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Abstract

In this paper, we present a new approach to the TF-domain PA methods. More precisely, we provide an in-detailed discussion
on rearranging the eigenvalue decomposition polarization analysis (EDPA) formalism in the frequency domain to obtain the
frequency-dependent polarization properties from the Fourier coefficients owing to the Fourier space orthogonality. Then, by
extending the formulation to the TF-domain and incorporating sparsity-promoting time-frequency representation (SP-TFR), we
alleviate the limited resolution when estimating the TFdomain polarization parameters. The final details of the technique are
to apply an adaptive sparsity-promoting time-frequency filtering (SP-TFF) to extract and filter different phases of the seismic
wave. By processing earthquake waveforms, we show that by combining amplitude, directivity, and rectilinearity attributes on

the sparse TF-domain polarization map of the signal, we are able to extract or filter different phases of seismic waves.
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Abstract—Time-frequency (TF)-domain polarization
analysis (PA) methods are widely used as a pro-
cessing tool to decompose multi-component seismic
signals. However, as a drawback, they are unable
to obtain sufficient resolution to discriminate be-
tween overlapping seismic phases, as they generally
rely on a low-resolution time-frequency representa-
tion (TFR) method. In this paper, we present a new
approach to the TF-domain PA methods. More pre-
cisely, we provide an in-detailed discussion on rearrang-
ing the eigenvalue decomposition polarization analysis
(EDPA) formalism in the frequency domain to obtain
the frequency-dependent polarization properties from
the Fourier coefficients owing to the Fourier space
orthogonality. Then, by extending the formulation to
the TF-domain and incorporating sparsity-promoting
time-frequency representation (SP-TFR), we allevi-
ate the limited resolution when estimating the TF-
domain polarization parameters. The final details of the
technique are to apply an adaptive sparsity-promoting
time-frequency filtering (SP-TFF) to extract and filter
different phases of the seismic wave. By processing
earthquake waveforms, we show that by combining
amplitude, directivity, and rectilinearity attributes on
the sparse TF-domain polarization map of the signal,
we are able to extract or filter different phases of seismic
waves. The SP-TFF method is evaluated on synthetic
and real data associated with the source mechanism of
the M, = 8.2 earthquake that occurred in the south-
southwest of Tres Picos, Mexico. A detailed discussion
on the results of these experiments is given, approving
the efficiency of the technique in separating not only the
Rayleigh from the Love waves but also to discriminate
them from the body and coda waves.
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I. INTRODUCTION

A Seismic wavefield recorded as a seismogram is a
superposition of overlapping direct, reflected, refracted,
converted, and scattered body and surface waves, con-
taminated by various background sources and the signal
generated noise [1]. It is well known that surface and
body waves can carry considerable information about the
subsurface structure. Depending on the research scope,
any of these seismic phases can be studied, while their
detection and extraction require advanced processing and
analysis tools. Accordingly, multicomponent processing
techniques have been developed to analyze the nonlinear
and time-varying processes behind the seismic sources and
the propagating environment [Refer to [2] as a rigorous
survey]. Among these techniques, polarization analysis
methods have attracted significant attention.

Generally, the polarization analysis methods can be
divided into three broad categories: time, frequency, and
time-frequency (TF) domain methods. As a pioneer, Flinn
[3] introduced the eigenvalue decomposition polarization
analysis in the time-domain. Likewise and in the realm
of Hilbert transform, Vidale [4] introduced the analytic
signal polarization technique. Although these methods are
equipped by time-windowing to extract the non-stationary
signal properties, they cannot discriminate between over-
lapping events with different frequencies. Comparatively,
studies were carried out on achieving polarization prop-
erties of the seismic time-series in the frequency domain.
Primarily developed by [5], the propagation direction of
surface waves was obtained using the amplitude and phase
spectrum of seismic waves. Likewise, Samson and Olson
[6] proposed a technique to provoke the polarization state
based on eigenvalue decomposition of the spectral matrix
in different frequency narrow bands. However, these tech-
niques are incapable of analyzing non-stationary signals in
the time domain.

Due to the non-stationary nature of seismic signals
with overlapping phases in time and frequency, pure
time- or frequency-domain methods are often difficult to
discriminate between the non-stationary seismic phases
adequately. To alleviate this, Jurkevics [7] proposed fil-
tering the signals into a series of narrow frequency bands,
applying short sliding time windows, and then estimating
the polarization ellipse from the covariance matrix in each
window at each band. Despite providing a TF-domain
insight to polarization analysis, the resolution was still
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limited in the frequency domain due to the restricted func-
tionality of the bandpass filtering. Therefore, by applying
different time-frequency representation (TFR) methods
[8, 9, 10] and using various polarization estimation crite-
ria, several TF-based polarization analysis methods were
proposed to analyze the non-stationary seismic signals.
These TF-domain polarization estimation tools range from
eigenvalue decomposition of the covariance matrix [11, 12]
and complex trace analysis [4, 13, 14], to fitting the
particle motion to a parametric polarization ellipse [15].
Despite attaining a TF-domain estimation these methods
are not yet able to resolve closely-spaced overlapping
seismic events in both time and frequency domains.

Obtaining a high-resolution TFR has always been a
challenge for the scientific community and a variety of
methods have been introduced, including synchrosqueez-
ing transform (SST) [16], sparse transforms [17], SP-TFR
[18, 19, 20], to name but a few. Remarkably, by for-
mulating the TFR as an inverse problem, and taking
advantages of sparsity-promoting (SP) regularization as
a promising tool to obtain a high-resolution solution,
several methods have been developed to improve the TFR
resolution [18, 19, 20]. SP-TFR found many applications
in seismology, including the denoising of microseismic data
[20] and attenuation of seismic ground roll noise [19].

On the other hand, filtering or extracting different
phases of seismic waves is a concerning challenge in the
seismic community. Although in a laterally homogeneous
structure, the Love wave appears mainly on the transverse
and the Rayleigh wave on the vertical and radial compo-
nents, due to the lateral heterogeneity and anisotropy, it is
seldom the case in real data [4]. Likewise, this assumption
fails in miss-oriented horizontal sensor components, which
is a global problem even for the best-installed seismic net-
works [21]. Hence, it is always challenging to discriminate
between the body and Rayleigh waves on the vertical
and radial components as well as SH and Love waves
on the transverse component. Accordingly, polarization
filtering techniques have been developed to extract or filter
a specific phase from other phases using the analyzed po-
larization information. As pioneers, Flinn [3], Montalbetti
and Kanasewich [22], and Vidale [4] utilized time-domain
rectilinearity and directivity attributes to amplify body
wave phases teleseismic data. In like manner, Samson and
Olson [6] applied these criteria to filter ultra low-frequency
magnetic field signal fluctuations in the frequency domain.
Similarly, Schimmel et al. [14] designed a TF domain filter
based on the degree of polarization (DOP) extracted from
the semi-major and semi-minor axis of the elliptical motion
of the three-component ambient noise data to filter the
elliptical particle motion. In an intuitive method, Pinnegar
[15] utilized semi-major, semi-minor, inclination, and az-
imuth parameters to discriminate between the circular and
linear polarization to filter the Rayleigh waves. Although
the introduced filtering scheme is efficient in filtering the
elliptically polarized phases like Rayleigh waves, it still
faces challenges in filtering the linear phases because the
method attains a null value of azimuth and inclination

angles analyzing linear particle motions.

This article begins with an elaborative review of the
eigenvalue decomposition polarization analysis EDPA; we
formulate EDPA as a function of frequency. On this basis,
we obtain high-resolution TF-domain polarization param-
eters by extending the formulation from frequency to the
TF-domain and combining with the SP-TFR. Afterward,
by extending the polarization filtering method of Pinnegar
[15] to incorporate high-resolution TF-domain information
of directivity, rectilinearity, and amplitude properties, we
design suitably defined filters to accept (or reject) linear
and elliptical seismic phases, including Rayleigh and Love,
making it possible to separate them from body and coda
waves. The main focus of the paper is to discriminate
between the Love and Rayleigh from the body and coda
waves.

This paper is organized in the following manner. First,
in section II we elaborate the theory behind the EDPA in
the time, frequency, and TF domains. We show that EDPA
can be applied independently for every single frequency
by taking advantage of the orthogonality of the Fourier
domain. This property can be extended to the TF-domain,
making it possible to obtain TF-domain polarization pa-
rameters. Then, by reviewing the SP-TFR and combining
with EDPA, we obtain a high-resolution TF-domain polar-
ization map of the signal. Afterward, by implementing TF-
domain rectilinearity, directivity, and amplitude attribute
and combining them with SP-TFR we introduce sparsity-
promoting time-frequency filtering (SP-TFF) method to
be used for filtering different phases of seismic signal.
Next, in section IIT by conducting numerical experiments
on synthetic and real earthquake data examples, we show
that SP-TFF can efficiently extract and filter Rayleigh and
Love waves and discriminate between linearly polarized
seismic phases like Love and body and coda waves. Finally,
in sections IV we discuss the results and conclude the

paper.

II. THEORY

To keep this paper self-contained, we rearrange the
EDPA formalism in the frequency and TF domain to be
combined by SP-TFR. Furthermore, to be consistent with
the numerical algorithms, we exclusively present a discrete
version of the mathematical equations.

A. Polarization analysis using eigenvalue decomposition

Suppose that
X = [1:1,322,11:3] S RLX3, (1)

is a seismic time-series recorded with three compo-
nents aligned with the base vectors of a right-handed
coordinate system {eg,en,ez} (east-north-vertical),
{er,er,ez} (transverse-radial-vertical), or {er,eq,er}
(tangent-normal-binormal or Frenet wave). The latter co-
ordinate systems are obtained from the ordinary east-
north-vertical system by rotation [see [23] for more de-
tails]. Each component, x; € REX! (i = 1,2,3), sam-
ples the wavefield arriving to the sensor along the time
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axis on tx = kdot, with 6t being sampling interval and
k = 0,1,...,2n being the time index assuming an odd
length L = 2n 4 1 of seismogram.

Then, the polarization properties of X can be extracted
by the eigenvalue decomposition of the covariance matrix

Vii Vi Vi3
V=|Var Vo Vag| €eR¥? (2)
Var Va2 V33

[22, 3, 7, 24]. The elements of the symmetric and real-
valued matrix V in (2) are auto- and cross-variances of
the components of the time-series defined as

1 2n
Vij = ol ;(ﬂfi(l) — pi) (@i (1) = pg) | 3)

i,j=1,2,3.

In (3), p is the mean or expected value of components
and is defined as

2n

pi= W} = 5= > () (®)

=0

[22]. Assuming a weakly stationary condition for all the
components of the time series, ¥{x;} =0, i =1,2,3, (3)
can be rewritten as

1 2n

1 ;xi(l)xj(l)

which simplifies the definition of elements in (2) to auto-
and cross-correlations,

= Cij, (5)

j

Ci1 Ci2 Ci3
C = |0y Cy Coz| € R3*3 (6)
C31 Csz Cs3
or equally,
xX'x
_ = 7
C==- (7)

where (.)7 in (7) denotes the transposition operator.
The weakly stationary assumption in (5) is satisfied by
applying DC removal or detrending.

The quadratic matrix of correlation coefficient, C, fits
the particle motion ellipsoid in a least-squares sense; the
parameters of this ellipsoid are obtained by solving the
system of equations

(C—NDu=0, (8)

[7]. Geometrically, solutions to (8) give directions (eigen-
vectors, (w1, w2, ug)) that the linear transformation
by operator C' merely elongates or shrinks; the ratio
of elongation/shrinkage is given by eigenvalues, (A1, Aq,
A3). Indeed, the eigenvectors direct principal axes of the
polarization motion ellipsoid, and the eigenvalues are the
size of those axes; eigenvalues are sorted such that A\; > Ay
for j < k.

1) Eigenvalue decomposition in the frequency domain:
The first implementations of the eigenvalue decomposition
on the frequency domain were proposed by [25, 6]; the
spectral matrix corresponding to a perturbation around
the central frequency [w — dw,w + dw| was decomposed
using eigenvalue decomposition to provoke the polariza-
tion states of the signal. This decomposition scheme is
more compatible with natural signals, which are rarely
composed of single-frequency polarized elements. However,
by decomposing to a strictly polarized single frequency
state, one can benefit from the orthogonality of the Fourier
transform to extract frequency-dependent polarization
properties. Here, we review and simplify the process.

The discrete Fourier domain counterpart of (1), X/ =
FT{[z1, T2, 23]} = [f1, 2, f3] € REX3, is obtained by
modulating x;, ¢ = 1,2,3, with pure sinusoids having
discrete frequencies as follows

1 2n
ot 1 in(k)exp(

k=0
Here, I = —n, ..., n, is the frequency index giving frequency
content of the signal on discrete frequencies w; = m,
and 7 is the imaginary unit. The original signal is re-
constructed by applying the inverse Fourier transform,

X :IFT{[flaf2>f3]}7

zik) = 3 fill)eap(
=0

—2mykl
2n+1

fi()) = ), i=1,2,3. (9)

2mykl
2n+1

),i=1,2,3.  (10)

Accordingly, the frequency-domain counterpart of (5) is
defined as

Cij = ZL{ZFT(fio F7)}, (11)

in which, (.)*, and o are complex conjugate and Hadamard
or element-wise product operator, respectively, and ZL{.}
is a function that picks the zero-lag element. By taking
advantage of the orthogonality property of the Fourier
domain, (11) can be written as

Cij = zn: Ci(1) = zn: ZIATFT(flo fé*)h (12)
=0 =0
with
g e g=1
fi) = {0 iy (13)

Hence, the auto- and cross-correlation terms for every
single frequency can be decomposed via (13). Instead of
applying operation in (13) to obtain C;(1), it is attainable
from g;; = f, o f} as

Cii(1) = 9D F gyl 120 g (14)
gi; (1) 1=0
gives the frequency-dependent auto- and cross-

correlation elements. Solving system of equations (8) for
the frequency-dependent elements C;(1),

(C() = Ai(DDu(l) =0, (15)

gives the eigenvectors, (u1(l), uz(l), us(l)) and eigenval-
ues, (A1(1), A2(l), A3(l)), as a function of frequency.
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2) Eigenvalue decomposition in the time-frequency do-
main: The process described in section (II-Al) effec-
tively decomposes stationary signals into it’s frequency-
dependent polarization components (eigenvectors and
eigenvalues). Having to deal with the non-stationary na-
ture of seismic data, the same definition is extended to
give polarization components that depend on time and
frequency by substituting a TFR in place of the ordinary
Fourier transform. Much research has been devoted to
finding efficient TF analysis methods and many power-
ful methods have been developed in the past decades,
including the wavelet transform [26], the Wigner-Ville
distribution [27], short time fourier transform (STFT) [8],
Stockwell transform (ST) [9], etc. As an instance, the
STFT representation of signal @; in (1) is obtained by

2n 2
A —2mykl
TF = _
strr(k, 1) kZ_Ox(k‘)w(k’ k)exp( o+ 1 )s (16)
l=-n,...,-1,0,1,....2n, k=0,1,...,2n
with
~ 1 AV 2

w(k — k) = ——e (F=R)7/20 (17)

ovV22m

being a Gaussian window with standard deviation o,
centered on the time index k. The definition in (16) can
be extended to the ST [9] by applying a time—frequency
spectral localization using a window function scalable with
frequency as

A l

with k and [ are defined the same as (16). The parameter o
in (17) and (18) controls the resolution of the transform in
the time and frequency domain; higher values of o attains
higher frequency resolution, while lower values improves
the time resolution.

By obtaining TF of the 3-components of the signal, the
TF-domain auto- and cross-correlation terms is obtained
as

e—lz(fc—k)z/202 (].8)

i (k, —l1 i (kD) 1
for time and frequency indexes ,k = 0,1,.....2n+ 1, | =

0,1,....,n. Consequently, the TF-dependent eigenvectors,
(u1(k,1), wuo(k,l), wus(k,l)) and eigenvalues, (Ai(k,1),
A2(k, 1), As(k, 1)), is obtained by solving

(C(k,1) = Ai(k, DDu(k, 1) = 0, (20)
giving a TF map of polarization state of signal. This
decomposition process is similar to the method introduced
by Pinnegar [15]. However, as we will discuss in the
following sections, it can be used to filter the linearly
polarized seismic phases, which is not able to be done with
the Pinnegar [15] method.

B. Regularized sparsity-promoting TF decomposition

The system of equations for STFT and ST linear which
allows us to define the TF coefficients as a solution of a
linear system equations

z=Ga, G c RUXL* a c R x1 (21)

where a is a vectorized rearrangement of TF coefficients
in (16) [see [20, 19] for more details about the structure of
the forward operator GJ. Since the linear system in (21) in
under-determined, there exists an infinite number of TF
maps for representing the signal. The desired TF map can
be obtained by using some form of a priori information
under the frame of regularization techniques [20, 19]. A
sparsity-promoting regularization enables selecting a TF
model with a minimum number of non-zero coefficient by
solving a constrained optimization problem

a=agmin L [Ga—olf +ulal; (22
where ||a||, = (33, |ex(d)|P)}/P is the £, norm of a vector @
and p > 0 is the sparsity parameter [20, 19]. By choosing
a proper p, one can control the resolution of the TF map
and allows us to being able to discriminate between closely
spaced events in time and frequency, while reconstructing
the data.

The optimization problem (22) can be solved by a
variety of methods such as the split Bregman method [19]
or fast iterative soft thresholding algorithm (FISTA) [28].
In this study, we utilized the FISTA method to solve (22).

The obtained SP-TFR through (22) is used to design
an adaptive filtering for extracting (or filtering) different
phases of seismic waves. In the next section, we briefly
review the adaptive filtering approach in the TF domain.

C. Adaptive filtering in the TF domain

Adaptive filtering has been extensively applied in seis-
mology [22, 4, 7, 14]. In an intuitive scheme, Pinnegar
[15] utilized a combination of inclination, azimuth, and
rectilinearity attributes in the TF domain to filter the
Rayleigh waves. However, his method is not able to scru-
tinize the pure linear polarization because of an undefined
inclination angle for linear particle motions [see section
(IIT) for more details]. As a result, the method is not
applicable to filter the Love wave or any other seismic
phase with a linear polarity. Here, we extend his methodol-
ogy by combining rectilinearity, directivity, and amplitude
attributes [7, 22] with the TF-domain polarization param-
eters obtained from SP-TFR of 3-components of the signal
to introduce SP-TFF method.

1) Rectilinearity attribute: Rectilinearity is a critical
parameter for discriminating between the elliptical and
linear particle motion states. The purely rectilinear ground
motion is modeled by one nonzero eigenvalue in the TF
plane

AZ(k7 l) = 07

i> 1. (23)

Nevertheless, due to the presence of contaminating noise,
out-of-plane energy, and scattering distortions, it is seldom



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. , NO. , MAY 2021 5

the case for the real data [29]. To circumvent this, a degree
of rectilinearity

)\2(k, l) + )\3(/€, l)
A1k, 1) ’

is defined as a rectilinearity measure to discriminate be-
tween the rectilinear motion of Love and body waves and
elliptical motion of Rayleigh waves [7], [13], [30].

Accordingly, a rectilinearity filter is designed in the TF
domain as

Re(k,l)=1— (24)

1 —1 < Re(k,l) < a,
Ure(Re(k,l)) = COS(%’;%_Q)) a < Re(k,l) < 8,
0 8 < Re(k, 1) < 1,
(25)

while to avoid the Gibbs phenomenon caused by abrupt
frequency cut-off, the accept or reject regions are cosine
tapered in (23) by incorporating suitably defined adjusting
parameters o and 3. The proposed filter is similar to the
TF filter introduced by Pinnegar [15], whereas it can be
designed to filter the linear polarization particle motion.

2) Directivity attribute: Directivity is another cru-
cial parameters to discriminate between different seismic
phases based on the direction of particle motion. More
precisely, a directivity measure is defined as the absolute
value of the dot product of the first eigenvector by the
base vectors

Dl(kvl) = ‘u?(k"l)eLL te {Tv R’ Z}7 (26)

then normalizing the measure in the TF plane. Cor-
respondingly, a directivity filter is designed in the TF
domain as

1 0 < Di(k,1) <,
Un(Di(k.1) = m(Di(k,)=7) Di(k.1 A
p(Di(k,1)) cos( 200—) ) v < Di(k,l) <A,
0 A< D;i(k,1) <1,
i€ {T,R,Z).
(27)

The adjusting parameters v and A have the role of both
cosine tapering to avoid the Gibbs phenomenon and
threshholding as a percentage of the maximum measure.
In the next section we present the combination of these
attribute to filter seismic data.

3) Amplitude attribute: Although generally surface
waves manifest themselves with higher amplitude than
the body and coda waves [31], it is challenging in prac-
tice to work with amplitude attributes to discriminate
them. Having a TF-domain insight to analyze the signal,
enforced by SP-TFR to present it with a few sparse
coefficients, accentuates the amplitude difference between
the surface and coda waves. In other words, the energy
of surface waves is extracted locally with a few sparse
coeflicients, while the body and coda waves are distributed
to a broader range of coefficients due to having a broader
frequency content. Hence, an amplitude attribute can be
more efficiently used to discriminate surface waves from
body and coda waves. Specifically, it can be employed as

a tool to separate Love and SH waves, which have the same
type of polarization directivity and rectilinearity. Defining
an amplitude attribute as

\/§>\1 (ka l)

Ak, 1) = —7

a corresponding amplitude filter is designed in the TF
domain as

(28)

0 0 < A(k,1) <,

k.l
U4 (A(k, 1) = { cos(TQEDZy ¢ < Ak, 1) <, (29)
k.l

2(n—¢)
1 n< Ak, 1) <1,

normalized in the whole TF plane. The adjusting pa-
rameters ¢ and 71 acts as a measure to pass (or reject)
the coefficient in the TF plane, while applying the cosine
tapering. In the next section we present the combination
of these attribute to filter seismic data.

4) Regularized Sparsity-promoting Time Frequency Fil-
tering : To combine the properties of different attributes,
a similar methodology to [15] can be followed. More
precisely, the total TF reject filter to reject a phase is
obtained by combining the rectilinearity, directivity, and
amplitude filters, as

PUp=1—{1-Ugrto{l-Pp}o{l—Pa} (30)

Similarly, a special seismic phase can be extracted by
defining an extract filter as ¥y = 1 — Wk, Finally, the
filtering process is applied by element-wise multiplication
of ¥ with the SP-TFR of the three components; then,
the filtered signal is reconstructed in the time domain by
applying (21) giving the SP-TFF.

Besides all the defined criteria, subjective information
can be incorporated as a constraint to control the filtering
domain while rejecting or extracting seismic phases. As an
example, in the case of filtering or extracting the surface
waves, an approximate initial time of the Love wave can
be introduced to the algorithm to limit the domain of
filtering in (30). It can be picked visually on the transverse
component or estimated by using the standard global
dispersion curves.

In the next section, we examine the application of the
proposed filtering method to filter different seismic wave
phases.

III. NUMERICAL EXAMPLES

To evaluate the SP-TFF method, we test it with syn-
thetic and real data examples by extracting and filtering
the Love and Rayleigh waves. The implementation results
are compared with those of the method introduced in
Pinnegar [15].

A. Synthetic examples

The synthetic data corresponds to the source mecha-
nism of the M,, = 8.2 earthquake occurred in the 101km
SSW of Tres Picos, Mexico, on September 8th, 2017,
04:49:19 (UTC), as a result of normal faulting at an
intermediate depth of 47.4 km [see Table. I]. The source
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Figure 1. The background gray color waveforms in top, middle,
and bottom panels corresponds to transverse, radial, and vertical
components of a 3D synthetic seismogram generated for the source
mechanism of M,, = 8.2 south-southwest of Tres Picos, Mexico [see
text and Table. I]. The foreground black color diagram in panels (a),
(c), and (e) are Love wave filtered transverse, radial, and vertical
components by using the SP-TFF, and the panels (b), (d), and (f) are
Rayleigh wave filtered waveforms of the corresponding components.

mechanism and the source-receiver geometry were chosen
such that the amplitude of body and coda waves is almost
comparable to the surface waves making separation more
challenging.

A three-dimensional synthetic seismic data was gener-
ated through the 1D ak135f earth model [32] with spectral-
element method assuming 3D (an-)elastic, anisotropic and
acoustic wave propagation in spherical domains. The sim-
ulation was run by using the AxiSEM library through the
IRIS Synthetics Engine (Syngine) client of ObsPy software
[33, 34].

In the simulation, the seismic wavefield is recorded in
the College Outpost, Alaska, USA [see Table. I for more
details], at the azimuth of 61.56° to the epicenter.

The generated data were preprocessed; detrended and
decimated by a factor of 8 to attain a data set with a
sampling rate of 2 sec. Then, the traces were rotated to
the transverse-radial-vertical coordinate system. To make
the simulation more realistic, the data was contaminated
by a Gaussian noises, n € R¥*! (bandpass-filtered in the
range of [0.02,0.5] Hz) to give a signal to noise ratio (SNR)
of 10. The Transverse, Radial, and Vertical components of
the total motion are shown in gray color in Fig. 1.

To evaluate the efficiency of SP-TFF, the results are
compared with those obtained by Pinnegar [15]. In this
method, the ordinary ST is used as the TFR, and the TF-
domain polarization parameters are obtained by fitting the
particle motion to a parametric ellipse by incorporating
the TFR of 3-components. More precisely, a set of the
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Figure 2. The TFR of the transverse, radial and vertical compo-

nents of the synthetic data obtained by the ordinary ST (applied
by Pinnegar [15]) are shown in the panels (a), (c), and (e). The
corresponding TFR for the SP-TFR method are shown in the panels
(b), (d), and (f) [Refer to the text for more explanations].

polarization parameters including a(k,l) (the length of
Semi-major (SM) axis of the parametric ellipse), b(k,)
(the length of Semi-minor (Sm) axis of the parametric
ellipse), I(k,1) (the inclination of the ellipse to the hori-
zontal), Q(k, 1) (the azimuth of the ascending node, w(k,)
(the angle between the ascending node and the position of
maximum displacement) and ¢(k,[) (the phase, measured
with respect to the time of maximum displacement) are
obtained, with & = 0,...,2n 4+ 1 being the time and
1 =0,...,n being the zero and positive frequency indices.
The TFR of the transverse, radial and vertical compo-
nents of the synthetic data obtained by the ordinary ST
(applied by Pinnegar [15]) are shown in the panels (a), (¢),
and (e) of Fig. 2; the corresponding TFR for the SP-TFR
method are shown in the panels (b), (d), and (f). The
SP-TFR attains a highly compact TFR with a maximum
amplitude higher than the ST, while ST distributed the
energy in the TF plane in a wider area. The up-chirp
characteristics of surface waves are obvious in both TFRs.
The TF domain SM and Sm axes of the particle motion
obtained by Pinnegar [15] method are depicted in (a) and
(c) panels of Fig. 3; the corresponding TF domain SM and
Sm axes for EDPA using SP-TFR are shown in in (b) and
(d) panels. The SM and Sm axes for EDPA is obtained as

SM(k,1) = ||SM(k, D)2 = Y222 luy (k, )| |2,

(31)
Sm(k,1) = ||Sm(k, 1)||s = Y222y (k, 1),

with k and [ are defined similar to (16). By considering
the left panels of Figs. 2 and 3 it is evident that by
applying the ordinary ST, the Rayleigh and Love waves are
inseparably overlapping both in time and frequency. It can
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Table I
INFORMATION OF SYNTHETIC AND REAL DATA EXAMPLE CORRESPOND TO My, = 8.2 EARTHQUAKE OCCURRED NEAR COAST OF CHIAPAS,
MEXICO RECORDED AT COLA STATION, IU NETWORK ALASKA, USA.

Date Time Hypo-lat Hypo-Lon  Hypo-dep

Station-lat

Station-lon  Station-ele  Dis Azimuth

2017-09-08  04:49:20(UTC)  15.022 -93.899 47.4km

64.87°

-147.86° 200m 61.56°  -22.98°

be deduced either from the TFR maps or from the SM and
Sm maps. In contrast, for the SP-TFR (Right panels), the
high-resolution TFR successfully separated the wavefields,
giving the possibility of discriminating between different
seismic wave phases. It is also seen in the SM and Sm
maps in Fig. 3. Another interesting feature is the SH and
Love wave pattern in the TFR. The Love wave has been
concentrated around the dispersion curve; however, the
SH wave has been spread in a wider frequency bandwidth
around the time 800 secs. It makes using amplitude at-
tribute more efficient in separating them. Subsequently,
by incorporating the obtained TF domain polarization
parameters, we process the data to filter different seismic
phases.

1) Love and Rayleigh wave filtering using SP-TFF:
The TF domain polarization parameters obtained form
SP-TFR, are used to define and adaptive filter according
to section (II-C) to filter Love and Rayleigh waves.

To extract and filter the Love waves, we design a
directivity filter by defining the directivity measure with
respect to the transverse axis er in (26), and a set of
adjusting parameters v = 0.13 and A = 0.16 for amplitude
threshholding and cosine tapering of the directivity mea-
sure. An amplitude filter by the set of parameters { = 0.26
and 1 = 0.23 was combined to define a Love-reject filter
accroding to (30). The results of applying the filter on the
SP-TFRs of the transverse, radial and vertical components
are shown in panels (a), (c), and (d) of Fig. 4. As is
shown, the energy corresponds to the Love wave in the TF
plane has been significantly removed, and only scattered
energy remains, which corresponds to the body and coda
waves, and noise (top panel). The SP-TFRs of the radial
(panel (c)) and vertical (panel (e)) components have not
been affected by filtering. The black color waveform in
(a), (c), and (e) panels of Fig. 1 depict reconstructed
transverse, radial and vertical components after filtering
in the time domain; the Love wave is almost entirely
removed in the time domain, while the other phases,
including the body and coda wave, and also the noise
has remained in the seismogram. It is a promising feature
of the SP-TFF algorithm compared to the Pinnegar [15]
method, which attains a null value for the inclination
and azimuth parameters corresponding to a linear particle
motion. The filtering process has not affected other phases
in the radial and vertical components, except a minor
effect on the Rayleigh phase around the time 700s, in
which the SP-TFR of the Rayleigh and Love phases fully
overlaps. An interesting result of applying SP-TFF in
this example is that a SH phase around 800 sec masked
by high-amplitude Love waves has been recovered after
filtering.

o 1
0 500 1000 1500 0 500 1000 1500

Frequency(Hz)

1000 1500

Time (s)

Figure 3. Panels (a) and (c): TFR of measure of SM and Sm axis of
particle motion obtained by using the Pinnegar [15] method. Panels
(b) and (f): The corresponding TFR of measure of SM and Sm axis of
particle motion obtained by by implementing EDPA on the SP-TFR.
[Refer to the text for more explanations].

To filter the Rayleigh phase, the directivity measure is
computed with respect to the radial-vertical plane com-
puted as

D(k,1) = \/Dg(k,1)2 + Dz(k,1)2. (32)

The adjusting parameters are set to v = 0.25 and A = 0.3.
Furthermore, a rectilinearity filter is defined by setting
the parameters @ = 0.1 and § = 0.12. The results of
applying the filter on the SP-TFRs of 3-components are
shown in the panels (b), (d), and (f) of Fig. 1. Similar to
the Love wave filtering, the filtered SP-TFR only contains
scattered energy of the noise, body, and coda waves in
the radial and vertical components. The reconstructed
filtered components are shown in the right panels shown in
the right panel of Fig. 1. As shown, SP-TFF successfully
filtered the Rayleigh wave without affecting the body and
coda waves in the radial and vertical components and
substantially affected the other phases in the transverse
components. The same as for the Love wave filtering,
around 800s, the Love wave has slightly been filtered. The
results obtained from the SP-TFF are superior to those
from Pinnegar [15] by having a very high-resolution TFR
enable to separate the Rayleigh and Love waves, while in
the ordinary ST the TF resolution is limited.

As a final test to assess the SP-TFF method, the Love
and Rayleigh phases are extracted by applying (30) on the
SP-TFR of three components. The extracted Love wave is
shown in the (a) panel of Fig. 5. Similarly, panels (b) and
(c) of this figure show the radial and vertical components
of Rayleigh waves. Both the Love and Rayleigh phases
have been cleanly extracted from the entire waveform. The
extracted surface waves can be used as an input to other
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Figure 4. Left panel: Adaptively Filtered SP-TFRs of the transverse,
radial, and vertical components of synthetic data to eliminate the
Love wave. Right panel: Adaptively Filtered SP-TFRs of components
to eliminate the Rayleigh wave.
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Figure 5. Panel (a): extracted Love wave by applying SP-TFF
method on the synthetic data. Panel (b) and (c): the radial and
vertical component of extracted Rayleigh wave by applying SP-TFF
method.

processing methods like dispersion curve inversion. In the
following subsection, we examine the performance of the
method on real data.

B. Real data example

The real seismogram corresponds to the real data
recorded for the same earthquake and station of the
synthetic model. The waveform was pre-processed includ-
ing detrending, decimation, deconvolving the instrument
response, and converting to velocity with a sampling rate
of 2 sec. The traces were mapped to the transverse-radial-
vertical coordinate system. The pre-processed transverse,
radial, and vertical components are shown in gray color in
the top, middle, and bottom panels of Fig. 6.

The obtained TFR by applying [15] and SP-TFR meth-
ods are shown in the left and right panels of Fig. 7; similar
to the synthetic example, the SP-TFR (right panels)
presents a highly compact TFR comparing to the ordinary
ST implemented by Pinnegar [15] (left panels). Although
there is no sharp up-chirp pattern for the surface waves
like in the synthetic data, there are still two separate
energy panels in the SP-TFR of different components
showing an increasing value of frequency by time. These
two panels marked by dash-dot and continuous line ellipsis
correspond to Love and Rayleigh waves, respectively. Two
other panels shown by dashed ellipsis contain mostly body
and coda waves. On the other hand, the TFR obtained
by ST and shown in the left panel of Fig. 7 depicts
a mixed and inseparable pattern of Love and Rayleigh
waves. The distinct polarization pattern between the Love
and Rayleigh waves is better visible in the TF domain SM
and Sm axes of particle motion as shown in the right panel
of Fig. 8. The elliptical particle motion of Rayleigh waves
is separable from the Linear particle motion of Love, body,
and coda waves in the SM and Sm axes figures. Contrarily,
they have been mixed in time and frequency in the results
obtained by Pinnegar [15] method, as shown in the left
panel of Fig. 8. In the following subsection, we perform
the adaptive filtering method to reject or extract Love and
Rayleigh waves.

1) Love and Rayleigh wave filtering using SP-TFF:
The TF domain polarization parameters obtained from
SP-TFR are used to design an adaptive filter to filter Love
and Rayleigh waves. For the real data, similar adjusting
parameters of v = 0.1, A = 0.13, o = 0.03, and 5 = 0.04
to the ones defined for the synthetic example were set to
design directivity and rectilinearity attributes. We only
slightly changes the for amplitude filtering parameters
by setting ¢ = 0.16 and n = 0.19. A visual assessment
chose an initial time of 630 seconds as a constraint to
limit the filtering region. It affects to discriminate between
the high amplitude of SH waves and Love waves. domain
while rejecting or extracting seismic phases The (a), (c),
and (e) panels of Fig. 9 show the filtered SP-TFRs of
the transverse, radial, and vertical components of the
data, respectively. As it can be seen, the focused energy
corresponding to the Love waves [shown by blue oval in
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Figure 6. The background gray color waveforms in top, middle,
and bottom panels corresponds to transverse, radial, and vertical
components of M,, = 8.2 earthquake [see text and Table. I]. The
foreground black color diagram in panels (a), (c), and (e) are Love
wave filtered transverse, radial, and vertical components by using the
SP-TFF, and the panels (b), (d), and (f) are corresponding Rayleigh
wave filtered components.
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Figure 7. Left panel: The TFR of the transverse, radial, and
vertical compenents of M,, = 8.2 earthquake obtained by applying
conventional ST. Right panel: The SP-TFR of the components.

Figs. 8 and 7] are highly damped as a result of filtering,
and only a scattered signal corresponding to body and
coda waves remained in the transverse component. The
SP-TFRs of the radial (panel (c)) and vertical ( panel
(e)) components have not significantly affected by filtering.
The black color waveforms at the (a), (e), and (e) panels of
Fig. 6 depict reconstructed signal for the transverse, radial,
and vertical components in the time domain. The results
confirm that the SP-TFF filtering significantly canceled
the Love wave in the time domain without affecting other
phases, including the body and coda waves.

To filter the Rayleigh phase, the adjusting parameters

Frequency(Hz)

0 500 1000 1500

Time (s)

Figure 8. Left panel: The TFR of the length of the SM and Sm axis
of particle motion of the transverse, radial, and vertical components
of M,, = 8.2 earthquake obtained by using the Pinnegar [15] method.
Right: SM and Sm axes by implementing EDPA on the SP-TFR.

of the directivity measure are set to vy = 0.1 and A = 0.13,
and the rectilinearity filter is set to have o = 0.03 and
B = 0.04 adjusting parameters. The results of applying
the filter on the SP-TFRs of 3-components are shown in
the right panels of Fig. 9. Like the Love wave filtering,
the filtered SP-TFR only contains scattered energy of the
noise, body, and coda waves in the radial and vertical
components. The reconstructed filtered components are
shown in the right panels shown in the right panel of Fig.
6. As shown, SP-TFF successfully filtered the Rayleigh
wave without affecting the body and coda waves in the
radial and vertical components and substantially affected
the other phases in the transverse components.

Finally, we extracted the Love and Rayleigh phases for
the real data set by applying (30) on the SP-TFR of
three components. The extracted Love wave is shown in
the (a) panel of Fig. 10. Similarly, panels (b) and (c) of
this figure show the radial and vertical components of
Rayleigh waves. Both the Love and Rayleigh phases have
been cleanly extracted from the entire waveform, without
any inclusion of body and coda waves. In the following sub-
section, we present a discussion on the SP-TFF method.

IV. DI1ScuUSSION AND CONCLUSIONS

We presented a SP-TFF method by combining SP-TFR
and EDPA methods as a robust seismic processing tool
to separate different phases of seismic waves according
to their polarization state. Taking advantage of SP-TFR,
high-resolution polarization information is attained to be
analyzed by TF-domain polarization attributes for resolv-
ing closely spaced seismic events in time and frequency.
Conducting numerical examples on synthetic and real
earthquake data, we showed that the SP-TFF can be
used as a sophisticated tool to filter elliptical and linear
particle motion by designing suitably defined directivity,
rectilinearity, and amplitude attributes. Remarkably, not
only SP-TFF is efficient to filter Love and Rayleigh waves
from the other seismic phases, but it also can handle a
more challenging problem of discrimination between the
Love and SH and coda waves. This is a promising feature
of this method.


https://earthquake.usgs.gov/earthquakes/eventpage/us2000ahv0/executive
https://earthquake.usgs.gov/earthquakes/eventpage/us2000ahv0/executive
https://earthquake.usgs.gov/earthquakes/eventpage/us2000ahv0/executive

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. , NO. , MAY 2021 10

Frequency(Hz)
o o
s & =
IE
o o
s & =
o o =

0
500 1000 1500 0 500 1000 1500

o

Figure 9. Left panel: Adaptive Filtered SP-TFRs of the transverse,
radial, and vertical components of the M,, = 8.2 earthquake to
eliminate the Love wave. Right panel: Adaptive Filtered SP-TFRs
of components to eliminate the Rayleigh wave.
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Figure 10. Panel (a): extracted Love wave by applying SP-TFF
method on the synthetic data. Panel (b) and (c): the radial and
vertical component of extracted Rayleigh wave by applying SP-TFF
method.

SP-TFF can find application in various seismic pro-
cessing methods like anisotropy parameters estimation
using the Shear Wave Splitting method [35], surface waves
extraction for dispersion curve inversion [36] and sensor
miss-orientation test [21], and elimination of the surface
waves to extract the coda waves.

The highest computational cost of the algorithm is due
to solving the regularized inverse problem (22). As a result,
considerable memory space and high computation time
are required for a massive input data set. Furthermore,
the weakly stationary condition assumption in (5) violates
for very low frequencies. Notwithstanding, these are draw-
backs of SP-TFF methods.

This paper intended to present the methodology of
SP-TFF; only processing earthquake waveforms evaluated
the efficiency. The research is ongoing with studying
other critical issues, including (a) stability of SP-TFF at
different SNR levels, (b) evaluation of the efficiency of
SP-TFF for processing ambient noise data, (c) application
of SP-TFF for extraction of low amplitude seismic phases,
and (d) extraction of surface wave dispersion curves using
SP-TFF.

V. CODE AND DATA AVAILABILITY

The numerical results from the synthetic and real data
examples presented in this paper are reproducible by
running a set of computer codes available at the Github
account ("Will be inserted when the manuscript is ac-
cepted").
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