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Abstract

Retinal images acquired using fundus cameras are often visually blurred due to imperfect imaging conditions, refractive medium

turbidity, and motion blur. In addition, ocular diseases such as the presence of cataract also result in blurred retinal images.

The presence of blur in retinal fundus images reduces the effectiveness of the diagnosis process of an expert ophthalmologist or a

computer-aided detection/diagnosis system. In this paper, we put forward a single-shot deep image prior (DIP)-based approach

for retinal image enhancement. Unlike typical deep learning-based approaches, our method does not require any training data.

Instead, our DIP-based method can learn the underlying image prior while using a single degraded image. To perform retinal

image enhancement, we frame it as a layer decomposition problem and investigate the use of two well-known analytical priors,

i.e., dark channel prior (DCP) and bright channel prior (BCP) for atmospheric light estimation. We show that both the

untrained neural networks and the pretrained neural networks can be used to generate an enhanced image while using only a

single degraded image. We evaluate our proposed framework quantitatively on five datasets using three widely used metrics

and complement that with a subjective qualitative assessment of the enhancement by two expert ophthalmologists. We have

compared our method with a recent state-of-the-art method cofe-Net using synthetically degraded retinal fundus images and

show that our method outperforms the state-of-the-art method and provides a gain of 1.23 and 1.4 in average PSNR and SSIM

respectively. Our method also outperforms other works proposed in the literature, which have evaluated their performance on

non-public proprietary datasets, on the basis of the reported results.
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Abstract—Retinal images acquired using fundus cameras are
often visually blurred due to imperfect imaging conditions,
refractive medium turbidity, and motion blur. In addition, ocular
diseases such as the presence of cataract also result in blurred
retinal images. The presence of blur in retinal fundus images
reduces the effectiveness of the diagnosis process of an expert
ophthalmologist or a computer-aided detection/diagnosis system.
In this paper, we put forward a single-shot deep image prior
(DIP)-based approach for retinal image enhancement. Unlike
typical deep learning-based approaches, our method does not
require any training data. Instead, our DIP-based method can
learn the underlying image prior while using a single degraded
image. To perform retinal image enhancement, we frame it as
a layer decomposition problem and investigate the use of two
well-known analytical priors, i.e., dark channel prior (DCP) and
bright channel prior (BCP) for atmospheric light estimation. We
show that both the untrained neural networks and the pretrained
neural networks can be used to generate an enhanced image while
using only a single degraded image. We evaluate our proposed
framework quantitatively on five datasets using three widely
used metrics and complement that with a subjective qualitative
assessment of the enhancement by two expert ophthalmologists.
We have compared our method with a recent state-of-the-art
method cofe-Net using synthetically degraded retinal fundus
images and show that our method outperforms the state-of-
the-art method and provides a gain of 1.23 and 1.4 in average
PSNR and SSIM respectively. Our method also outperforms other
works proposed in the literature, which have evaluated their
performance on non-public proprietary datasets, on the basis of
the reported results.

Index Terms—Retinal image enhancement, Retinal image gen-
eration, Single image analysis

I. INTRODUCTION

In ophthalmic clinical practice, retinal images are rou-
tinely acquired using fundus photography, which is used
in the diagnosis and treatment of different retinal diseases
such as diabetic retinopathy, hypertensive retinopathy, and
age-related muscular degeneration [1] [2]. In addition, these
images have been used for developing different computer-
aided detection/diagnosis systems for glaucoma detection [3],
diabetic retinopathy classification [4], retinal arteries and veins
classification [5], and blood vessel segmentation [6]. However,
acquired retinal fundus images often contain blurriness due to
different reasons such as dusty camera lenses, low-resolution
camera, imperfect illumination, refractive medium turbidity,
and incorrect focus [7]. In addition, the presence of cataract

(an eye disease due to which natural eye lens becomes foggy)
also results in hazy and blurred retinal images [8], where the
blur/haze intensity increases with the cataract severity [9]. An
event of an eye blink and occlusion due to eyelashes can
also result in a blurry retinal image. The presence of blur
significantly affects the sensitivity of the diagnosis process
(either performed by a human expert or computer-aided sys-
tem), particularly, for progressive ophthalmological diseases
as it is difficult to analyze vascular structure in visually
blurred images [2]. A study focused on the automatic analysis
of morphometric properties of vasculature in retinal images
revealed that more than 25% images were not suitable for
automatic analysis due to their bad quality [10].

In the literature, different approaches have been proposed
for retinal fundus image enhancement ranging from tradi-
tional image processing methods like image transformation
[2]; contrast adjustment [11] and normalization [12]; to deep
learning (DL) based methods [13]. DL-based methods operate
in a supervised learning fashion and are typically data-driven.
These methods require a substantial amount of training data,
which is scarcely available in practice, as obtaining high-
quality representative medical data is very difficult, time-
consuming, and expensive. In fact, it is documented that a
major challenge in retinal fundus image enhancement research
is the unavailability of an application-specific dataset in which
the blur/hazy images have their corresponding reference as
ground truth (that can be used for evaluating the performance
of enhancement methods) [14].

Various databases have been used in the retinal fundus
image enhancement literature such as DRIMDB [15], HRF
[16], and DR2 [17]. However, these datasets suffer from dif-
ferent issues, e.g., the images in these databases are assigned
binary labels, i.e., either accept or reject. In a recent study
[18], the authors have attempted to address these challenges
by manually annotating a sample of a large collection of
retinal fundus images that have been acquired for diabetic
retinopathy grading (i.e., EyePACS dataset). The authors con-
sidered three-class annotations, i.e., good, usable, and reject.
Furthermore, they used the labeled images to train a DL
model to evaluate the quality of the retinal fundus images.
However, the aforementioned datasets do not contain paired
images (i.e., the blurred image and its corresponding reference
(clean) image). Furthermore, the acquisition of a good quality
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reference image is another major challenge. The exact pixel-
to-pixel tight reference image cannot be realistically acquired
in clinical settings. This is because to acquire reference (clean)
images, we have to take the retinal fundus image of the patients
after cataract surgery. However, it is quite challenging due
to factors such as varied refractive properties of the replaced
lenses, possibly changed field of view, and the position of
the eye. We note that typically the datasets used for fundus
image enhancement are the ones that have been developed
for diabetic retinopathy or retinal blood vessels segmentation.
These datasets lack ground truth reference images, which
hinder their use for full-reference performance evaluation. of
the image enhancement.

In this paper, unlike data-driven DL-based methods, we
present a new approach for the dehazing of retinal fundus
images that does not require any training data. Our approach
uses only a single degraded image for recovering a true
estimate of a clean image without requiring a reference image.
Our approach is inspired by the recent successes of untrained
neural network priors (UNNP) [19], [20], which uses a single
degraded image to solve different inverse imaging problems
like denoising, deblurring, and inpainting [21]. We formulate
the problem of retinal fundus image enhancement as a highly
ill-posed inverse problem in which we aim to find a clean
retinal image from a degraded one without having any prior
knowledge of the clean image. In this paper, we build upon
our previous work [22], in which we demonstrated that the
structure of a convolutional neural network (CNN) can be used
as a regularizer to solve such inverse problem. This approach
was shown to be quite effective because it does not require
paired data (hazy and clean image) to train the DL models.
Also, since our approach does not utilize any training data,
it does not suffer from the problem of distribution shifts and
provides good generalization. With reference to our previous
work [22], the following are the specific extensions made in
this paper:

1) We present the use of analytical image priors for at-
mospheric light estimation integrated with coupled deep
image priors (CDIPs) networks for retinal fundus image
enhancement. In contrast to our previous work [22],
which used three DIPs with a separate DIP employed
for atmospheric light estimation, our current framework
only utilized two DIP networks and is therefore, com-
putationally less expensive.

2) We show the effectiveness of using pre-training for
our single-shot DL approach. Also, we demonstrate the
effect of pre-training for cross dataset analysis thorough
ablation studies. Pretraining achieves comparable perfor-
mance 3-5 times faster than using untrained CDIPs.

3) We have modified our experimental setup and have
employed an early stopping strategy to avoid overfitting.

4) We conduct an extensive performance evaluation of the
proposed framework on five different datasets (both
quantitative and qualitative) and report promising re-
sults. Extending our previous work [22], we have also
used a no-reference metric for quantitative analysis (i.e.,
BRISQUE). Moreover, to highlight the clinical signifi-
cance, we have performed a subjective evaluation done

by two expert ophthalmologists.
5) We perform computational complexity analysis of our

method and compare it with previous works.
Paper Organization: The rest of the paper is organized

as follows. The related work is presented in Section II.
The proposed methodology is presented in Section III. The
experimental setup and results are described in Section IV.
Limitations and promising directions for future work are
identified in Section V. Finally, we conclude the paper in
Section VI.

II. RELATED WORK

In recent years, different DL-based methods have been
proposed for retinal fundus image enhancement. In [23], the
authors proposed to integrate a shadow removal layer with
a U-Net model for dehazing of retinal fundus images. The
proposed framework is trained in two steps, i.e., U-Net is
trained first, and then Inception-v3 model is fine-tuned using
the learned parameters of U-Net. The U-Net model learns
to estimate the transmission map which results in minimum
classification error. The proposed framework was evaluated
for the diabetic retinopathy classification task, however, no
quantitative metrics were used for the performance evaluation
of retinal image enhancement.

Zhao et al. [13] proposed a generative adversarial net-
work (GAN) based retinal image enhancement method that
works in a weakly supervised fashion, i.e., it uses unpaired
clean and blurry retinal images. Two GANs were trained
for deblurring of retinal fundus images using a training set
of 949 images with 4× data augmentation, i.e., a total of
3796 images were used for the training. In a similar study,
You et al. [24] proposed to integrate a convolutional block
attention module (CBAM) with a CycleGAN for enhancement
of retinal fundus images. The method proposed in [24] was
trained using unpaired clean and blurry retinal images, as it
is quite challenging to acquire strictly clean and blurry paired
retinal images for training a GAN. The proposed method was
evaluated qualitatively and quantitatively in terms of average
peak signal to noise ratio (PSNR) and structural similarity
(SSIM). In [18], the authors first annotated a sample of a
large collection of retinal images for image quality assessment
purposes (they consider three classes, i.e., Good, Usable, and
Reject). The data was originally annotated for the diabetic
retinopathy classification task and then they employed a data-
driven DL model to automatically assess the quality of retinal
fundus images. In [25], authors first developed a synthetic
model for introducing visual artifacts in retinal fundus images
and then proposed a DL model to surpass these artifacts. In
our previous work [22], we present a single-shot unsupervised
three DUP-based framework and incorporated DCP loss into
the overall loss. A comprehensive survey focused on the retinal
fundus image quality enhancement is presented in [14].

III. METHODOLOGY

The key idea of the proposed method is image decompo-
sition, where we decomposed the input degraded image into
individual components and then we use the image formation
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Fig. 1. Untrained coupled deep image priors (CDIPs) integrated with analytical priors. The input image I(x) is decomposed into three layers o1 = J(x)
(the enhanced image by DIP1), 02 = t(x) (the transmission map by DIP2), and o2 = A the uniform atmospheric light (estimated using either DCP or
BCP). In our previous work [22], we employed a separate DIP network for estimating non uniform A(x). To reconstruct the recovered image all individual
components are mixed using image information model. The figure depicts the actual results at last iteration.

model to get the enhanced image. In our proposed framework
we employ multiple DIP networks to decompose the input
image into its basic components. Unlike conventional DL, our
method does not require any training data (paired or unpaired)
and works by using only a single degraded image. This makes
it quite useful for realistic medical applications, where paired
data is usually not available and acquisition and annotation are
costly. The proposed method is described below.

A. Image Decomposition using CDIPs

CDIPs leverages the well-known concept of image decom-
position in computer vision, where the goal is to decom-
pose an image into its basic layers. For instance, in image
segmentation, the objective is to decompose the image into
foreground and background layers; and in image dehazing,
we are interested in decomposing the hazy image into a clear
image and a haze map.

1) Illumination Compensation via CDIPs: In the literature,
the illumination compensation problem is widely viewed as an
haze removal problem. The model to describe a hazy image
I(x) is given by [26] as the following:

I(x) = t(x)J(x) + (1− t(x))A, (1)

where t(x), J(x) and A represents transmission map (t-map),
restored clean image (haze free), and atmospheric light, re-
spectively. As described above, we formulated our problem
as layer decomposition problem in which we aim to decom-
pose a blurred/hazy image I(x) into its aforementioned three
layers, i.e., clean image (o1(x) = J(x)), transmission map
(o2 = t(x)), and atmospheric light (o3 = A), as shown in Fig.
1. Following our formulation, the Eq. 1 can be expressed as

Î(x) = o2o1(x) + (1− o2)o2, (2)

The pipeline of the proposed CDIPs framework integrated
with conventional priors is depicted in Fig. 1. As shown in
the figure, DIP1 and DIP2 networks take randomly sampled

uniform noise vector z, respectively and attempts to generate
different layers o1(x) = J(x) and o2 = t(x) using the
input image I(x), respectively. As depicted in the Fig. 1,
the atmospheric light is either estimated using dark channel
prior (DCP) or bright channel prior (BCP), which have been
widely used in haze removal problem (we will discuss the
respective details in the coming section). The outputs of two
DIP networks are mixed with the output of analytical prior
using Eq. 2. The loss function optimized by the proposed
CDIPs framework is given as:

Loverall = LRec + wLReg, (3)

where LRec denotes the reconstruction loss i.e., ||I−Î||2, LReg

is regularization loss of DIP2 that is defined as the norm of
Laplacian which is minimized to enforce the estimated mask
(o2) to be smooth and finally, Loverall represents the overall
loss of CDIPs architecture.

B. Atmospheric Light Estimation

Atmospheric light is another component of an image that
needs to be estimated along with the transmission map t(x)
and it is used in a hazy image formation model to get the
recovered/enhanced image (Eq. 1). In our previous work, we
have estimated non-uniform atmospheric light as a separate
layer using a third DIP network, while in this paper, we show
that uniformly estimated atmospheric light also provides com-
parable results, despite being computationally less expensive
that reduces time and space utilization. We assume that there
is a uniform scattering of light that can be easily estimated
using analytical priors such as dark channel prior (DCP) and
bright channel prior (BCP). In the literature, most single image
dehazing methods are based on this assumption [26]–[29].
In [23], authors assume A = 1 for retinal fundus image
enhancement.

1) Atmospheric Light Estimation Using DCP: In contrast
to our previous work [22], where we incorporated DCP loss
into the overall loss of the CDIPs framework, in this paper, we
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use DCP to estimate the atmospheric light. In the literature,
DCP has been widely used in single-image dehazing of natural
images [26], [30]. It is based on the observation that in most of
the local patches of haze-free color images, pixels have very
low intensity in one of the color channels, which is called the
dark channel. The dark channel prior for an image I(x) can
be computed as:

IDark(x) = min
C∈{R,G,B}

( min
y∈Ω(x)

(IC(y))), (4)

where IC(y) is the color channel of image I(x) and Ω(x)
is local patch centered at x. In our previous work [22], we
incorporated DCP loss into optimization loss of the CDIPs
framework which is given as LDC =

∑W×H
j=1 |dark(Î(x))i|.

The computation of DCP loss is computationally very expen-
sive [31], [32], as it involves the computation of patch-based
DCP for the generated image at each iteration. To overcome
this issue, we have not incorporated DCP loss into the overall
loss of the CDIPs framework (as we did in our previous
work), instead, we have used DCP directly for estimating
the uniform atmospheric light. Uniform atmospheric light is
estimated by selecting the top 0.1% darkest pixels from DCP
as candidate pixels. The intensity of dark pixels is mainly
contributed by atmospheric light in the haze images, therefore,
these candidate pixels can directly provide an accurate estimate
of haze transmission. Unlike, natural outdoor images that have
sky regions, retinal fundus images do not have correlated
patches as that of the estimated transmission map, which
makes it feasible to recover haze-free retinal images.

2) Atmospheric Light Estimation using BCP: Unlike DCP,
BCP is based on the observation that in most of the local
patches of haze-free color images, pixels have very high
intensity in one of the color channels, which is called the
bright channel. BCP has been widely used in single image
dehazing literature [33]. The bright channel for an image I(x)
is computed as:

IBright(x) = max
y∈Ω(x)

( max
C∈{R,G,B}

(IC(y))), (5)

where IC(y) is the color channel of image I(x) and Ω(x) is
local patch centered at x. Similar to DCP, uniform atmospheric
light is estimated by selecting top 0.1% brightest pixels from
BCP as candidate pixels. After that, the maximum intensity
value from candidate pixels in the hazy image is given as
atmospheric light [30]. BCP have been shown quite effective
for atmospheric light estimation [34] for the application of
retinal image enhancement because the color intensities of
retinal structures (such as vessels, optic disc, etc.) are in-
herently different from estimated atmospheric light (therefore,
BCP prominently highlights such regions).

C. Untrained and Pretrained CDIPs

To capture useful information about the images, the pa-
rameters of DL model are tuned/learned from the training
data. However, in the literature [35], it has been also shown
that pretrained neural networks contain a significant amount
of information about the task at hand, e.g., dehazing in our
case. In this paper, we leverage the idea of pretarininig and

Fig. 2. Proposed CDIPs framework with pretraining. Legend: z: random
code vector; θp0: pretrained weights; fθp0

(z): CDIPs based parameterization;
L: overall loss; x0: input degraded image;

investigate its effect in CDIPs application for retinal image
enhancement. We show that the knowledge learned from one
retinal fundus image can be used to effectively model other
retinal fundus images in comparatively less amount of time
while getting a comparable performance.

In Fig. 2, we demonstrate that how pretraining works for our
problem using CDIPs. Starting from the pretrained parameters
θp0

loaded into CDIPs framework and randomly initialized
input code vector z, we attempt to model probability distri-
bution p(x|x0) given that x is unknown clean image and x0

is the degraded (hazy) image. The output at the first iteration
contains randomization due to random code vector z and the
optimizer iteratively optimizes neural network’s parameters θ
for the given input image using backpropagation. It has been
shown in the literature [19], [36] that the choice of neural
network architectures has a direct impact on the performance,
e.g., we can design/handcraft a particular neural network
architecture for modeling a specific image [21]. This serves as
a solution space when modeling images using untrained neural
networks priors. We found that the optimization process tends
to destabilize for few images (evident from the high standard
deviation (SD) in iterations reported in Table II that indicates
that the optimization was sometimes stopped for a few images
at very fewer iterations. This phenomenon highlights that the
pretrained neural networks are not best for those particular
images, otherwise pretraining works pretty well for most of the
images. To overcome this issue, we rely on the early stopping.

IV. EXPERIMENTS AND RESULTS

A. Setup and Dataset Description

We perform extensive experiments on the five publicly
available fundus image datasets that have different number
of images and dimensions—namely, (i) DRIVE [37], (ii)
STARE [38], (iii) Messidor [39], and (iv and v) DIARET DB
calibration level 0 and 1 [40]. Unlike our previous work, we
applied some pre-processing steps before feeding the input to
the proposed framework. Firstly, all images from each dataset
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TABLE I
PERFORMANCE EVALUATION FOR CDIPS FRAMEWORK WITHOUT PRETRAINING INTEGRATED WITH DCP AND BCP IN TERMS OF THE AVERAGE

PSNR, SSIM, AND BRISQUE (NO REFERENCE). HIGHER PSNR AND SSIM ARE DESIRABLE WHILE LOWER BRISQUE IS DESIRABLE.

Dataset #Images
CDIPs + DCP CDIPs + BCP

#Iterations PSNR SSIM BRISQUE Avg. Iterations PSNR SSIM BRISQUE
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Messidor 1200 2976 149 42.6261 2.27 0.9617 0.01 39.7356 12.74 3250 507 39.6052 1.85 0.978 0.01 42.5132 14.38
STARE 397 3469 352 38.9792 3.01 0.9708 0.02 35.3496 18.37 3443 99 39.9813 1.94 0.9792 0.01 34.6286 17.02
DRIVE 40 3447 48 38.6594 0.59 0.9757 0.002 19.2102 7.52 3451 42 38.2847 1.04 0.9750 0.003 23.7266 6.95

DIARET DB0 130 3452 41 41.0517 1.31 0.9803 0.01 37.4146 13.9 3459 38 41.3724 1.37 0.9816 0..004 37.3445 13.27
DIARET DB1 89 3464 47 40.734 1.28 0.9709 0.02 39.2502 14.44 3453 42 41.8525 1.44 0.9829 0.004 40.6751 13.79

are centered cropped such that the field-of-view (FoV) is
preserved. Secondly, each image was resized to a standard
size of 512× 512. We note here that DRIVE and STARE are
the benchmark databases for retinal blood vessel segmentation
while Messidor and DIARET DB (0 and 1) is the benchmark
databases for diabetic retinopathy classification. We quanti-
tatively evaluate the proposed framework using three widely
known metrics, i.e., PSNR, SSIM, and Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE). PSNR is a
widely used metric and it measures the similarity between
the two images. Higher PSNR represents better quality of the
image. SSIM is a perception-based image quality metric that is
used to measure the perceived change in structural information
between two images. SSIM exploits inter-dependencies among
spatially close pixels and a higher SSIM value is desirable.
BRISQUE is a no-reference image quality metric that scores
the perceptual quality of an input image based on its nat-
uralness, where the lower value of BRISQUE is desirable.
Finally, to highlight the clinical significance, we also perform
the subjective qualitative assessment of the proposed method
through two expert ophthalmologists.

B. Implementation Details

We use the U-Net as the generator network for generating
the enhanced retinal fundus images [41]. U-Net is a deep
CNN-based generative model that was specifically developed
for biomedical image segmentation [41]. It has an hourglass-
like architecture and skip-connections between encoder layers
and decoder layers. The same model architecture was used
in our previous work [22]. Each DIP uses one U-Net and
overall framework is optimized using ADAM optimizer [42]
with a learning rate of 0.004 and default values of β1 = 0.9,
β2 = 0.999, and ε = 1e−8. We perform different ablation stud-
ies using untrained U-Net and pretrained U-Net. In untrained
experiments, all images from each dataset are processed for
3500 iterations and in pretraining experiments, every image is
allowed to be processed for maximum 2500 iterations. Fur-
thermore, we employ an early stopping strategy to avoid over-
fitting for all experiments. The number of trainable parameters
in the proposed framework are approximately 1.15M.

C. Using Untrained CDIPs with DCP and BCP

As described in the earlier sections, we used analytical
priors for estimating uniform atmospheric light in the retinal
fundus image. In this section, we present the results of using
DCP and BCP for atmospheric light estimation. We also
report the standard deviation in addition to average values

to provide an exact idea about the statistical distribution of
achieved performance across different datasets which contain
a different number of images. The comparative results of using
CDIPs (i.e., one for getting recovered image and the other
for estimating transmission map) and using DCP and BCP for
atmospheric light estimation are presented in Table I. It can be
observed from the table that the average performance of using
BCP with CDIPs is comparatively higher than using DCP
with CDIPs. This indicates that most of the fundus images
have brighter pixels that are efficiently leveraged by the BCP.
This trend can be seen for almost every dataset in terms of
all metrics used except for the DRIVE dataset where DCP
performance is higher, probably due to low intensity in images
of DRIVE. Similarly, it can be seen that the performance of
CDIPs coupled with analytical priors (DCP and BCP) is rel-
atively low for blood vessel segmentation databases (DRIVE
and STARE) as compared to diabetic retinopathy classification
datasets (Messidor, DIARET DB 0 and 1). This is due to
the fact that the image quality of segmentation databases
is relatively higher (as they are purposely developed for
retinal blood vessels segmentation) than diabetic retinopathy
classification datasets.

D. Using Pretrained CDIPs with DCP and BCP

In this section, we highlight the benefit of pretraining for our
proposed CDIPs framework. Pretraining works in two steps: (i)
we randomly choose one image from each dataset and fit with
our proposed CDIPs framework and upon its completion, we
store the learned/optimized parameters of both DIP networks
as pretrained parameters (this process is performed once for
each dataset); and then (ii) we load these saved parameters
when fitting other images. The results for pretrained CDIPs
coupled with DCP and BCP are presented in Table II, which
highlights that pretraining provides comparable performance
for all datasets when modeled with the BCP-based CDIPs
framework while requiring less number of iterations than
untrained neural network-based approach. This is because
in pretraining, domain knowledge is incorporated into the
network that facilitates the optimization process. Whereas,
when DCP is used with CDIPs, there is a certain difference
between the performance in terms of different metrics, i.e.,
PSNR, SSIM, and BRISQUE. The key noticeable thing is
the significantly reduced iterations required for optimizing the
neural network parameters for a given input image. It is evident
from Table II that pretraining provides comparable perfor-
mance as compared with random parameters initialization and
converges in fewer iterations.
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TABLE II
PERFORMANCE EVALUATION FOR CDIPS FRAMEWORK WITH PRETRAINING INTEGRATED WITH DCP AND BCP THAT ARE USED FOR ATMOSPHERIC

LIGHT ESTIMATION. THE RESULTS ARE REPORTED IN TERMS OF THE AVERAGE PSNR, SSIM, AND BRISQUE.

Dataset #Images
CDIPs + DCP CDIPs + BCP

#Iterations PSNR SSIM BRISQUE #Iterations PSNR SSIM BRISQUE
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Messidor 1200 1859 804 37.8598 2.69 0.9696 0.02 49.4879 18.2 2001 730 38.1572 2.8 0.9722 0.01 47.4018 17.12
STARE 397 1793 966 35.5338 3.89 0.9506 0.04 50.8993 22.51 2133 762 37.2896 3.14 0.9652 0.02 43.3222 20.63
DRIVE 40 2379 285 37.6970 0.83 0.9707 0.01 23.4503 8.49 2463 30 37.0994 1.67 0.9705 0.001 28.9008 8.99

DIARET DB0 130 2209 713 39.6497 2.84 0.9742 0.02 45.2281 19.65 2383 400 40.7116 2.33 0.9794 0.01 39.0192 15.27
DIARET DB1 89 2235 678 39.9232 3.13 0.9732 0.03 50.4220 16.66 2444 171 41.4633 1.62 0.9824 0.01 43.6905 13.7

Fig. 3. Improvement in PSNR (a) and SSIM (b) over iterations t for a given input image using randomly initialized network (no pretraining) vs. using
pretrained network (initialized with parameters of a network that generated a fundus image of the same dataset). It is clear from the zoom-in version of the
plots that pretraining allows the network to capture the unknown image statistics at very few iterations. Intermediate results generated by both methods at
iteration t = 1, 10, 20, 50, 100, 200, and 300 are shown in (c). It can be seen that the pre-trained network was able to learn retinal blood vessels after 200
iterations while untrained network was not able to capture such details.

The difference in the performance of pretrained CDIPs is
expected and it indicates that the pretrained neural network
parameters being used are not optimal for certain images. Due
to this reason, the optimization process for a few images stop
after very fewer iterations that results in low-quality images.
This observation is supported by the standard deviation values,
e.g., the high standard deviation in average iterations used for
optimization for certain datasets (e.g., STARE) indicates that
a few images were early stopped at a relatively less number of
iterations as compared to others. This situation can be avoided
by employing an optimal pretraining strategy. We further note
that relatively high average SSIM values (Table I and II)—
indicates that our method is able to reconstruct retinal images
with high similarity between the structure of local patterns of
the original image and enhanced image, which implies good
quality preservation of the vascular structure.

E. Ablation Studies

1) Effect of Using Pretraining: The effect of using pretrain-
ing in our proposed CDIPs framework is depicted in Fig. 3.
The figure demonstrates the intermediate results generated by
our method at different iterations along with corresponding
PSNR and SSIM, i.e., t = 1, 10, 20, 50, 100, 200, and 300
for both cases: (i) when the input image is modeled using
randomly initialized network (no pretraining); and (ii) when
the input image is modeled using pretrained network (initial-
ized with parameters of a network that generated a fundus
image of the same dataset). The difference in the performance
of both cases is easily noticeable in zoom-in versions of the
plots, as depicted in Fig. 3. Moreover, it can be seen that
pretrained networks were able to capture/learn the low-level
structural details of retinal blood vessels after 200 iterations
while the untrained network was not able to capture such

details. Randomization seen in the output of the first iteration
is due to the use of random code vector z (please see Fig. 2).
Note that only parameters of the encoder network in the U-Net
model are fitted using a single degraded image, i.e., without
data-driven training.

2) Pretraining for Cross Dataset Analysis: We have also
investigated the effect of pretraining for cross dataset-based
analysis, i.e., when pretrained parameters of an image from
one dataset are used to fit the images of another dataset. The
quantitative results for cross dataset analysis are summarized
in Table III. We used three datasets for this analysis in which
one is developed for retinal blood vessels segmentation (i.e.,
DRIVE) and the other two are diabetic retinopathy databases.
It is evident from the table that cross dataset based pretraining
works pretty well and it provides better results when the
images are of similar nature, for instance, the performance
on the DB1 dataset when pretrained with DB0 image is
significant as compared to when images from DRIVE are fitted
using pretrained parameters of DB0 image. This is because of
the fact that both DB0 and DB1 are of the same category,
i.e., diabetic retinopathy datasets. Pretraining using an image
from DRIVE databased does not provide good performance
in terms of average SSIM on images of DB1 database, which
is expected as both databases are different. Similar to other
pretraining experiments, in cross dataset pretraining, each
image is processed for 2500 iterations and we used early
stopping to avoid overfitting. Average iterations and iterations
SD is also reported in Table III. It can be seen from the table
that as compared to pretraining with DCP, pretraining with
BCP was more prone to overfitting (evident from higher SD
in the number of iterations). Because the domain knowledge
(incorporated as pretrained parameters) increases the overall
pigmentation of the fundus images enhanced using CDIPs
integrated with BCP. Fig. 4 presents the results for an image
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TABLE III
QUANTITATIVE RESULTS FOR CROSS DATASET PRETRAINING IN TERMS OF AVERAGE PSNR, SSIM, AND BRISQUE.

Dataset Pretrained
On Method Iterations PSNR SSIM BRISQUE

Average SD Average SD Average SD Average SD

DB0 One image
from DRIVE

CDIPs + DCP 2456 37 38.9114 1.28 0.9713 0.01 46.4396 13.32
CDIPs + BCP 2437 217 38.8235 2.36 0.9688 0.02 45.6849 13.45

DB1 CDIPs + DCP 2388 274 38.7113 1.76 0.9476 0.01 46.4661 14.15
CDIPs + BCP 2364 484 39.0811 1.69 0.9378 0.01 46.8970 17.14

DRIVE One image
from DB0

CDIPs + DCP 2453 39 37.5131 0.78 0.9689 0.01 30.7329 8.9
CDIPs + BCP 2459 40 37.2651 2.06 0.9708 0.01 25.8046 10.93

DB1 CDIPs + DCP 2459 34 41.1129 1.23 0.9818 0.01 43.7756 14.02
CDIPs + BCP 2444 117 37.2340 2.18 0.9710 0.01 24.8941 8.05

from the STARE database that is fitted using pretrained
parameters of the DIARET DB1 database. It is clear from the
figure that the pretraining significantly boost the performance
of our proposed framework in recovering faithful estimates
of clean image. This is due to the fact that the untrained
neural network is provided with domain knowledge (i.e., how
a fundus image looks like in this case).

Fig. 4. Improvement in PSNR and SSIM when an image from STARE
database is fitted using pretrained parameters of an image from DIARET DB1
database. The proposed framework starts learning low-level image statistics,
i.e., retinal blood vessels at fewer iterations.

F. Subjective Evaluation of Enhancement
The subjective assessment of enhancement quality was

performed by two expert ophthalmologists (one of them is the
co-author of the paper who has been actively involved in the
project since the beginning). For this purpose, we carefully
selected five images from each dataset to ensure that the
selected images are a good representative of our best, good,
and average results to ensure a fair evaluation. Note that we
select only five images per dataset in the interest of the expert’s
time and efforts. We then asked the expert ophthalmologists
to subjectively evaluate the quality of the images by keeping
in mind the following important features of retinal images: (i)
visibility of optic disc (F1); (ii) visibility of fovea (F2); (iii)
visibility of retinal blood vessels including venules, arterioles,
and capillaries including their branching and termination (F3);
(iv) overall general fundus (F4); and (v) overall assessment
on the quality of the enhanced image as compared to original
(hazy) image (F5). Subjective evaluation scores were provided
based on the comparative analysis of the original (without
enhancement) and enhanced images, as we show both images
to the expert ophthalmologists for grading images generated
by our method (to ensure a fair comparison and evaluation).

To get the subjective assessment scores, we used a grading
based on five scales: 5: Excellent Results; 4: Very Good
Results; 3: Good Results; 2: Average Results; and 1: Bad
Results. The average values of subjective evaluation metrics
along with respective standard deviation scores are presented
in Table IV. From the table, it is evident that the expert

ophthalmologists rate the overall quality of the enhanced
images to nearly excellent quality (nearly 5) for each dataset.
Promising subjective assessment scores highlights the efficacy
and clinical significance of our proposed method.

Below we describe the overall assessment of the expert
ophthalmologists on the efficacy of our method, the ophthal-
mologists have the following specific observations about our
proposed method.

1) It enhances the overall image clarity by ∼40% by
enhancing contrast and defining the outlines of various
fundal structures like the optic disc, vessels, and fovea.

2) In the enhanced images, it is very easy to diagnose and
analyze the retinal abnormalities that include fibrosis,
lesions, and hard exudates.

3) Blood vessel termination and branching points become
clearly visible in enhanced images as compared to the
original images, which makes the detection of abnormal
vessels and leakage points very easy.

4) In pigmented fundus images, the solution clarifies vari-
ous lesions like degenerations, fibrosis, thinning, etc.

5) In light pigmented fundus images, it improves the
visibility of various dark lesions like hemorrhage,
melanomas, and naevi, etc.

6) The only noted limitation of the proposed method is
slight obscuration of the outline of fundal structures
with less than normal pigmentation such as seen in high
myopes or Albinism.

G. Visual Evaluation of Enhancement

The visual comparison of generated (enhanced) images
using different quality of blurry images and different methods
proposed in this paper is shown in Fig. 5. These images have
been selected from the subset images that we used for getting
expert evaluation (we choose one image from each dataset)
and we ensure that these images are representative of our best,
good, and average results. It can be clearly seen from Fig. 5
that the proposed method can recover good quality images in
which retinal blood vessels are prominently highlighted. Note
that the clean image is recovered without any prior knowledge
of the enhanced image. From Fig. 5, it can be seen that
DCP favors some images and similarly, BCP also provides
good performance in some images (e.g., the choroidal tissue
defects near optic disc in the image of DIARET DB0 are
prominently highlighted by BCP). This highlights that DCP
leverages images with a darker background and BCP favors
images having a bright background, i.e., DCP effectively
handles the images having pixels with low intensities, which
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TABLE IV
SUBJECTIVE EVALUATION OF IMAGES ENHANCED USING PROPOSED FRAMEWORK. LEGEND: F1–VISIBILITY OF OPTIC DISC; F2–VISIBILITY OF

FOVEA; F3–VISIBILITY OF RETINAL BLOOD VESSELS INCLUDING VENULES, ARTERIOLES AND CAPILLARIES; F4–OVERALL GENERAL FUNDUS;
F5–OVERALL ASSESSMENT ON THE QUALITY OF ENHANCED IMAGE AS COMPARED TO ORIGINAL (HAZY) IMAGE;

Dataset F1 F2 F3 F4 F5
Mean SD Mean SD Mean SD Mean SD Mean SD

Messidor 3.8 0.4 3.6 0.49 4.2 0.4 3.8 0.75 5 0
STARE 3.2 0.75 3.2 0.75 3.8 0.75 3.8 0.75 4.6 0.49
DRIVE 3.6 0.8 3.6 0.48 3.4 0.49 4.8 0.4 5 0

DIART DB0 3.4 0.49 3.4 0.8 3.2 0.4 4.2 0.75 4.8 0.4
DIART DB1 3.4 0.49 3.6 0.48 3.2 0.4 3.6 0.49 4.8 0.4

Fig. 5. Visual comparison of reconstructed (enhanced) images for different quality of blurry images. Blurry input images are shown in the first row and the
rest of the rows contains results for a different method that has been proposed in this study (except three CDIPs + DCP loss [22]). Legend: CDIPs: Coupled
Deep Image Priors; DCP: Dark Channel Prior; BCP: Bright Channel Prior: NP: No Pretraining Used; P: Pretraining Used.

makes it suitable for pigmented retinal fundus images and
BCP effectively handles those images that have high intensities
pixels, which makes it suitable for light pigmented retinal
fundus images (i.e., that have sufficient brightness).

H. Evaluation on Synthetic Data

The acquisition of reference (ground truth clean) images in
retinal fundus image enhancement problem is very challenging
due to the difficulties in obtaining exact pixel-to-pixel tight
image before and after cataract surgery. To fill in this gap, Shen
et al. [25] have presented a fundus image degradation model
to synthetically introduce visual artifacts and haze/blurriness
to retinal fundus image. In Table V, we perform a comparative
analysis of our method in terms of average PSNR and SSIM
on synthetically degraded DRIVE dataset ( [25]). To ensure a
fair comparison, we have used a similar experimental setup
as used in [25], where the synthetic retinal artifacts were
introduced in the images of the DRIVE dataset. The original
images were regarded as ground truth (reference images), and
the synthetically degraded images are enhanced using our
proposed CDIPs based framework. It is evident from Table

V that our method significantly outperforms existing methods
despite being single-shot and unsupervised. Note that we did
not use any pretraining for our analysis on the synthetic
dataset. In addition, we used the method of Shen et al. [25] for
synthetically generating different degraded images by intro-
ducing different artifacts in retinal fundus images that include
uneven illumination (haze), blur, and artifacts due to the dusty
lens of the fundus camera. The performance of the proposed
framework in terms of average PSNR and average SSIM on
the DRIVE dataset using different degradation methods is
summarized in Table VI.

I. Complexity Analysis

As described above, in our previous work [22], we incorpo-
rated DCP loss into the overall loss of three CDIPs network.
The DCP loss involves the computation of small patches from
the generated image at every iteration that inherently slows
the overall framework. In this paper, we present an alternative
approach, where we used only two DIP networks that are
integrated with conventional image priors, i.e., DCP and BCP.
These priors are used for estimating uniform atmospheric light
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TABLE V
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON SYNTHETICALLY DEGRADED IMAGES FROM DRIVE DATASET AND A PROPRIETARY

DATASET (∗PUBLICLY NOT AVAILABLE, AUTHORS REPORTED RESULTS ARE USED FOR COMPARISON.)

Paper Method Degradation Dataset Images PSNR SSIM BRISQUE
Li et al. [43] Histogram distribution prior.

Synthetic DRIVE N/A

9.51 0.543

N/A

Fu et al. [44] Retinex-based single image enhancing. 10.19 0.580
Guo et al. [45] Illumination map estimation. 14.10 0.703
Cheng et al. [46] Guided retinal image filtering. 14.97 0.648
Tian et al. [47] Global and local contrast adaptive enhancement. 15.42 0.721
Fu et al. [48] Weighted variational model. 15.56 0.722
He et al. [26] Dark channel prior (DCP). 15.78 0.559
Zuiderveld et al. [49] Contrast limited adaptive histogram equalization 15.93 0.740
Eilertsen et al. [50] Deep convolutional neural network (CNN). 19.01 0.755
Shen et al. [25] Multiple GANs are used in the proposed Cofe-

Net framework.
21.24 0.758

Zhao et al. [13] Two GANs are trained in supervized learning.

Real Proprietary∗ 10

19.24 0.89 40.62
Zhou et al. [11] Luminosity and contrast adjustment. 17.73 0.73 46.13
Mitra et al. [8] Histogram and intensity equalization. 16.38 0.78 45.16
Xiong et al. [9] Used image formation model. 17.26 0.87 43.61
This Paper Coupled deep image priors (CDIPs) integrated

with DCP.
Synthetic DRIVE 40 22.47 0.897 43.02

TABLE VI
PERFORMANCE OF THE PROPOSED CDIPS FRAMEWORK USING

SYNTHETICALLY DEGRADED IMAGES ON DRIVE.

Degradation Method Images PSNR SSIM

Haze CDIPs + DCP

40

22.47 0.897
CDIPs + BCP 21.92 0.864

Blur CDIPs + DCP 21.49 0.893
CDIPs + BCP 21.23 0.848

Haze and Blur CDIPs + DCP 22.21 0.895
CDIPs + BCP 20.7 0.846

Haze and Dust CDIPs + DCP 21.23 0.868
CDIPs + BCP 21.08 0.844

TABLE VII
COMPLEXITY ANALYSIS IN TERMS OF PERCENTAGE IMPROVEMENT IN

AVERAGE TIME AND AVERAGE MEMORY UTILIZED PER IMAGE.

Method Avg.
Time/Image

Avg.
Memory/Image Parameters

Three CDIPs with DCP Loss [22] 35 mins 4.4 GB 1.72M
CDIPs + DCP/BCP 20 mins 2.9 GB 1.15M

Percentage Improvement 27.27% 20.54% 19.86%

in contrast to our prior work [22], where we used a separate
DIP network for non-uniform atmospheric light estimation.
In this section, we perform a complexity analysis of both
approaches in terms of the percentage improvement in average
time per image, average memory utilized per image, and the
number of parameters saved. Table VII highlights that we have
27.27%, 20.54%, and 19.86% percent improvement in time,
memory, and parameters respectively. These scores are based
on an image size of 512×512 and when 3500 iterations were
used to recover the input images. The image size and number
of iterations have a direct impact on time and memory usage.
Note that these scores are for the overall end-to-end framework
that involves all steps from image loading to saving, etc. We
further note that the sole optimization of CDIPs takes only 0.1
sec per iteration for our current approach.

V. LIMITATIONS AND FUTURE WORK

The key limitation of the CDIPs-based approach is the
time required for reconstructing a recovered image. We see
that increasing the number of iterations results is a gradual
increase in performance, e.g., PSNR and SSIM. To address
this time utilization issue, we have also investigated the
use of pretraining, which has provided promising results for
the majority of images. However, in some cases, pretraining

results in overfitting that indicate the pretrained parameters
being used were not optimal for specific images. To overcome
this issue, we aim to develop an optimal pretraining strategy to
fully uncover the potential of incorporating domain knowledge
(i.e., through pretraining) into untrained neural networks in our
future work. Also, the development of optimal early stopping
criteria could be another possible solution towards reducing
the time taken and avoiding overfitting. Another limitation of
our approach is the slight obscuration of the outline of fundal
structures that have been noted by the expert ophthalmologists
while performing the subjective evaluation.

VI. CONCLUSIONS

In this paper, we have presented a unified single-shot
deep learning (DL) framework for the enhancement of retinal
fundus images. For this purpose, we have employed coupled
untrained neural networks known as deep image priors (DIP)
which are integrated with a conventional image prior, i.e.,
dark channel prior (DCP) and bright channel prior (BCP).
The proposed work reconstructs the enhanced image using a
single degraded image without the requirement of end-to-end
data-driven training. We quantitatively evaluate the proposed
approach on five different retinal fundus image datasets in
terms of average peak signal to noise ratio (PSNR), struc-
tural similarity index (SSIM), and Blind/Referenceless Image
Spatial Quality Evaluator (BRISQUE) score. We also evaluate
our method using a synthetic dataset (in which different
image degradation were synthetically introduced in the origi-
nal images prior to enhancement). We perform performance
evaluation of our proposed approach with existing similar
methods and our method outperforms them. To highlight the
clinical significance, we incorporate the subjective assessment
of the enhancement that is performed by two expert ophthal-
mologists. In addition to using untrained neural networks, we
have also investigated pretraining that have provided promising
results while reducing the computational cost and time.
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[16] T. Köhler, A. Budai, M. F. Kraus, J. Odstrčilik, G. Michelson, and
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