [3].

Algorithm 4: Split Strategy
Input : Label Budget B, Confidence θ, Fading

Factor α, X, autoencoder AE, Threshold φ,
Step s

Output: label

1 label← 0;

2 if randomStrategy(B) = True then
3 label← 1;
4 else if varUncertaintyStrategy(θ,α,Xi, AE,
φ,s) = True then

5 label← 1;

The proposed Split Active Learning Anomaly Detector
(SALAD) method is depicted in figure 2. This method re-
duces the labeling cost of the data stream to a fixed budget
by adopting an active learning strategy to determine which
labels should be updated, satisfying the requirements of
Žliobaitė et al. [3]. Labeled samples are used to train the
anomaly detector and the predictions input to a change
detector which monitors for real concept drift occurring in
the data stream [2]. Where real concept drift occurs, the
current anomaly detector is replaced with a new one that
has been trained on samples since a warning signal was
produced. The result of this method is faster training of the
anomaly detector and the ability to quickly adapt to changes
occurring in the data stream.

4 RESULTS

4.1 Adaptive Anomaly Threshold
The accuracy and F1-score of the Adaptive Anomaly
Threshold method was compared to the Stochastic Anomaly
Threshold with memory (SAT FF), HAT and NB algorithms.
SAT FF is a novel modified version of the SAT algorithm
to update the threshold based on a fading average [30] of
previous thresholds to allow for memory when processing
over a data stream. The parameter values for the autoen-
coder methods are given in table 1, where p represents the
dropout probability; l is the number of hidden layers, h the
ratio of hidden units to visible units; opt is the optimiser
used to train the network with α learning rate; β is the
threshold sensitivity; α is the fading factor; and v is the
step size. NB and HAT algorithms used the scikit-multiflow
default parameters [29].

Method Parameters
Prequential Evaluation batch size = 100, pretrain size = 10000
Autoencoder l = 1, p = 0.1, h = 0.6, opt = adagrad

(α = 0.01)
SAT FF β = 1.1, v = 0.001, α = 0.4
Adaptive Anomaly
Threshold

β = 1.18, v = 0.001, α = 0.4

TABLE 1: Evaluation Parameters

The accuracy and F1 scores with the KDD Cup 1999
data set are plotted in figure 3. SAT FF and AAT are

(a) Accuracy

(b) F1-score

Fig. 3: KDD Cup 1999 AAT, SAT FF, NB and HAT accuracy
and F1-score

close to HAT in terms of mean performance, with better
kappa and F1 metrics when taken as an average across all
batches, as shown in table 2. SAT FF and AAT were also
significantly faster with a total running time (RT) of 14.04s
and 19.18s, compared to 510.93s and 794.76s with NB and
SAT, respectively. Note that running time will vary based
on the underlying system performance and frameworks
used, however the time of SAT FF is an order of magnitude
better compared to both NB and HAT algorithms. Overall
AAT returned the best mean accuracy and kappa results, an
important metric for data stream learning.

Algorithm Accuracy % Kappa F1-score RT
µ±SD µ±SD µ±SD (s)

AE AAT 98.78±7.88 0.954±0.202 0.802±0.395 19.18
AE SAT FF 98.16±8.65 0.854±0.360 0.812±0.387 14.04
NB 93.34±20.22 0.721±0.445 0.810±0.380 510.93
HAT 98.57±0.60 0.820±0.379 0.811±0.383 794.76

TABLE 2: KDD Cup 1999 AAT, SAT FF, NB and HAT Results

As demonstrated in our previous work [31], the UNSW-
NB15 data set proved to be more challenging for on-
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(a) Accuracy

(b) F1-score

Fig. 4: UNSW-NB15 AAT, SAT, SAT FF, NB and HAT accu-
racy and F1-score

line learning, requiring the number of network layers and
dropout probability to be adjusted to better provide separa-
tion between normal and anomaly class distributions, with
l = 3 and p = 0.2 being selected. The accuracy and F1-
score results of the AAT method compared to SAT, SAT FF,
NB and HAT are plotted in figure 4. Table 3 gives average
accuracy of the SAT and SAT FF algorithms as 70.39% and
62.96%, respectively, which is considerably lower than that
of NB and HAT. AAT returned the highest overall accuracy
of the anomaly threshold methods, at 86.31% with 3 layers
and dropout probability of 0.2, although kappa was lower,
demonstrating reduced confidence in the anomaly decision
for all methods. The results show that AAT is able to provide
near equivalent performance to NB and HAT methods with
a significantly lower running time.

4.2 Active Stream Framework

4.2.1 Labeling Budget
The effects of the labeling budget was evaluated with the
random strategy as this is the only strategy to maintain

Algorithm Accuracy % Kappa F1-score RT
µ±SD µ±SD µ±SD (s)

AE AAT 86.31±16.32 0.298±0.411 0.767±0.335 18.55
AE SAT 70.39±32.71 0.364±0.443 0.613±0.390 12.14
AE SAT FF 62.96±38.95 0.420±0.458 0.528±0.418 11.01
NB 83.69±28.99 0.399±0.480 0.832±0.343 350.39
HAT 92.85±11.19 0.436±0.479 0.813±0.340 610.94

TABLE 3: UNSW-NB15 AAT, SAT, SAT FF, NB and HAT
Results

the sample distribution of the stream so as to not add any
bias to the results. Budget B was evaluated at values of 0.2
(20%), 0.5 (50%) and 1.0 (100%). The results are given in table
5 and mean accuracy plotted against the blind adaption
AAT approach for comparison in figure 5. The greater the
labeling budget, typically the higher the accuracy, kappa
and F1 scores, the exception being UNSW-NB15 where
B = 0.5 has a slightly higher accuracy and kappa. The
difference in accuracy between 20% and 100% labels is 0.76%
(KDD’99) and 2.69% (UNSW-NB15), demonstrating a small
loss in performance for an 80% saving in labeling cost and
approximate running time reduction of 54-62%; this reflects
the results of Žliobaitė et al. [3], where a small loss of
accuracy was observed between a B of 100% and 10% when
tested with a number of non-cyber data sets.

Comparing to the blind adaptation of previous experi-
ments, whereby no active learning is used, a labeling budget
of 0.5 achieved a higher accuracy and F1 for half the labeling
cost on both data sets. ASF RAND 1.0 is equivalent to the
blind approach with full labels, but with the addition of
change detection, with average accuracy and F1 improved
across both data sets, although lower towards the end of the
UNSW-NB15 stream as shown in figure 5b. Note the lower
running time of the blind approach due to use of a chunk
size of 100 vs 10 which influences the number of gradient
updates and hence training time of the network.

Strategy B Accuracy % Kappa F1-score RT
µ±SD µ±SD µ±SD (s)

KDD Cup 1999
Random 0.2 98.32±8.50 0.932±0.217 0.811±0.381 55.9
Random 0.5 98.94±7.27 0.956±0.182 0.821±0.376 85.8
Random 1.0 99.08±7.02 0.962±0.176 0.825±0.374 145.4
Blind 1.0 98.78±7.88 0.954±0.202 0.802±0.395 19.18
UNSW-NB15
Random 0.2 87.07±19.48 0.598±0.376 0.752±0.350 55.5
Random 0.5 90.85±12.16 0.619±0.265 0.791±0.338 84.0
Random 1.0 89.76±12.74 0.549±0.431 0.793±0.334 121.2
Blind 1.0 86.31±16.32 0.298±0.411 0.767±0.335 18.55

TABLE 4: Random Strategy Budget Size: KDD’99 and
UNSW-NB15 Comparison

4.2.2 Active Learning Strategies
The results of each active learning strategy with a budget
of 0.2 (20%) are given in Table 5, with accuracy and F1-
score for both data sets plotted in figure 6. Each strategy was
executed 5 times with the average and standard deviation
presented. The worst performing strategy was the fixed
uncertainty strategy, reflecting the results of Žliobaitė et al.
[3], which was expected as the algorithm is biased only
towards uncertain samples and cannot vary the amount of
samples labeled, meaning that change occurring outside of
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(a) KDD’99 Accuracy

(b) UNSW-NB15 Accuracy

Fig. 5: Labeling Budget Accuracy Comparison for Random
Strategy

the fixed margin will be missed. It is also possible that the
RE=value of normal samples outside of the margin may
increase as the AE is trained more on uncertain samples,
leading to higher false positives and lower F1-score.

The split strategy, returned the best results across both
data sets, combining random and variable uncertainty
strategies. Note that the total running time is between that
of the random and variable uncertainty strategies, indicting
time complexity savings where uncertain samples were first
selected by the random strategy. The Kappa of the split
strategy was observed as 0.717 (table 5) for the UNSW-NB15
data set, this is much higher than the performance of the
blind AAT, NB, HAT and other AL strategies, indicating a
higher level of confidence in the anomaly decisions.

5 DISCUSSION

This research evaluated online anomaly detection in the
form of a prequential evaluation method whereby the model
is first tested on the next sample or chunk in the stream
before training. The anomaly threshold is a key parameter
for anomaly detection and finding an optimal threshold

Strategy Accuracy % Kappa F1-score RT
µ±SD µ±SD µ±SD (s)

KDD Cup 1999
Random 98.32±8.50 0.932±0.217 0.811±0.381 55.9
Uncertainty 93.32±23.40 0.892±0.303 0.762±0.422 81.6
Var Uncert 98.61±8.65 0.951±0.194 0.817±0.379 74.1
Split 98.85±7.55 0.947±0.199 0.819±0.378 69.6
UNSW-NB15
Random 87.07±19.48 0.598±0.376 0.752±0.350 55.5
Uncertainty 83.95±16.40 0.348±0.304 0.762±0.334 53.8
Var Uncert 87.51±16.26 0.452±0.368 0.768±0.339 64.6
Split 90.88±14.96 0.717±0.363 0.791±0.343 63.3

TABLE 5: Active Learning Strategy Comparison

for a data stream is non-trivial. A number of methods for
finding the threshold were compared including fixed, naı̈ve,
stochastic and adaptive techniques. The adaptive anomaly
threshold (AAT) was introduced as a novel hybrid of the
naı̈ve and stochastic methods in order to better adapt to
chunks of normal or anomaly samples based on initial ob-
served accuracy. Overall AAT outperformed other methods
and is a recommended contribution of this research to be
explored further.

The results observed with the KDD’99 data set and AAT
threshold method provide strong evidence that the hypoth-
esis of effective anomaly detection for network data streams
can be supported by the autoencoder method with both
strong detection and run time performance compared to
traditional methods. UNSW-NB15 results could be strength-
ened by further design choices.

The AAT method makes use of blind adaptation,
whereby the model is trained on all labeled samples. This
has the drawback of high cost due to full labels and slow
adaptation times to change occurring in the data stream.
The research further explored change detection and active
learning strategies, as outlined by Žliobaitė et al. [3], to
further improve performance for a lower overall cost.

An ASF framework was implemented along with the
random, uncertainty, variable uncertainty and split active
learning strategies. With the uncertainty strategy, a new
method for AE was proposed, whereby the average RE
difference from the threshold is used as a baseline to detect
samples with high uncertainty, defined as being in the
proportion of the population with the smallest difference,
tuned by a confidence parameter.

The use of ASF demonstrated that better accuracy, kappa
and F1 scores can be achieved, compared to blind adapta-
tion, with just 20% of the labeling cost, enabled by active
learning of the most important samples to accelerate the
learning process [3]. The results align to those presented by
Žliobaitė et al. [3], with a split strategy being recommended
as this fulfills all three active learning requirements to
maintain a fixed budget, access to all samples within the
stream and preserve the distribution of incoming data for
detecting changes. Unlike Žliobaitė et al. [3], this research
recommends inclusion of the uncertain samples with the
change detection to improve per class performance.

6 CONCLUSION

The aim of this research was to explore semi-supervised
online autoencoder methods for the task of anomaly in-
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(a) KDD’99 Accuracy (b) KDD’99 F1-score

(c) UNSW-NB15 Accuracy (d) UNSW-NB15 F1-score

Fig. 6: ASF Strategy Comparison, B = 20%

trusion detection on non-stationary network data streams,
adapting to concept drift over time, with minimal label-
ing cost, by adopting an active learning change detection
strategy. A unique contribution of this research was to
compare a selection of anomaly threshold methods, propos-
ing memory adaptations for data streams and a hybrid
Adaptive Anomaly Threshold method which demonstrated
superior performance. One of the more striking findings of
the research is that the processing time of the autoencoder
anomaly detector method is significantly lower when com-
pared to traditional online learning techniques, making it
well adjusted for high speed online network data streams,
demonstrating an ability to detect an equivalent number of
cyber attacks to traditional online learning methods, in a
significantly reduced time frame. An area of future research
would be to explore alternative threshold methods, such
as clustering, which may allow for better identification of
classes that overlap with normal samples and multi-label
classification.

A further contribution of this research was to evaluate
the autoencoder method with an Active Stream Framework,
allowing the labeling cost of the data stream to be sig-
nificantly reduced to a budget of 20%. A novel variable

uncertainty strategy was proposed for autoencoders where
the posterior probability is not available, instead tracking
the distribution of sample RE distances from the anomaly
threshold to determine uncertainty. An area of future re-
search should be how to efficiently annotate samples, pos-
sibly by unsupervised clustering methods such as those
demonstrated by [32].

Overall this research has demonstrated that the pro-
posed Split Active Learning Anomaly Detector (SALAD)
method can demonstrate high levels of performance with
network data streams, which significantly reduced the label-
ing cost. The results are not perfect however, and it would
be recommended to combine in a hybrid intrusion detection
model whereby misuse detection is used before or after the
anomaly detector to further identify classes, reduce false
positives and better identify minority classes. Multi-label
classification would be a further research area to expand
on this work and provide additional context to detections.
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