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Abstract

Since its outbreak, the rapid growth of COrona VIrus Disease 2019 (COVID-19) across the globe has pushed the health care

system in many countries to the verge of collapse. Therefore, it is imperative to correctly identify COVID-19 positive patients

and isolate them as soon as possible to contain the spread of the disease and reduce the ongoing burden on the healthcare

system. The primary COVID-19 screening test, RT-PCR although accurate and reliable, has a long turn-around time. In the

recent past, several researchers have demonstrated the use of Deep Learning (DL) methods on chest radiography (such as X-ray

and CT) for COVID-19 detection. However, existing CNN based DL methods fail to capture the global context due to their

inherent image-specific inductive bias. Motivated by this, in this work, we propose the use of vision transformers (instead of

convolutional networks) for COVID-19 screening using the X-ray and CT images. We employ a multi-stage transfer learning

technique to address the issue of data scarcity. Furthermore, we show that the features learned by our transformer networks

are explainable. We demonstrate that our method not only quantitatively outperforms the recent benchmarks but also focuses

on meaningful regions in the images for detection (as confirmed by Radiologists), aiding not only in accurate diagnosis of

COVID-19 but also in localization of the infected area.
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xViTCOS: Explainable Vision Transformer
Based COVID-19 Screening Using Radiography

Arnab Kumar Mondal*, Arnab Bhattacharjee*, Parag Singla and Prathosh AP

Abstract— Since its outbreak, the rapid growth of
COrona VIrus Disease 2019 (COVID-19) across the globe
has pushed the health care system in many countries to
the verge of collapse. Therefore, it is imperative to correctly
identify COVID-19 positive patients and isolate them as
soon as possible to contain the spread of the disease
and reduce the ongoing burden on the healthcare system.
The primary COVID-19 screening test, RT-PCR although
accurate and reliable, has a long turn-around time. In the
recent past, several researchers have demonstrated the
use of Deep Learning (DL) methods on chest radiography
(such as X-ray and CT) for COVID-19 detection. However,
existing CNN based DL methods fail to capture the global
context due to their inherent image-specific inductive bias.
Motivated by this, in this work, we propose the use of
vision transformers (instead of convolutional networks) for
COVID-19 screening using the X-ray and CT images. We
employ a multi-stage transfer learning technique to ad-
dress the issue of data scarcity. Furthermore, we show
that the features learned by our transformer networks are
explainable. We demonstrate that our method not only
quantitatively outperforms the recent benchmarks but also
focuses on meaningful regions in the images for detection
(as confirmed by Radiologists), aiding not only in accurate
diagnosis of COVID-19 but also in localization of the in-
fected area. The code for our implementation can be found
here - https://github.com/arnabkmondal/xViTCOS.

Index Terms— COVID-19 Detection, AI for COVID-19,
Deep Learning, Vision Transformer, Chest Radiography,
COVID-19 Detection Using CT Scan and CXR

I. INTRODUCTION

A. Background

The novel COronaVIrus Disease 2019 (COVID-19) is a
viral respiratory disease caused by Severe Acute Respiratory
Syndrome COronaVirus 2 (SARS-CoV2). The World Health
Organization (WHO) has declared COVID-19 a pandemic on
11 March 2020 [1]. This has pushed the health systems of sev-
eral nations to the verge of collapse. It is, therefore, of utmost
importance to screen the positive COVID-19 patients accu-
rately for efficient utilization of limited resources. Two types
of viral tests are currently popularly used to detect COVID-
19 infection: Nucleic Acid Amplification Tests (NAATs) [2]
and Antigen Tests [3]. NAATs can reliably detect SARS-
CoV-2 and are unlikely to return a false-negative result of

All the authors are with Indian Institute of Technology
Delhi, New Delhi 110016, India. Email: anz188380@iitd.ac.in,
arnab.bhattacharjee@uqidar.iitd.ac.in, parags@iitd.ac.in,
prathoshap@iitd.ac.in., * indicates equal contribution.

SARS-CoV-2. NAATs can use many different methods, among
which Reverse Transcription Polymerase Chain Reaction (RT-
PCR) is the most preferred test for COVID-19 due to its high
specificity and sensitivity [4]. However, this test is expensive
as it has an elaborate kit and time-consuming. An RT-PCR
test uses nose or throat swabs to detect SARS-CoV-2 and
requires trained professionals instructed for the RT-PCR kit
to carry out the RT-PCR test. RT-PCR requires a complete
set-up that includes the trained practitioners, laboratory, and
RT-PCR machine for detection and analysis.

B. Scope and Contributions
In the recent past, deep neural network models such as

CheXNet [5] have been employed for detecting abnormalities
such as Pneumonia from chest X-ray images. These networks
achieved extraordinary results exceeding average radiologist
performance [5], [6]. Motivated by such studies, several recent
works have proposed the use of chest radiography images (X-
ray and Computed Tomography, CT) as alternate modality to
detect COVID-19 positive cases [7]–[13] (Elaborated in Sec.
II). Unlike in the chest CT/X-ray of a healthy person, the lungs
of COVID-19 affected patients show some visual marks like
ground-glass opacity and/or mixed ground-glass opacity, and
mixed consolidation [7].

While there has been a large body of literature on use
of Deep Learning for Covid detection, most of them are
based on Convolutional Neural Networks (CNNs) [13]–[16].
CNN, albeit powerful, lacks a global understanding of images
because of its image-specific inductive biases. To capture long-
range dependencies, CNNs require a large receptive field,
which necessitates designing large kernels or immensely deep
networks, leading to a complex model challenging to train.
Recently, Vision transformers [17] have provided an alterna-
tive framework for learning tasks and overcome the issues
associated with convolutional inductive bias as they can learn
the most suitable inductive bias depending on the task at hand.
Motivated by this, in this work, we propose to employ a vision
transformer (ViT) based transfer learning method to detect
COVID-19 infection from the chest radiography (X-ray and
CT scan imaging). With this, we aim to develop an explainable
model and employ a multi-stage transfer learning method to
address the need for large-scale data. Specifically, the below
are our contributions:

1) We propose a vision transformer based deep neural
classifier, xViTCOS for screening of COVID-19 from
chest radiography.

https://github.com/arnabkmondal/xViTCOS
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2) We provide explanability-driven, clinically interpretable
visualizations where the critical patches responsible for
the model’s prediction are highlighted on the input
image.

3) We employ a multi-stage transfer learning approach to
address the problem of need for large-scale data.

4) We demonstrate the efficacy of the proposed framework
in distinguishing COVID-19 positive cases from non-
COVID-19 Pneumonia and Normal control using both
chest CT scan and X-ray modality, through several
experiments on benchmark datasets.

II. RELATED WORK

The research community has proposed various novel deep
neural networks for automated screening of COVID-19 cases
using chest radiography. Most works in literature focus either
employ an off-the-shelf CNN pre-trained on generic image
datasets or prior feature extraction via different feature en-
gineering and selection techniques for COVID-19 diagnosis
from radiology data. While some of the existing methods are
binary classifiers to distinguish between COVID-19 positive
and negative cases [14], [18], [19]. Several other works [16],
[20]–[25] propose a three-class-classifier (COVID-19, non-
COVID-19 pneumonia and normal). Some work [13], [26]
differentiate non-COVID-19 Pneumonia further, e.g., bacterial
Pneumonia, viral Pneumonia. In the following two sections,
we describe the prior literature for diagnosing COVID-19
using chest radiography.

A. COVID-19 Detection Using Chest CT
Chest Computed Tomography (CT) imaging has been pro-

posed as an alternative screening tool for COVID-19 infection
[7], [8]. It has been observed that chest CT exhibits higher
sensitivity as compared to RT-PCR [9], [10].

In [27] multiple types of features, like Volume, Radiomics
features, Infected lesion number, Histogram distribution and
Surface area are extracted first from the CT images following
which a deep forest algorithm, consisting of cascaded layers
of multiple random forests, is used for discriminative feature
selection and classification. The final label is obtained by
aggregating the predictions of the last layer of random forests.
However, the use of manual feature engineering often leads
to sub-optimal performance of the classification module. This
makes deep learning based methods more attractive.

The work in [14] performs a comparative study by exploit-
ing transfer-learning to optimize 10 pre-trained CNN models
viz AlexNet [28], VGG-16 [29], VGG-19 [29], SqueezeNet
[30], GoogleNet [31], MobileNet-V2 [32], ResNet-18 [33],
ResNet-50 [33], ResNet-101 [33], and Xception [34] on CT-
scan images to differentiate between COVID-19 and non-
COVID-19 cases. As per the results reported in [14], ResNet-
101 and Xception achieve best performance. [25] segment out
candidate infection regions from the pulmonary CT image
set using a 3D CNN segmentation model and categorize
these segments into the COVID-19, IAVP, and irrelevant to
infection (ITI) groups, together with the corresponding confi-
dence scores, using a location-attention classification model.

COVNet [35] is a ResNet50 based CNN architecture that takes
as input a series of CT slices and compute features from each
slice of the CT series, which are combined by a max-pooling
operation, and the resulting feature map is fed to a fully con-
nected layer to generate a probability score for each class. [36]
uses a pre-trained EfficientNet as the backbone and extracts
features from each slice of CT data, and makes a binary
prediction. Next, the slice level predictions are combined using
a multi-layer perceptron (MLP) to make a final prediction
at the patient level. COVIDNet-CT [16] is a architecture
developed via machine-driven design exploration. Notable
characteristics of COVIDNet-CT include high architectural
diversity (heterogeneous composition of conventional spatial,
point-wise, and depth-wise convolution layers), selective long-
range connectivity, and lightweight design patterns (unstrided
and strided projection-replication-projection-expansion). [37]
proposes Contrastive COVIDNet which is built upon the
COVIDNet [12] architecture by introducing domain specific
batch normalization layers. The authors propose a joint learn-
ing algorithm where the model is trained to minimize a cross
entropy classification loss and a contrastive loss that is meant
to minimize the difference between same class but cross site
image embeddings while maximizing the difference between
different class embeddings. However, to apply this method
prior information about the sources of the datasets is required
making it difficult to apply it to heterogenous cases where
the sources are unknown. In [38] a custom CNN model is
built with two separate lines of forward pass and deep feature
aggregation to classify COVID and non-COVID. The network
is trained to work both on CT and X-ray data. It employs a
deep feature aggregation strategy by aggregating layer outputs
from varying depths following a classifier network. ResGNet-
C [39] exploits Graph Convolution Network (GCN) [40] to
perform binary classification task using the Resnet-101 [33]
extracted features.

B. COVID-19 Detection Using Chest X-ray

Although chest-CT has more sensitivity as compared to RT-
PCR [9], [10], associated cost and resource constraints makes
routine CT screening for COVID-19 detection a less accessible
solution to the third world’s teeming millions. On the other
hand, digital X-ray is an easily accessible modality.

ChestX-Ray8 [41] (later expanded to constitute ChestX-
ray14 dataset), and CheXpert [42] are two large-scale datasets
of chest X-rays (CXR) to facilitate the training of deep neural
networks for automated interpretation of a wide variety of
thoracic diseases. ChexNet [42] is DenseNet-121 [43] based
deep neural network for Pneumonia detection using chest X-
ray images and it achieved excellent results exceeding average
radiologist performance. ChestNet [44] is another deep neural
network designed to diagnose thoracic diseases using chest
radiography images. The authors in [45] proposes to learn
channel wise, element wise, and scale wise attention (triple
attention) simultaneously to classify 14 thoracic diseases using
chest radiography. Thorax-Net [46] is an attention regularized
deep neural network for classification of thoracic diseases on
chest radiography.
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In [47] the authors propose a novel segmentation – classifi-
cation pipeline defined in three stages for binary classification
of chest X-ray images into COVID-19 and non COVID-
19 routines. In the first stage, the significant lung region is
cropped from the chest X-ray images using a bounding box
segmentation. In the second stage, a GAN inspired class –
inherent transformation network is used to generate two class
inherent transformations x+ and x− from each input image
x. These are then used to solve a four-class classification
problem using a CNN with a Resnet-50 backbone and an
aggregation strategy is developed to obtain the final class.
However, as the number of classes increase, the number of
generators to be trained in the second stage of this method
will increase accordingly, making it difficult to scale for
multi class classification. COVID-Net [12] leveraged a human-
machine collaborative design strategy to produce a network
architecture tailored for COVID-19 detection from chest X-
ray images. CoroNet [13] uses Xception [34] backbone for
extracting CXR image features which are classified using a
multi-layer perceptron (MLP) classification head. CovidAID
[26] finetunes a pretrained CheXNet [5]. [48] proposes a
novel architecture with multiscale attention-based generation
augmentation and guidance for training a CNN model for
COVID-19 diagnosis. The multi-scale attention features are
computed from the intermediate feature maps of a Resnet-50
[33] based feature extractor and are combined with the final
feature map to obtain the predictions. The attention maps are
also used for augmenting the input images, the predicted labels
of which are then utilized to further regularize the training
loss via a soft distance regularization technique. [49] proposes
another attention based CNN model incorporating a teacher-
student transfer learning framework for COVID-19 diagnosis
from Chest X-ray and CT images.

Although numerous works in the computer vision literature
[50]–[54] have highlighted the benefits of using self-attention
along with convolutional neural networks for numerous vision
tasks, it has been shown in a recent work [17] that the
convolutional layers can simply be scraped and by using only
stacked self attention layers, one can achieve SOTA results
in image classification tasks. This is the motivation behind
xViTCOS as will be described in section III. CHP-Net [22]
consists of three networks: a bounding box regression network
to extract bi-pulmonary region coordinates, a discriminator
deep learning model to predict a differentiating probability
distribution, and a localization deep network that represents
all potential pulmonary locations. In [11] the authors propose
using shape dependent Fibonacci p patterns to extract features
from chest X-ray images and then apply conventional machine
learning algorithms including SVM, KNN, Random Forest,
AdaBoost, Gradient Tree Boosting, and Decision Trees are
used for performing binary and ternary classification of X-ray
images. [19] first extracts orthogonal moment features using
Fractional Multichannel Exponent Moments (FrMEMs). Next,
the most significant features are selected using a differential
evolution based modified Manta-Ray Foraging Optimization
(MRFO). Finally a KNN classifier is trained to distinguish
COVID-19 positive cases from negative cases.

III. PROPOSED METHOD

As described in Sec. II, the existing state-of-the-art AI
models for automated COVID-19 detection uses either pre-
trained convolutional neural network (CNN) and fine tune
on CXR dataset or design a novel network and train from
scratch. Unlike the existing methods, we propose a vision
transformer (ViT) [17] based model for automated COVID-
19 screening and call it xViTCOS, illustrated in Figure 1.
Since we use xViTCOS on two chest radiography modalities
CT scan images and chest X-ray images, we refer to them as
xViTCOS-CT and xViTCOS-CXR respectively in our further
discussion when the two models are to be distinguished.

A. Vision Transformers

A Vision Transformer [17] is a deep neural model that
adapts the attention-based transformer architecture [55] preva-
lent in the domain of natural language processing (NLP) to
make it suitable for pattern recognition in visual image data.
While the original transformer architecture comprises of an
encoder and a decoder, vision transformer is an encoder-
only architecture. The standard transformer was originally
designed to handle sequence data and expects to receive 1D
sequence of token embeddings. In case of non-sequential
image analysis tasks, like image classification, the input image,
x ∈ RH×W×C is broken down into N image patches, x(i)

p ∈
RP×P×C , where i ∈ {1, · · ·N}, and each patch is of shape
P ×P in 2-D, C denotes the number of channels (e.g. C = 3
for RGB images) and N = H×W

P×P . These patches derived
from the image is then effectively used as a sequence of
input images for the Transformer. These input patches are
first flattened and then mapped to a D dimensional latent
vector through a trainable linear projection layer, leading to
the generation of patch embeddings. Throughout its layers,
the transformer maintains a constant latent vector size of D.
Similar to the [class] token in BERT [56], a learnable embed-
ding is embedded to the sequence of the patch embeddings
(Z0

0 = xclass). The final transformer layer state corresponding
to this class token, z0

L, represents in a compact form the
classification information that the model is able to extract
from the image(y). The classification head is attached to z0

L

during both pre-training and fine-tuning. In order to retain
crucial positional information, standard learnable 1D position
embeddings are added to the patch embeddings. The final
resulting sequence is provided as input to the encoder. During
pre-training an MLP is used to represent the classification head
and it is replaced by a single linear layer during the fine-
tuning stage. As illustrated in the Figure 1, the transformer
encoder of a vision transformer consists of alternating layers
of multiheaded self-attention (MSA) and MLP blocks. Lay-
ernorm (LN) is applied before every block, and residual or
skip connections after every block. The workings of the vision
transformer can be mathematically described in Equations
below:
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Fig. 1: xViTCOS: Illustration of our proposed network for COVID-19 detection using chest radiography (CT scan / CXR
image). The input image is split into equal-sized patches and embedded using linear projection. Position embedding are added
and the resulting sequence is fed to a Transformer encoder [55].

Fig. 2: xViTCOS: Block diagrams of Multi head Attention
and Scaled Dot Product Attention Layers [57].

z0 =
[
xclass;x

1
pE;x2

pE; · · ·xN
p E

]
+Epos (1)

z
′

l = MSA (LN (zl−1)) + zl−1,∀l = 1 · · ·L (2)

zl = MLP
(

LN
(
z

′

l

))
+ z

′

l, ∀l = 1 · · ·L (3)

y = LN
(
z0
L

)
(4)

where E ∈ R(P 2C)×D and Epos ∈ R(N+1)×D

B. The Transformer Encoder
In general, a multi head attention block in a Transformer

encoder is composed of horizontally stacked scaled dot prod-

uct attention blocks. The scaled dot product attention block as
shown in figure 2 takes as inputs three vectors: a query vector
and a key vector each of dimensions dp and a value vector
of dimension dv . The query vector is that particular image
embedding with reference to which we want to calculate the
attention values it receives from the other image embeddings
in the sequence. Any of the other image embeddings about
which we want to calculate the compatibility of our query
vector can be the key vector. Suppose we want to quantify the
compatibility or the influence that image embedding p2 has
on embedding p1. In that case p1 is our query and p2 is the
key. The dot product of the query vector with respect to all the
key vectors are computed, scaled and then a softmax function
is applied to get the weights on the value vectors. In practice
the attention function is carried out on a set of query vectors
stacked as a matrix Q. The keys and values are also stacked
together to form matrices K and V respectively.

Attention (Q,K,V ) = Softmax

(
Q×KT√

dp

)
V (5)

Instead of using dn dimensional vectors to calculate a single
attention, it has been found beneficial to obtain h sets of dp, dp
and dv dimensional query, key and value vectors respectively
through h different, trainable linear transformations. Attention
is then performed in parallel on these h different sets of query,
key and value vectors, the dv dimensional outputs of which
are concatenated and again projected linearly to the model
dimension dn to obtain the final results. Through multi head
attention, it becomes possible to extract attention representa-
tion from a multitude of transformation spaces resulting in rich
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representations.

MultiHead (Q,K,V ) = Concat
(
att1, · · · atth

)
×WL (6)

atti = Attention
(
Q×WQi,K ×WKi,V ×WV i

)
(7)

where WQi ∈ Rdn×dp , WKi ∈ Rdn×dp , WV i ∈ Rdn×dv

and WL ∈ Rhdv×dn are the linear transformation matrices.
Using attention mechanism, the transformer encoder architec-
ture is able to generate representations with the capability
of capturing a specific piece of information from a poten-
tially infinitely-large context, the context being provided by
the sequence of patch embeddings. In this scenario, context
intuitively refers to the amount of information that one patch
embedding or simply a patch of image has about another and
it quantifies how closely related they are.

C. Inductive Bias in ViT
Unlike CNN based models that exploit the inherent bias

associated with CNN such as translation invariance and a
locally restricted receptive field, vision transformer (ViT) [17]
has much less image specific inductive bias. This is because
ViT treats an image as a sequence, hence loses any structural
and neighborhood information a CNN can easily recognise.
Although MLP layers are local and translationally equivariant,
the self-attention layers are global. In fact in a ViT the spatial
and two dimensional neighborhood relationships in an image
needs to be learnt from scratch as the images are broken down
into patches and fed as a sequence. The only mechanism that
adds inductive bias and provides structural information about
the image to the encoder are the position embeddings, that are
concatenated with the patch embeddings. Without those, the
Vision Encoder might find it difficult to make sense of the
image patch sequence. Consequently, ViT does not generalize
well when trained using insufficient amount of data. This
might be a bit discouraging but the entire status quo changes
as the size of the dataset increases. The large size of the
training dataset overshadows the dependence of the model on
inductive bias for generalization. As can be expected, using
a ViT model pretrained on a large training dataset under a
transfer learning framework on a smaller target dataset leads
to improved performance. To combat this, we propose a multi-
stage transfer learning strategy.

D. Multi-stage Transfer Learning
A domain and a task are the two main components of a

typical learning problem. For the specific case of a supervised
classification problem, the domain, D might be defined as
the tuple of the feature space, X , and the marginal feature
distribution, P (X), i.e. D = 〈X , P (X)〉. The task, T is
a tuple of label space, Y , and the posterior of the labels
conditioned on features, P (Y |X), i.e. T = 〈Y, P (Y |X)〉. Any
change in either of the two components of a machine learning
problem would cause severe degradation in the performance of
the trained model and necessitates rebuilding the model from
scratch. Transfer Learning is a way to combat this issue.

Given a source domain, Ds and a corresponding task, Ts,
and a target domain, Dt and a corresponding task, Tt, the

objective of transfer learning is to improve the performance of
a machine learning model in Dt using the knowledge acquired
in Ds and Ts [58]. Transfer learning has played a significant
role in the facilitating the use of deep learning in numerous
applications [59]–[64]. Along with deep convolutional neural
networks (DCNNs), it has demonstrated tremendous success
in medical image classification [14], [65] tasks where datasets
are often sparse. In this work, we empirically demonstrate how
knowledge transfer is equally effective for vision transformer
based framework in medical image classification.

In our case, the target domain consists of chest radiography
image data that the proposed model is ultimately supposed
to explain, i.e., for xViTCOS-CXR, the target data is the
COVID-19 CXR dataset and for the xViTCOS-CT model, the
target data consists of the COVIDx-CT-2A dataset [66]. The
target task to be learned is to classify the radiography images
into three classes – COVID-19 Pneumonia, non-COVID-19
Pneumonia, and normal.

The first source domain DS1 that our proposed ViT model is
trained on consists of a large-scale dataset, ImageNet [67]. It is
a widely used dataset for pre-training deep learning algorithms
for a plethora of vision tasks. Since effective ViT training
demands access to a sufficiently large number of data points,
we choose a model which is pretrained on ImageNet-21k
[67] (TS1) in a self-supervised manner and later finetuned on
ImageNet-2012 [68] (TS2

). This pre-training aims to ensure
that the model learns to extract crucial but generic image
representations to classify natural images.

In our case, the underlying distribution of clinical radio-
graphic images is vastly different from an unconnected set
of natural images like those in ImageNet, and distributional
divergence is very high between the two domains. Hence in
cases where the target dataset is of insufficient capacity, the
pre-trained ViT model might find it highly difficult to bridge
the domain shift between the learned source domain and the
unseen target domain. However, with a sufficient number of
training examples available from the target domain, the ViT
model can overcome the gap between these two domains.

Keeping this in mind, an intermediate stage of knowledge
transfer is used in this paper to train our proposed model
depending on the size of the target domain training data. The
primary goal of this stage of transfer learning is to help the
ViT model, pre-trained on a generic image domains DS1

,DS2
,

to learn chest radiography specific representations to overcome
the existing domain shift. In order to achieve this, we further
finetune the pre-trained ViT model on a large collection of
chest radiographic data (DS3) after replacing its existing
classification head with one suitable for the corresponding
classification task (TS3

) .
In our case, the COVIDx-CT-2A dataset [66] begin a

moderate-sized dataset (refer to Table I), xViTCOS-CT model
was able to overcome the domain shift and achieved state-
of-the-art performance without the need for the intermediate
finetuning stage. However, due to a limited number of COVID-
19 CXR images (refer to Table II), an intermediate stage of
knowledge transfer was employed to improve the performance
of xViTCOS-CXR model. A publicly available large-scale
CXR dataset, CheXpert [42] was used, and xViTCOS-CXR
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TABLE I: Summarized description of COVIDx CT-2A dataset
[66].

Split Normal Pneumonia COVID-19 Total
Train 35996 25496 82286 143778

Validation 11842 7400 6244 25486
Test 12245 7395 6018 25658

was finetuned to classify five medical conditions (Atelectasis,
Cardiomegaly, Consolidation, Edema, and Pleural Effusion)
and the case of no finding on that dataset. Following this, the
existing classification head of the ViT network was replaced by
a new head suited for the particular target task, i.e., COVID-19
detection, and the model was further finetuned on the target
domain.

Section IV-E presents an ablation study to understand the
impact of multi-stage transfer.

E. Implementation Details
In all of our experiments, we have used ViT-B/16 network

with the following configuration- Patch size: 16×16, Fraction
of the units to drop for dense layers (Dropout rate): 0.1,
Dimensions of the MLP output in the transformers: 3072,
Number of transformer heads: 12, Number of transformer lay-
ers: 12, Hidden size: 768. The model parameters are initialized
with the parameters of a model pretrained on ImageNet-21k
[67] and fine-tuned on ImageNet-2012 [68].

While training xViTCOS-CXR, for the intermediate
finetuning step using CheXpert [42], we use standard binary
cross-entropy loss. This is because the classification task
using CheXpert is a multi-label classification problem.
Finally, while finetuning in the target COVID-19 CXR
images, categorical cross-entropy loss is used to solve a
multi-class classification problem. While training xViTCOS-
CT, we utilize categorical cross-entropy. We use Keras [69]
with Tensorflow [70] backend and vit-Keras1 package for
implementation of our code.

IV. EXPERIMENTS AND RESULTS

A. Datasets
Some of the existing works validate their methods using

private datasets [39], and several other works [13], [15],
[16], [26], [71] combine data from different publicly available
sources. While combining data from different public repos-
itory, researchers should be careful to avoid duplication as
a contributor might upload the same image to many of the
repositories. Another interesting way to mitigate the issue of
data scarcity is through generative data augmentation where a
neural generative framework [72]–[77] is trained to generate
novel data samples. However in this work, we use the datasets
described in the next section. We have rerun the codes of the
baseline models using same dataset and same split to ensure
a fair comparison.

1) CT Scan Dataset: To demonstrate the efficacy of
xViTCOS-CT, we use COVIDx CT-2A dataset [66], derived

1https://github.com/faustomorales/vit-keras

TABLE II: Summarized description of CXR dataset.

Split Normal Pneumonia COVID-19 Total
Train 1079 3106 1726 5911

Validation 270 777 432 1479
Test 234 390 200 824

from several public repositories [24], [78]–[84]. This dataset
contains 194, 922 CT scans from 3,745 patients across the
globe with clinically verified findings. Table I summarizes the
important statistics of COVIDx CT-2A dataset.

2) Chest X-ray Dataset: To benchmark xViTCOS-CXR
against other deep learning based methods for COVID-19
detection using CXR images, we construct a custom dataset
consisting of three cases: Normal, Pneumonia, and COVID-19.
Like in [13], [26], Normal and Pneumonia CXR images were
obtained from the Kaggle repository ‘Chest X-Ray Images
(Pneumonia)’ [85], which is derived from [86]. COVID-19
images were collected from the Kaggle repository ‘COVIDx
CXR-2’ [87], which is a compilation of several public repos-
itories [88]–[93].

COVIDx-CXR-2 [87] provides only Train-Test split of
the data. To automatically select the best model based on
validation-set performance, we split Training set in 80 : 20
ratio as train and validation set. This would have caused
huge class imbalance in the validation set as ‘Chest X-Ray
Images (Pneumonia)’ [86] contains only 8 images per class
in the validation set. Therefore, we combine the training and
validation split and reconstruct the training and validation
split in 80 : 20 ratio. Table II summarizes split-wise image
distribution. Note that, we have kept the test split intact in
both the datasets to prevent patient-wise information leakage
as multiple images for the same patient could be present in
the dataset.

B. Data Preprocessing and Augmentation

1) CT Images: COVIDx CT-2A dataset [66] provides
bounding box annotations for the body regions within the CT
images. To standardize the field-of-view in the CT images,
we crop the images to the body region using this additional
information. Next each cropped image is resized to a fixed size
of 224×224 pixels. To improve generalizability of the model,
we augment the training data on the fly by applying random
affine transformations such as rotation, scaling and translation,
random horizontal flip and random shear.

2) CXR Images: In the compiled dataset, the chest X-ray
images are of various sizes. To fix this issue, all the images
were resized to a fixed size of 224 × 224 pixels. Again as
in the case of CT images, to improve the generalizability of
the model, we apply the same sets of autmentation techniques
(refer to Section IV-B.1). In addition, we apply random zoom
in and zoom out, and random channel shift.

C. Quantitative Results

To quantify and benchmark the performance of xViTCOS,
we compute and report Accuracy, Precision (Positive Predic-
tion Value), Recall (Sensitivity), F1 score, Specificity, and

https://github.com/faustomorales/vit-keras
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TABLE III: Comparison of performance of xViTCOS-CT on CT scan dataset against state-of-the-art methods

Method Class Label Precision Recall F1-score Specificity NPV Overall Accuracy

Resnet + Location Attention [25]
Normal 0.920 0.989 0.954 0.922 0.989

0.932Pneumonia 0.963 0.799 0.873 0.987 0.924
COVID-19 0.906 0.955 0.930 0.969 0.986

COVIDNet-CT [16]
Normal 0.958 0.987 0.973 0.957 0.986

0.949Pneumonia 0.981 0.805 0.884 0.989 0.942
COVID-19 0.906 0.988 0.945 0.960 0.995

Teacher-student Attention [49]
Normal 0.969 0.989 0.979 0.971 0.990

0.964Pneumonia 0.951 0.982 0.966 0.979 0.992
COVID-19 0.957 0.877 0.915 0.987 0.963

ResGNet-C [39]
Normal 0.942 0.974 0.958 0.946 0.975

0.939Pneumonia 0.951 0.855 0.901 0.982 0.944
COVID-19 0.910 0.961 0.934 0.971 0.987

xViTCOS-CT (Proposed)
Normal 0.997 0.990 0.993 0.997 0.991

0.981Pneumonia 0.971 0.982 0.977 0.988 0.993
COVID-19 0.960 0.961 0.961 0.988 0.988

(a) xViTCOS-CT (b) xViTCOS-CXR

Fig. 3: Confusion Matrix: The horizontal axis consists of the
ground true labels and the vertical axis corresponds to the
predicted classes.

Negative Prediction Value (NPV). Let, for a particular class,
TP, FP, TN, and FN denote the number of true positive (ground
truth: positive, prediction: positive), false positive(ground
truth: negative, prediction: positive), true negative (ground
truth: negative, prediction: negative) and false negative (ground
truth: positive, prediction: negative) predictions respectively.
Next, we define the metrics considered in terms of TP, FP,
TN, and FN.

Accuracy =
TP + TN

TP + FP + TN +FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 =
2× Precision× Recall

Precision + Recall
(11)

Specificity =
TN

TN + FP
(12)

NPV =
TN

TN + FN
(13)

1) xViTCOS-CT: Table III presents the overall accuracy of
xViTCOS-CT on the test split of COVID-CT-2A dataset [66].
As can be observed, the proposed method achieves the best
accuracy score of 98.1%, surpassing the current state of art
methods. Next, we discuss the precision, recall, specificity,
PPV, NPV, and F1-scores attained by the model on test COVID
CT images and interpret their significance in determining the
classification caliber of the model. From table III, it can be
observed that xViTCOS-CT achieves a high value of recall
or sensitivity at 96%, implying that a small proportion of
pneumonia cases caused due to COVID-19 are incorrectly
classified as having non-COVID-19 origin. This implies a
significantly low number of false-negative cases, which is a
highly sought-after characteristic in a medical data classifier
as in such cases, a false negative situation may lead to denial
or delay of treatment to a person genuinely infected by the
disease. The proposed method also attains a high precision
or positive predictive value of 96% for COVID-19 cases,
implying a little chance of the model classifying a non-COVID
case as having a COVID-19 origin. However, the usefulness
of our proposed method lies in the fact that it achieves the
highest F1 scores for all the classes, implying that in terms of
both precision and recall, the proposed method is the most
balanced amongst all the baseline models. Also, it is well
able to differentiate between the normal and Pneumonia cases
of patients as well. Similarly, we can see that the proposed
model attains high specificity and NPV values of 98.8% for
the COVID-19 case, implying that false positives are also very
low. This is a useful characteristic in clinical scenarios since
the model correctly rejects all the negative cases (patients who
do not have COVID-19), facilitating efficient utilization of
limited resources.

The prowess of the proposed model can be further under-
stood From examining the confusion matrix (Figure 3a). The
proposed model can distinguish the healthy patients from both
covid and non-covid pneumonia cases very efficiently, with an
accuracy of almost 99%. Particularly, out of a total of 12245
normal cases, 12120 have been classified correctly, while 11
(0.09%) and 114 (0.93%) cases have been wrongly classified
as non-COVID pneumonia and COVID pneumonia classes,
respectively. Another interesting point to note here is that
while 114 normal cases have been misclassified as COVID-
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TABLE IV: Comparison of performance of xViTCOS-CXR on chest X-ray dataset against state-of-the-art methods

Method Class Label Precision Recall F1-score Specificity NPV Overall Accuracy

InceptionV3 [94], [95]
Normal 0.932 0.876 0.903 0.974 0.952

0.946Pneumonia 0.933 0.964 0.948 0.937 0.967
COVID-19 0.990 0.995 0.992 0.997 0.998

CoroNet [13]
Normal 0.812 0.923 0.864 0.915 0.967

0.917Pneumonia 0.953 0.941 0.947 0.958 0.947
COVID-19 1.000 0.865 0.927 1.000 0.958

CovidNet [15]
Normal 0.826 0.918 0.870 0.923 0.966

0.919Pneumonia 0.950 0.882 0.915 0.958 0.900
COVID-19 0.985 0.995 0.99 0.995 0.998

Teacher Student Attention [49]
Normal 0.913 0.902 0.908 0.966 0.961

0.932Pneumonia 0.918 0.974 0.945 0.922 0.976
COVID-19 0.989 0.885 0.934 0.997 0.964

MAG-SD [48]
Normal 0.954 0.901 0.927 0.983 0.962

0.951Pneumonia 0.931 0.974 0.952 0.935 0.975
COVID-19 0.989 0.965 0.977 0.996 0.988

xViTCOS-CXR (Proposed)
Normal 0.959 0.902 0.929 0.985 0.962

0.960Pneumonia 0.945 0.974 0.959 0.949 0.976
COVID-19 0.990 1.000 0.995 0.997 1.000

19 and 204 COVID-19 cases have been assigned the non-
COVID pneumonia label; the classifier has assigned only 31
COVID-19 originated pneumonia cases a normal class. This
implies that the proposed method can distinguish the normal
cases from the diseased cases, implying that genuine patients
can be very quickly and efficiently segregated from healthy
individuals. This makes xViTCOS-CT a genuinely valuable
tool for COVID-19 diagnosis from chest CT images and can
be used effectively along with the RT-PCR Testing.

2) xViTCOS-CXR: The observations regarding the perfor-
mance of xViTCOS-CXR compared to its contemporaries are
on the same lines as that of xViTCOS-CT, if not better. In
terms of classification accuracy, xViTCOS-CXR achieves an
accuracy of 96%, outperforming the baseline methods by a
considerable margin as can be seen from Table IV. Further,
it can be observed that xViTCOS-CXR achieves high recall
(100%) and precision values (99%) on the COVID-19 cases,
implying that the number of occasions on which the proposed
model classified a COVID-19 model as a non-COVID-19
model or vice-versa is extremely low. Interestingly, as before,
the F1-score of the proposed method for each of the classes
is the highest among its contemporary methods on the test
dataset. Examining the entries of Table IV, one can observe
that the proposed method is the most balanced in terms of
precision-recall when compared with the SOTA baselines.
Similarly, we can see that the proposed model attains high
specificity and NPV values of almost 100% for the COVID-
19 case implying that the number of false positives is almost
negligible. This is a valuable characteristic in clinical scenarios
since it allows for rapid identification of patients who do not
have COVID-19.

Analysing figure 3b, it can be seen that the class-wise
accuracy of COVID-19 is 100%, i.e., all the ground truth
COVID-19 cases have been classified as COVID-19, implying
that the number of false negatives is zero. This confirms
the efficacy of the proposed model in distinguishing between
COVID and non-COVID cases, which is an essential clinical
trait to have.

D. Qualitative Results

(a) (b)

Fig. 4: Visualization of penultimate feature space of xViT-
COS using t-SNE plots.

1) Visualization of Feature Space: To visually analyze how
clustered the feature space is, we perform a t-SNE visualiza-
tion of the penultimate features for both the models using the
test splits. As can be seen from Figure 4, the features in the
penultimate layer clusters nicely for the three different classes.

2) Explainability: For qualitative evaluation of xViTCOS we
present samples of CXR images and CT scans along with
their ground truth labels and corresponding saliency maps
along with the prediction in Figure 5. We have leveraged
explanability driven approach outlined in [96], to better un-
derstand the diagnostic relevance of the visual factors leading
to the predicted outcome of xViTCOS. Figure 5a, 5b and 5c
presents CT scans of normal, Pneumonia and COVID-19 cases
respectively; Figure 5d, 5e and 5f presents CXR images of
normal, Pneumonia and COVID-19 cases respectively.

Report corresponding to Figure 5b as interpreted by a
practicing radiologist: ground glass opacities, consolidation
and secondary interlobar septal thickening, in bilateral lung,
more extensive in right. xViTCOS-CT correctly highlighted
these suspected regions. In Figure 5c xViTCOS-CT localized
suspicious lesion regions exhibiting ground glass opacities,
consolidation, reticulations in bilateral postero basal lung
with subpleural predominance. In Figure 5e Patchy air space
opacities noted in right upper and midzone matches the regions
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(a) (b) (c)

(d) (e) (f)

Fig. 5: Visualization of different cases (normal, Pneumonia, COVID-19) considered in this study and their associated critical
factors in decision making by xViTCOS as identified using the explanability method laid out in [96] for vision transformers
[17]. In each subfigure, the left figure presents the input to xViTCOS and its ground truth label; the right figure presents the
predicted probabilities for each class and highlight the factors critical corresponding to the top predicted class. We have used
jet colormap to colorize heatmap. Figure 5a, 5b and 5c corresponds to CT scan and Figure 5d, 5e and 5f corresponds to CXR
images.

TABLE V: Ablation Studies for xViTCOS-CXR: Impact of multi-stage transfer

Method Class Label Precision Recall F1-score Specificity NPV Overall Accuracy

Training ViT from scratch on COVID-19 CXR data
Normal 0.754 0.444 0.559 0.942 0.811

0.710Pneumonia 0.688 0.897 0.779 0.634 0.873
COVID-19 0.740 0.655 0.694 0.926 0.893

Training ViT from scratch on CheXpert
and finetuning on COVID-19 CXR data

Normal 0.777 0.641 0.702 0.927 0.866
0.821Pneumonia 0.819 0.882 0.849 0.824 0.886

COVID-19 0.867 0.915 0.891 0.955 0.972

No intermediate finetuning on CheXpert
Normal 0.894 0.906 0.900 0.957 0.962

0.943Pneumonia 0.944 0.946 0.945 0.949 0.952
COVID-19 1.000 0.980 0.990 1.000 0.994

xViTCOS-CXR (multi-stage transfer)
Normal 0.959 0.902 0.929 0.985 0.962

0.960Pneumonia 0.945 0.974 0.959 0.949 0.976
COVID-19 0.990 1.000 0.995 0.997 1.000

TABLE VI: Ablation Studies for xViTCOS-CXR: Impact of freezing layers.

Method Class Label Precision Recall F1-score Specificity NPV Overall Accuracy

Only the final classification head was trained
Normal 0.904 0.846 0.874 0.964 0.940

0.921Pneumonia 0.913 0.936 0.924 0.919 0.941
COVID-19 0.956 0.980 0.968 0.985 0.993

First nine encoders of ViT were frozen
Normal 0.908 0.885 0.896 0.964 0.954

0.938Pneumonia 0.949 0.951 0.950 0.954 0.956
COVID-19 0.951 0.975 0.963 0.984 0.992

First six encoders of ViT were frozen
Normal 0.961 0.846 0.900 0.986 0.942

0.945Pneumonia 0.920 0.979 0.949 0.924 0.980
COVID-19 0.980 0.995 0.987 0.993 0.998

First three encoders of ViT were frozen
Normal 0.919 0.927 0.923 0.968 0.971

0.953Pneumonia 0.958 0.954 0.956 0.963 0.959
COVID-19 0.980 0.980 0.980 0.993 0.993

xViTCOS-CXR (All the layers were finetuned)
Normal 0.959 0.902 0.929 0.985 0.962

0.960Pneumonia 0.945 0.974 0.959 0.949 0.976
COVID-19 0.990 1.000 0.995 0.997 1.000
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highlighted by xViTCOS-CXR. In Figure 5f, radiologist’s
interpretation is: thick walled cavity in right middle zone with
surrounding consolidation. xViTCOS-CXR is able to correctly
identify it. For the cases, where no abnormality is detected
(Figure 5a and 5d), xViTCOS focuses on the entire lungs and
chest respectively to make a final decision.

E. Ablation Studies
In this section we analyse the results of an ablation study

performed on the xViTCOS-CXR model proposed in this
paper. The ablation study can be loosely grouped in three
sections depending on the specific aspect of training or model
architecture targeted.

To understand the contributions made by each of the pro-
posed training (finetuning) steps in training xViTCOS-CXR,
we conduct several ablation experiments in this section. Table
V presents the results. When ViT is trained on COVID-19
CXR data, its performance is worst as the dataset has very
less training samples. CheXpert [42] consists of 224,316 chest
radiographs of 65,240 patients. However, these many images
are not sufficient for training ViT from scratch. Therefore,
although the performance of the model improves, it is not
comparable to the SOTA results. When the ViT model pre-
trained on imagenet is directly used for finetuning on CXR
dataset, we see a huge boost in the performance. However,
the best performance is achieved when the training procedure
involves an intermediate finetuning step using CheXpert [42].
We can safely conclude, the intermediate finetuning helps the
model learn useful features related to chest X-ray.

In order to analyse the effects of freezing a subset of layers
on the classification performance of the proposed model, we
conduct three experiments by subsequently freezing the first
three, six and nine encoder layers of the model finetuned
on the CheXpert data. These models are then trained on the
COVID-19 CXR dataset. A fourth experiment is conducted
where only the classification head of the model is allowed
to train on the Covid CXR images and all the remaining
layers are frozen, following the intermediate finetuning on
CheXpert. The results are shown in Table VI. As expected
freezing more layers during training on the CXR dataset leads
to decreasing accuracy of classification, with the model whose
first three encoder layers were frozen performing the best
amongst the lot and the model where only the classification
head is trained performs the worst. This implies that the
more the number of trainable layers, the more is the capacity
leading to a better performance of xViTCOS-CXR.

V. CONCLUSION

In this study, we introduce a novel vision transformer
based method, xViTCOS for COVID-19 screening using chest
radiography. We have empirically demonstrated the efficacy
of the proposed method over CNN based SOTA methods as
measured by various metrics such as precision, recall, F1
score. Additionally, we examine the predictive performance
of xViTCOS utilizing explanability-driven heatmap plot to

Fig. 6: A case of failure. xViTCOS-CT fails to predict the
ground truth non-COVID-19 Pneumonia with confidence as it
predicts non-COVID-19 Pneumonia with ≈ 50% probability
and COVID-19 with ≈ 50% probability. This might happen as
the findings on chest imaging in COVID-19 are not exclusive
and overlap with many other type of infections [97]. In such
cases, human expert intervention is necessary. For a detailed
discussion refer to Section V.

highlight the important factors for the predictive decision it
makes. These interpretable visual cues are not only a step
towards explainable AI, also might aid practicing radiologists
in diagnosis. We also analzed the failure cases of our method.
Thus, to enhance the effectiveness of diagnosis we suggest
that xViTCOS be used to complement RT-PCR testing. In
the next phase of this project, we aim to extend this work to
automate the analysis of the severity of infection using vision
transformers.
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[47] S. Tabik, A. Gómez-Rı́os, J. L. Martı́n-Rodrı́guez, I. Sevillano-Garcı́a,
M. Rey-Area, D. Charte, E. Guirado, J. L. Suárez, J. Luengo, M. A.
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