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Abstract

Blood oxygen saturation (SpO2) is an essential indicator of respiratory functionality and is receiving increasing attention during
the COVID-19 pandemic. Clinical findings show that it is possible for COVID-19 patients to have significantly low SpO2 before
any obvious symptoms. The prevalence of cameras has motivated researchers to investigate methods for monitoring SpO2 using
videos. Most prior schemes involving smartphones are contact-based: They require a fingertip to cover the phone’s camera and
the nearby light source to capture re-emitted light from the illuminated tissue. In this paper, we propose the first convolutional
neural network based noncontact SpO2 estimation scheme using smartphone cameras. The scheme analyzes the videos of a
participant’s hand for physiological sensing, which is convenient and comfortable, and can protect their privacy and allow for
keeping face masks on.

We design our neural network architectures inspired by the optophysiological models for SpO2 measurement and demonstrate

the explainability by visualizing the weights for channel combination. Our proposed models outperform the state-of-the-art

model that is designed for contact-based SpO2 measurement, showing the potential of our proposed method to contribute to

public health. We also analyze the impact of skin type and the side of a hand on SpO2 estimation performance.

1



Remote Blood Oxygen Estimation From Videos Using Neural Networks

Joshua Mathew
NC State University
jrmathew@ncsu.edu

Xin Tian
Univeristy of Maryland

xtian17@umd.edu

Min Wu
Univeristy of Maryland

minwu@umd.edu

Chau-Wai Wong
NC State University

chauwai.wong@ncsu.edu

Abstract

Blood oxygen saturation (SpO2) is an essential indica-
tor of respiratory functionality and is receiving increasing
attention during the COVID-19 pandemic. Clinical find-
ings show that it is possible for COVID-19 patients to have
significantly low SpO2 before any obvious symptoms. The
prevalence of cameras has motivated researchers to investi-
gate methods for monitoring SpO2 using videos. Most prior
schemes involving smartphones are contact-based: They re-
quire a fingertip to cover the phone’s camera and the nearby
light source to capture re-emitted light from the illuminated
tissue. In this paper, we propose the first convolutional neu-
ral network based noncontact SpO2 estimation scheme us-
ing smartphone cameras. The scheme analyzes the videos
of a participant’s hand for physiological sensing, which is
convenient and comfortable, and can protect their privacy
and allow for keeping face masks on. We design our neu-
ral network architectures inspired by the optophysiologi-
cal models for SpO2 measurement and demonstrate the ex-
plainability by visualizing the weights for channel combi-
nation. Our proposed models outperform the state-of-the-
art model that is designed for contact-based SpO2 mea-
surement, showing the potential of our proposed method to
contribute to public health. We also analyze the impact of
skin type and the side of a hand on SpO2 estimation perfor-
mance.

1. Introduction
Blood circulation underneath a person’s skin induces

subtle color variations of the skin area. These subtle
changes can be captured without contact using ubiquitous
cameras, such as low-cost webcams and smartphone cam-
eras. Such noncontact video-based measurement contains
important health-related information of a person and pro-
vides an agile way to monitor health vital signs, including
heart rate [9, 17, 32, 37], breathing rate [6, 23], and heart

rate variability [14, 23, 11], as an emerging class of biomet-
rics enabled by computer vision techniques.

Blood oxygen saturation (SpO2) is an important physio-
logical parameter that represents the level of oxygen sup-
ply in the blood and reflects the adequacy of respiratory
function [20]. The estimation and monitoring of SpO2

are essential for the assessment of lung function and the
treatment of chronic pulmonary diseases, especially dur-
ing the COVID-19 pandemic when it has been reported
that patients being infected by the virus can have signif-
icantly low SpO2 before any obvious respiratory symp-
toms occur [8, 29]. The conventional SpO2 measurement
methods rely on contact-based sensing, including fingertip
pulse oximetry and its variants in smartwatches and smart-
phones [25, 24, 18, 10]. These conventional contact-based
methods may cause discomfort and skin irritation, espe-
cially for people with sensitive skin, and are not always ac-
cessible to the public [29]. In recent years, a growing num-
ber of studies have investigated SpO2 measurement using
videos [15, 33, 26, 31, 34, 3, 5, 30], which allows for SpO2

estimation without contact. These video-based noncontact
methods provide a more comfortable and unobtrusive way
to monitor SpO2, and have the potential to be adopted in
health screening and telehealth.

Based on the setup of cameras and light sources, ex-
isting noncontact, video-based SpO2 estimation methods
can be grouped into two main categories. Methods from
the first category utilize monochromatic sensing similar to
the conventional pulse oximetry. They use either high-end
monochromatic cameras with selected optical filters or con-
trolled monochromatic light sources [15, 33, 26, 31]. The
other category uses consumer-grade RGB cameras, such as
digital webcams [30, 3, 5].

All these video-based noncontact SpO2 estimation meth-
ods utilize the differences in the optophysiological char-
acteristics of oxygenated hemoglobin and deoxygenated
hemoglobin. The monochromatic light sources and sensors
are selected to have accurate control of the absorption effect



Figure 1: Proposed SpO2 estimation method. Three color
time series are extracted from the skin area of a hand video,
and are then fed into an optophysiology-inspired neural net-
work for SpO2 prediction.

of hemoglobin, while the consumer-grade digital cameras,
including webcams and smartphone cameras, have a wider
sensing band and are more challenging for SpO2 sensing.

Inspired by the optophysiological model [36, 33, 24], in
this paper, we investigate the design of explainable neural
networks for extracting features from a video stream using
consumer-grade cameras capturing a participant’s hand to
monitor SpO2. To the best of our knowledge, there is no
prior work that remotely monitors SpO2 with regular RGB
cameras using neural networks.

In this paper, we propose using convolutional neural net-
works (CNN) for contactless SpO2 monitoring from videos
captured by smartphone cameras. Fig. 1 is an overview of
the system design. First, the region of interest (ROI), in-
cluding the palm and back side of the hand, is extracted
from the smartphone captured videos. Second, the ROI
is spatially averaged to produce R, G, and B time series.
Third, the three time series are fed into an optophysiology-
inspired CNN for SpO2 estimation. We consider the hand
region in this work as a proof-of-concept. Compared to us-
ing the face for SpO2 measurement as most of the prior art
did [3, 30], recording hand videos raises less privacy con-
cern to the participants and is a safer way for data collec-
tion during the COVID-19 pandemic according to the mask
wearing guideline of human subject research. The contribu-
tions of our work are summarized as follows:

• This is the first work to use neural networks to address
the challenging problem of contactless SpO2 sensing
using consumer-grade RGB cameras.

• Through a data-driven approach and visualization of
the weights for the RGB channel combinations, we
demonstrate the explainability of our model and that
the choice of the color band learned by the neural net-
work is consistent with the suggested color bands used
in the optophysiological methods.

• We analyze the impact of the two sides of the hand

and different skin tones on the quality of SpO2 estima-
tion.

• We achieve more accurate SpO2 estimation with our
optophysiologically inspired neural network structures

when compared to the state-of-the-art neural network
structure for contact-based SpO2 prediction.

2. Background and Related Work
Optophysiological Model for Blood Oxygen Saturation
Measurement. The protein molecule hemoglobin (Hb) in
the blood carries oxygen from the lungs to tissues of the
body. The level of blood oxygen saturation (SpO2) re-
flects the ratio of oxygenated hemoglobin (HbO2) to total
hemoglobin and indicates the adequacy of respiratory func-
tion [20]. The normal range of SpO2 is 95% to 100% [20].
Abnormality in the SpO2 level can serve as an early warn-
ing sign of respiratory diseases [20]. A convenient and
noninvasive way to continuously measure SpO2 is pulse
oximetry [25]. Pulse oximeters utilize the principle of ra-
tio of ratios that was first proposed by Aoyagi in the early
1970s [25], and nowadays pulse oximeters are commonly
used in hospitals, clinics, and homes. The ratio-of-ratios
method leverages the optical absorbance difference of Hb
and HbO2 at two wavelengths, conventionally, at red and
infrared wavelengths as indicated on Fig. 2. For the com-
monly seen pulse oximeters, lights at the red and infrared
wavelengths are emitted through the fingertip. The trans-
mitted light, interacted and attenuated by the blood and tis-
sue, and received by an optical sensor, conveys information
about pulsatile blood volume. The pulsatile blood volume at
the two wavelengths is further processed to obtain an SpO2

estimate.
With the prevalence of smartphones, researchers have in-

vestigated methods of monitoring SpO2 using smartphones,
most of which are contact-based and require the fingertips to
be pushed against the illuminated light source and the built-
in camera [24, 18, 10], so that the diffusely reflected light
by the fingertip is captured by the camera. In this setup,
an adapted ratio-of-ratios model is utilized with the red and
blue channels of color videos in lieu of the traditional nar-
rowband red and infrared wavelengths.
Deep Learning Aided Camera-based Physiological
Monitoring. Deep learning has demonstrated promising
performance in camera-based physiological measurement,
such as heart rate and breathing rate [21, 7, 28]. An end-
to-end convolutional attention network was proposed in [7]
to estimate the blood volume pulse from face videos. Fre-
quency analysis is then conducted on the estimated pulse
signal for heart rate and breathing rate tracking. The study
in [21] demonstrates that the heart rate can be directly in-
ferred using a convolutional network with spatial-temporal
representations of the face videos as its input.

Deep learning for SpO2 monitoring from videos is still
in its early stage. Ding et al. [10] proposed a convolutional
neural network architecture for contact-based SpO2 mon-
itoring with smartphone cameras. Even though they have
shown better performance than the conventional ratio-of-
ratios method, their technique requires the users’ fingertips
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Figure 2: Extinction coefficient curves of hemoglobin. The
curves were plotted based on [10, 1]. The difference be-
tween oxygenated hemoglobin (HbO2) and deoxygenated
hemoglobin (Hb) at the red and blue wavelengths means
that these color channels contain useful information for
SpO2 prediction by means of optophysiological principles.

to be in contact with the illuminated flashlight and camera,
which may not only lead to a sense of burning for a con-
tinuous period of time but also raise sanitation concerns,
especially if the sensing device is reused by different par-
ticipants. This motivates us to develop a deep learning ar-
chitecture to monitor SpO2 in a contactless way with regu-
lar RGB cameras, which has the potential to be adopted in
health screening and telehealth.

3. Proposed Method for SpO2 From Videos
We aim to estimate SpO2 levels using a hand video by

leveraging the fact that the color of the skin changes subtly
when red cells in the blood carry/release oxygen. In our
proposed method, we extract three color time series from
the skin area of the hand video. We feed the extracted time
series to optophysiology-inspired neural networks designed
to achieve better and more explainable SpO2 predictions.

3.1. Extraction of Skin Color Signals
The physiological information related to SpO2 is em-

bedded in the color of the reflected/reemitted light from a
person’s skin. Hence, a preprocessing step that precisely
extracts the color information from the skin area is crucial
to the design of an effective SpO2 estimation method. For
each participant’s video, we aim to extract the R, G, and B
time series and refer to these 1-D time series as skin color
signals. We first need to locate the ROI of the skin pixels
from the video. We found that it is most effective to dis-
criminate the skin pixels from the background along the Cr
color direction of the YCbCr color space [4]. We use Otsu’s
method [22] to determine a threshold that best separates the
skin pixels from the background by minimizing the variance
within the skin and non-skin classes. Once the ROI corre-
sponding to the hand is located, the R, G, and B time series

are generated by spatially averaging over the values of skin
pixels for each frame of the video.

The skin color signals are split up into 10-second seg-
ments using a sliding window with a step size/stride of 0.2
seconds to serve as the inputs for neural networks. From a
optophysiological perspective, the reflected/reemitted light
from the skin for the duration of one cycle of heartbeat, i.e.,
0.5–1 seconds for a heart rate of 60–120 bpm, should con-
tain almost the complete information necessary to estimate
the instantaneous SpO2 [25]. In our system design, we
use longer segments to add resilience against sensing noise.
Since the segment length is one order of magnitude longer
than the minimally required length to contain the SpO2 in-
formation, we can use a fully-connected or convolutional
structure to adequately capture the temporal dependencies
without resorting to a recurrent neural network structure.

3.2. Neural Network Architectures
The previous neural network work for SpO2 prediction

mainly explored prediction, but not the model explainabil-
ity [10]. Explainability/interpretability is highly desirable
in many applications yet often not sufficiently addressed,
partly due to the black box nature of neural networks. From
a healthcare standpoint, explainability is a key factor which
should be taken into account at the beginning of the de-
sign of a system. To extract features from the skin color
signals and estimate SpO2, we propose three physiolog-
ically motivated neural network structures. These struc-
tures are inspired by domain knowledge-driven physiologi-
cal sensing methods and designed to be physically explain-
able. For heart rate sensing [37, 21] and respiratory rate
sensing [19, 27], the RGB skin color signals are often com-
bined first, as in the plane-orthogonal-to-skin (POS) algo-
rithm [35], followed by temporal feature extraction. In con-
trast, for conventional SpO2 sensing methods such as the
ratio-of-ratios [36], the color components are combined at
the end. Our proposed neural network structures explore
different arrangements of channel combination and tempo-
ral feature extraction. We want to systematically compare
the performance of our explainable model structures.
Channel Mixing Followed by Feature Extraction. In
Model 1, shown as the leftmost structure depicted in Fig. 3,
we combine the color channels first using several channel
combination layers and then extract temporal features using
temporal convolution and max pooling. A channel com-
bination layer first linearly combines the Cin input chan-
nels/vectors into Cout activation vectors and then applies a
rectified linear unit (ReLU) activation function to obtain the
output channels/vectors. Mathematically, the channel com-
bination layer is described as follows:

V = σ(WU+ b1T ), (1)

where U ∈ RCin×L is the input comprised of Cin time se-
ries/vectors of length L. The initial channel combination



Figure 3: Proposed network structures for predicting an SpO2 level from a fixed-length segment of skin color signals. We
highlight the differences among three model configurations instead of showing the exact model structures. Model 1 combines
the RGB channels before temporal feature extraction. Model 2 extracts the temporal features from each channel separately
and fuses them toward the end. Model 3 interleaves color channel mixing and temporal feature extraction .

layer has an input of three channels with 300 points along
the time axis. W ∈ RCout×Cin is a weight matrix, where
each of the Cout rows of the matrix is a different linear com-
bination for the input channels. A bias vector b ∈ RCout

contains the bias terms for each of the Cout output channels,
which ensures that each data points in the artificially created
segment of length L has the same intercept. 1T ∈ R1×L

is a row vector of all ones. The nonlinear ReLU function
σ(x) = max(0, x) is applied elementwise to the activation
map/matrix. The output of the channel combination layer
V ∈ RCout×L contains Cout channels of nonlinearly com-
bined input channels.

The channel mixing section concatenates multiple chan-
nel combination layers with decreasing channel counts to
provide significant nonlinearity. The output of the last chan-
nel combination layer has seven channels. After the channel
mixing, for temporal feature extraction, we utilize multiple
convolutional and max pooling layers with a downsampling
factor of two to extract the temporal features of the channel-
mixed signals. When there are multiple filters in the convo-
lutional layer, then there will also be some additional chan-
nel combining with each filter outputting a channel-mixed
signal. Finally, a single node is used to represent the pre-
dicted SpO2 level.

Feature Extraction Followed by Channel Mixing. In
Model 2, the middle structure depicted in Fig. 3, we reverse
the order of channel mixing and temporal feature extraction
from that in Model 1. The three color channels are sepa-
rately fed for temporal feature extraction. The convolutional
layers learn different features unique to each channel. At the
output of the temporal feature extraction section, each color
channel has been downsampled to retain only the important
temporal information. The color channels are then mixed

together in the same way as described for Model 1 before
outputting the SpO2 value.

Interleaving Feature Extraction and Channel Mixing. In
our third model, we explore the possibility of interleaving
the color channel mixing and temporal feature extraction
steps. As illustrated by the rightmost structure depicted in
Fig. 3, the input is first put through a convolutional layer
with many filters and then passed to max pooling layers, re-
sulting in feature extraction along the time as well channel
combinations through each filter. The number of filters is
reduced with each successive convolutional layer, gradually
decreasing the number of combined channels and down-
sampling the signal in the time domain.

Loss Function and Parameter Tuning. We use the root-
mean-squared-error (RMSE) as the loss function for all
models. During training, we save the model instance at the
epoch with the lowest validation loss. The neural network
inputs are scaled to have zero mean and unit variance to
improve the numerical stability of the learning. The pa-
rameters and hyperparameters of each model structure were
tuned using the HyperBand algorithm [16] which allows for
faster and more efficient search over a large parameter space
than grid search or random search. It does this by running
random paramater configurations on a specific schedule of
iterations per configuration, and uses earlier results to se-
lect candidates for longer runs. The parameters that were
tuned include the learning rate, the number of filters and
kernel size for convolutional layers, the number of nodes,
the dropout probability, and whether to do batch normaliza-
tion after each convolutional layer.



Figure 4: Illustration of two hand-video capturing positions.
The hand on the left is in the palm down (PD) position and
the hand on the right is in the palm up (PU) position.

4. Experimental Results
4.1. Dataset and Capturing Conditions

Our proposed models were evaluated on a self-collected
dataset. The dataset consisted of hand video recordings and
SpO2 data from 14 participants, of which there were six
males and eight females between the ages of 21 and 30.
Participants were asked to categorize their skin tone based
on the Fitzpatrick skin types [2] shown in Fig. 10. The dis-
tribution of the participants’ skin types is as follows: Two
participants of type II, eight participants of type III, one par-
ticipant of type IV, and three participants of type V. This re-
search was approved by the University of XXX Institutional
Review Board.

Our dataset consists of four recordings per participant
for a total of 56 recordings. Each participant was asked to
place his/her hands on a table with the palm of the left hand
and the back of the right hand facing the camera, as illus-
trated in Fig. 4. We refer to these two hand-video capturing
positions as palm up (PU) and palm down (PD), respec-
tively. Each participant was asked to follow the breathing
protocol outlined in Fig. 5a. The participant breathes nor-
mally for 30–40 seconds and then holds his/her breath for
30–40 seconds, and this process is repeated three times for
each recording. All videos were recorded using an iPhone 7
Plus. The participant’s SpO2 was simultaneously measured
using a Contec CMS50E pulse oximeter clamped to the left
index finger of the hand. We use this pulse oximeter as the
reference measurement as it has been validated to be within
±2% of the true SpO2 level for the range of SpO2 levels in
our dataset. The video frame rate is 30 fps and the sampling
rate for the reference SpO2 measurements is 1 Hz. This data
capturing procedure was repeated twice for each participant
with at least 15 minutes between sessions.

The reference SpO2 signal is interpolated to 5 sample
points per second to match the segment sampling rate using
a smooth spline approximation [12]. Each RGB segment
and SpO2 value pair is fed into our models as a single data
point, the models output a single SpO2 estimate per seg-
ment. To evaluate a model on a recording, the model is
sequentially fed all RGB segments from the recording to
generate a time series of preliminarily predicted SpO2 val-

(a) (b)

Figure 5: (a) Breathing protocol that participants were
asked to follow, including 3 cycles of normal breathing and
breath holding. (b) Histogram of SpO2 values in the col-
lected dataset.

(a)

(b)

Figure 6: (a) Test predictions of varying performance with
reference SpO2. (b) Training vs. validation predictions.
The higher the Pearson correlation, the better the predic-
tions captures the reference SpO2 trend. The lower the
MAE, the better the predictions capture the dips in SpO2.

ues. All predictions greater than 100% SpO2 are clipped
to 100% since they are physiologically impossible. A 10-
second long moving average filter is applied to generate a
refined time series of predicted SpO2 values.

4.2. Participant-Specific Results

To investigate how well the proposed models could learn
to estimate a specific individual’s SpO2 from his/her own
data, we first conducted participant-specific experiments,
that is, we learn individualized models for each participant.
Experimental Setting.

Two recordings per participant were captured with at



Table 1: Performance comparison of each model structure
for participant-specific experiments. Results are given as
the median of all participants.

Hand Correlation MAE (%) RMSE (%)
Mode Train Val Test Train Val Test Train Val Test

Model 1 PD 0.86 0.75 0.41 1.90 1.52 2.12 2.26 1.94 2.51
(Proposed) PU 0.78 0.82 0.39 1.32 1.26 2.16 1.54 1.60 2.70

Model 2 PD 0.79 0.74 0.46 1.55 1.63 2.09 1.91 1.98 2.52
(Proposed) PU 0.86 0.77 0.41 1.08 1.52 1.96 1.34 1.70 2.48

Model 3 PD 0.81 0.77 0.44 1.64 1.27 1.93 1.99 1.59 2.48
(Proposed) PU 0.93 0.80 0.41 1.50 1.25 1.81 1.72 1.47 2.43
Ding et al. PD 0.82 0.71 0.38 1.75 1.39 3.25 2.09 1.73 3.83

[10] PU 0.83 0.72 0.34 1.60 1.26 3.40 1.93 1.58 4.58

least 15 minutes in between. One recording is used for train-
ing and validation of the model and the remaining record-
ing is for testing. An example of the training and validation
predictions curves are shown in Fig. 6b. Each recording
contains three breathing cycles, for each training/validation
recording, the first two breathing cycles are taken for train-
ing and the third cycle is used for validation. Splitting the
recordings into cycles instead of randomly sampling the 10-
sec overlapping RGB segments ensures that there are no
overlapping segments of data between the training and val-
idation set. Example test prediction curves and their cor-
relation and mean-absolute-error (MAE) are shown for ref-
erence in Fig. 6a. It should be noted that if the correlation
is low, e.g., a constant temporal estimate, then the MAE
and RMSE metrics are less meaningful. For the participant-
specific experiments, due to the small dataset size, we aug-
ment the training and validation data by sampling with re-
placement. The oversampling also helps address the imbal-
ance in SpO2 data values that is shown in Fig. 5b.

In each experiment, the model structure and hyperpa-
rameters are first tuned using the training and validation
data. Once the model has been tuned, we train multiple
instances of the model using the best tuned hyperparame-
ters. Between each instance, we vary the random seed used
for model weights initialization and random oversampling.
Each model instance is evaluated on the training/validation
recording, the model instance that achieves the highest val-
idation RMSE is selected for evaluation on the test record-
ing. This model is then evaluated on the test recording to
obtain the final test results.
Results. Table 1 shows the performance comparison of
our proposed models with the prior-art model from Ding
et al. [10]. To the best of our knowledge, this is the only
convolutional neural network structure that has been tried
for this same task of SpO2 estimation. Its structure is sim-
ilar to our Model 3 but with fewer layers. Table 1 reveals
that Model 2 is the best in terms of correlation in both PD
and PU cases, whereas Model 3 achieves the best in MAE
and RMSE, suggesting that Model 2 and Model 3 are com-
parably the best in the individualized learning. All of our
model configurations outperform Ding et al. [10]. For ex-
ample, in the PU case for Model 3, the correlation is im-

(a) (b)

Figure 7: Box plots comparing distributions of correlations
for (a) lighter vs. darker skin types, and (b) PD vs. PU for
all skin types. The PD results are better for darker skin tones
in both the participant-specific and leave-one-out cases.

proved from 0.34 to 0.41 and the MAE is lowered from
3.40% to 1.81%. It is worth noting that the international
standard for clinically acceptable pulse oximeters tolerates
an error of 4% [13], and our estimation errors are all within
this range.

There are two factors, including the skin type and the
side of the hand, that might influence the performance of
SpO2 estimation. We therefore analyze the following two
questions: (1) Whether the different skin types matter in
PU or PD case, and (2) whether the side of hand matters in
lighter skin (types II + III) or darker skin (types IV + V).
The box plots in Fig. 7 shows the distributions of the test
correlations from all the three proposed models in PU and
PD modes of (a) lighter skin and darker skin participants,
and (b) all participants.

To answer question (1), we focus on the left panel of
Fig. 7a. We note that overall, the medians of darker skin
group are larger than those of the lighter skin group. Zoom-
ing into the PD case, we can confirm that the darker skin
group indeed outperforms the light group since the former
has a smaller interquartile range (IQR). However, for the
PU case, the no significant performance difference can be
observed, because while the dark skin group is better in a
larger median, the light skin group is better in a narrower
IQR. To answer question (2), we first focus on the left panel
of Fig. 7b. We note that no significant performance differ-
ence can be observed between PD and PU given one has a
better median and the other has a better IQR, when partic-
ipants of all skin colors are considered together. However,
if we zoom into the subset of darker skin group as shown in
the left panel of Fig. 7a, we observe that PD is better than
PU given its higher median and narrower IQR. To summa-
rize, in the participant-specific experiments, (1) darker skin
group outperforms the lighter skin group when using the
back side of the hand as the ROI for SpO2 prediction but
they are comparable when using the palm of the hand; and
(2) the side of the hand has an impact on SpO2 prediction
for the darker skin group but not for the lighter skin group.



Table 2: Performance comparison of each model structure
in leave-one-participant-out experiments. Results are given
as the median of all participants.

Hand Mode Correlation MAE (%) RMSE (%)
Model 1 PD 0.33 2.33 3.07

(Proposed) PU 0.46 1.97 2.16
Model 2 PD 0.15 2.43 3.35

(Proposed) PU 0.33 2.08 2.41
Model 3 PD 0.23 2.48 2.98

(Proposed) PU 0.27 2.02 2.54

Ding et al. PD 0.11 3.19 3.76
PU 0.26 2.43 2.85

4.3. Leave-One-Participant-Out Results

To investigate whether the features learned by the model
from other participants are generalizable to new partici-
pants whom it has not seen before, we conduct leave-one-
participant-out experiments. For each experiment, when
testing on a certain participant, we use all the other partici-
pant’s data for training and leave the test participant’s data
out. The recordings from all the non-test participants are
used for participant-wise cross-validation to select the best
model structure and hyperparameters. The selected model
is evaluated on the two recordings of the test participant,
whose data was never seen by the model during training.

Table 2 shows the performance comparison of each
model in leave-one-participant-out experiments. Model 1
achieved the best performance in terms of correlation and
MAE, and achieved the best RMSE for the PU case. Model
3 achieved better RMSE results for the PD case but the cor-
relation result was low, suggesting that the model achieved
low error by simply predicting a constant SpO2 near the
middle of the SpO2 range. The best performance of Model 1
in the leave-one-participant-out experiment may imply that
the features extracted after combining the color channels
at the beginning of the pipeline can be generalized better
to unseen participants than the features extracted before
channel combination or through interleaving as in Mod-
els 2 or 3. In the participant-specific case, the model
is specifically tailored to the test individual, whereas the
leave-one-participant-out case is more difficult because the
the model needs to accommodate for the variation in the
population. As expected, in Fig. 7, we observe that the
overall results from the leave-one-participant-out experi-
ments do not match those from the participant-specific ex-
periments. Because of the modest size of the dataset, the
model has not seen as diverse data as a larger and richer
dataset would offer. The generalization capability to new
participants can be improved when more data is available.

We now revisit the two research questions raised in Sec-
tion 4.2 under the leave-one-participant-out setup. First, we
analyze the impact of skin type given the same side of the
hand. From the right panel of Fig. 7a, we observe that in
the PD case, the darker skin group outperforms the lighter
skin group , whereas in PU case, the performances are com-

Figure 8: Ablation studies results. Comparison between the
proposed (nonlinear) Model 1 (M1), modified M1 with only
linear channel combinations, and modified M1 with fully
connected dense layers instead of convolutional layers. Ab-
lation studies confirm that the nonlinear channel combina-
tions and convolutional layers improve model performance.

parable. This observation is consistent with the participant-
specific experiments that when using the palm as the ROI,
the skin color is not a factor to the accuracy of SpO2 es-
timation. Second, we analyze the impact of the side of
the hand for two skin color groups. The right panel of
Fig. 7a reveals that for darker skin group, the PD case out-
performs the PU case, which is consistent with the results
from the participant-specific experiments. However, in con-
trast to these experiments, the PU outperforms the PD in
both lighter skin group as well as the mixed group as illus-
trated in the right panel of Fig. 7b. This different generaliza-
tion capability in the PU and PD cases may be attributed to
skin color difference between the palm and the back of the
hand. The color of the back of the hand tends to be darker
than the color of the palms, and has larger color variation
among participants due to different degrees of sunlight ex-
posure. In contrast, the color variation of the palms is much
milder among participants. Furthermore, in the participant-
specific experiments, the individualized models learn the
traits of the skin type and the side of the hand from each
participant, whereas in the leave-one-participant-out exper-
iments, the learned model must capture the general charac-
teristics of the population.

4.4. Ablation Studies

To justify the use of nonlinear channel combinations and
convolutional layers for temporal feature extraction in our
proposed models, we conduct two ablation studies compar-
ing the performance of these model components to other
generic ones. We focus on the PU case to avoid uncon-
trolled impact of such factors as the skin tone and hair.
In the first ablation study, we compare nonlinear to linear
channel combination. We create a variant of Model 1 with
only a single linear channel combination layer with no acti-
vation function and repeat the leave-one-participant-out ex-
periments. Fig. 8 reveals that our proposed Model 1 with
nonlinear channel combination layers outperforms the vari-
ant of Model 1 in terms of correlation, MAE, and RMSE.
In the second study, we compare the performance of using
convolutional layers for temporal feature extraction to using
fully-connected dense layers. We create another variant of
Model 1 and repeat leave-one-participant-out experiments.



(a) (b)

(c) (d)

Figure 9: Learned RGB channel weights. Plots (a) and (b)
are the channel weights learned by different model instances
trained on the data of all study participants together, pro-
jected onto the RB and RG planes in the RGB space. Plots
(c) and (d) are the RB and RG projections of the learned
channel weights for model instances trained on random sub-
sets of the participants’ data. Each point is color coded ac-
cording to the correlation ρ achieved by the instance.

Fig. 8 reveals that our proposed Model 1 with convolutional
layers achieve better performance across all three metrics.
A summary of the studies results can be found in the sup-
plemental document.

5. Visualizations of RGB Combination Weights

To understand and explain what our physiologically in-
spired models have learned, we conduct a separate investi-
gation to visualize the learned weights for the RGB chan-
nels. Our goal is to understand the best way to combine
the RGB channels for SpO2 prediction. Having an explain-
able model is important for a physiological prediction task
like this. Our neural network models can be considered as
nonlinear approximations of the hypothetically true func-
tion that can extract the physiological features related to
SpO2 buried in the RGB videos. The ratio-of-ratios method,
for example, is another such extractor that combines the in-
formation from the different color channels at the end of
the pipeline. For this experiment, we use the modified ver-
sion of Model 1 from the ablation studies that has only a
single linear channel combination at the beginning. Seeing
that using a single linear channel combination did not sig-

nificantly reduce model performance in the ablation studies,
and understanding that the linear component may dominate
the Taylor expansion of a nonlinear function, we use only
linear combinations for this model to facilitate more inter-
pretable visualizations.

We have trained 100 different instances of the model
on the first two cycles from all the recordings and tested
on the third cycle from all recordings. The difference be-
tween each instance is that the weights are randomly initial-
ized. The weights for each channel learned by the model
instances were visualized as points representing the heads
of the linear combination vector in RGB space. Each point
is colored according to the average test correlation achieved
by the model instance. Figs. 9a and 9b show the projections
of these points onto the RB and RG planes. The subfigures
reveal that the majority of the channel weights lay along cer-
tain line in the RGB space. For the weights on the line the
ratio of the blue channel weight to the red channel weight
is 0.87, the ratio of the green channel weight to red channel
weight is 0.18. It is clear that the red and blue channels are
the dominating factors for SpO2 prediction.

To further verify this result, we repeat this experiment
but instead of using the data from all participants, for each
model instance we randomly select seven participants and
use their data for training and testing. In this case, the dif-
ference between each model instance is not only the initial-
ized weights but also the random subset of participants that
the model was trained on. Fig. 9d reveals that most of the
better performing instances (with ρ ≥ 0.45) have little con-
tribution from the green channel. In Fig. 9c, we again see
that most of the points lay on a line in the RB plane, the
ratio of the blue channel weight to the red channel weight
for these points is 0.80.

These results are in accordance with the physical under-
standing of how light is absorbed by hemoglobin in the
blood. Fig. 2 reveals a large difference between the ex-
tinction coefficients, or the amount of light absorbed, by
deoxygenated and oxygenated hemoglobin at the red wave-
length. There is a significantly smaller difference at the blue
wavelength and almost no difference at green. The amount
of light absorbed influences the amount of light reflected
which can be measured through the camera. A larger dif-
ference in extinction coefficients makes it easier to mea-
sure the ratio of light absorbed by oxygenated vs. deoxy-
genated hemoglobin over time. This ratio indicates the level
of blood oxygen saturation. Therefore, from a physiological
perspective, it makes sense for the neural networks to give
larger weight to the red and then blue channels and give lit-
tle to the green channel. These visualizations indicate that
the models are learning physically meaningful features.

6. Conclusion
In this paper, we have proposed the first CNN-based

work to solve the challenging problem of video-based re-



mote SpO2 estimation. We have designed three opto-
physiologically inspired neural network architectures. In
both participant-specific and leave-one-participant-out ex-
periments, our models are able to achieve better results than
the state-of-the-art method. We have also analyzed the ef-
fect of skin color and the side of the hand on SpO2 esti-
mation and have found that in the leave-one-participant-out
experiments, the side of the hand plays an important role
with better SpO2 estimation results achieved in the PU case.
We have also shown the explainability of our designed ar-
chitectures by visualizing the weights for the RGB chan-
nel combinations learned by the neural network, and have
confirmed that the choice of the color band learned by the
neural network is consistent with the established optophys-
iological methods.
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7. Supplemental Material
7.1. Fitzpatrick Skin Types

Our self-collected dataset consists of hand video record-
ings and SpO2 data from fourteen participants, of which
there were six males and eight females between the ages
of 21 and 30. Participants were asked to categorize their
skin tone based on the Fitzpatrick skin types [2] shown in
Fig. 10. The Fitzpatrick skin types classify the skin by its
reaction to exposure to sunlight and pigmentation. From
type I to type VI, the skin color becomes darker and less
prone to be burned by the sunlight. Among the fourteen
participants, two are from type II, eight are from type III,
one is from type IV, and three are from type V.

Figure 10: Fitzpatrick skin types. Reproduced from [2].

7.2. Skin Type and Palm Mode Comparison
Table 3 is a supplement to Fig. 7 in the main paper with

numerical values specified for the factor analysis, including
the skin type and the side of the hand. This table presents
the comparison of the test correlations from all the three
proposed models in palm up (PU) and palm down (PD) data
collection modes of lighter skin participants (type II and
III), darker skin participants (type IV and V), and all partic-
ipants. The results from participant-specific and leave-one-
participant-out experiments are presented in the median and
interquartile range (IQR). IQR measures the difference be-
tween the first quartile and the third quartile, and quantifies
the spread of the distribution. We analyze the following two
questions from the results in Table 3: (i) Whether the differ-
ent skin types matter in PU or PD case, and (ii) whether the
side of hand matters in lighter skin or darker skin.

Note that the following analysis based on Table 3 is the
quantitative version of the last paragraphs in Section 4.2 and
4.3 of the main paper. Conclusions are exactly the same.

To answer the first question, we first focus on the top
panel of Table 3 to examine the participant-specific case.
In the PD case, the darker skin group outperforms the light
group since the former has a larger median of 0.48 and a
smaller IQR of 0.20. In the PU case, the medians of the
lighter skin group and darker skin group are 0.41 and 0.45,
with IQR being 0.30 and 0.38, respectively. Even though

Table 3: Comparison of correlations for lighter vs. darker
skin types vs. all skin types in both PU and PD cases. This
table is a supplement to Figure 7 of the main paper.

Participant-Specific
Lighter Darker Overall

Hand Mode Median IQR Median IQR Median IQR
PD 0.44 0.50 0.48 0.20 0.45 0.41
PU 0.41 0.30 0.45 0.38 0.41 0.33

Leave-One-Participant-Out
Lighter Darker Overall

Hand Mode Median IQR Median IQR Median IQR
PD 0.14 0.41 0.43 0.19 0.24 0.39
PU 0.35 0.46 0.31 0.31 0.34 0.42

the median from the darker group is 9.8% higher, the IQR is
26.7% worse. Thus, no significant performance difference
is observed in the PU case. Next, we focus on the bottom
panel of Table 3 to analyze the results from the leave-one-
participant-out experiment. We observe that in the PD case,
the darker skin group with a median of 0.43 outperforms the
lighter skin group with a median of 0.14, whereas in the PU
case, the performances are comparable. This observation
is consistent with the participant-specific experiments that
when using the palm as the ROI, the skin color is not a factor
to the accuracy of SpO2 estimation.

To answer the second question, we first focus on the
participant-specific case in the top panel of Table 3. In both
lighter skin group and the mixed group, the medians of PU
cases, which are 0.41 and 0.41, respectively, are smaller
than PD cases with medians of 0.44 and 0.45, while the
IQRs are also narrower (PU: 0.30 and 0.33 vs. PD: 0.50
and 0.41), which make the distributions comparable. In the
darker skin group, the medians of PU and PD cases are 0.45
and 0.48, with IQR being 0.38 and 0.20, respectively. In
comparison, we find that there is no significant difference
between PU and PD cases in our current lighter skin and
overall groups, whereas in the darker skin group, the PD
case is better than the PU case. Second, we focus on the
results under the leave-one-participant-out setup in the bot-
tom panel of Table 3. For the darker skin group, the PD
case with a median of 0.43 and IQR of 0.19 outperforms
the PU case with a median of 0.31 and IQR of 0.31, which
is consistent with the results from the participant-specific
experiments. In contrast, in both the lighter skin group and
the mixed group, the PU cases with medians of 0.35 and
0.34 significantly outperform the PD cases with medians of
0.14 and 0.24.

7.3. Ablation Studies

Table 4 supplements Fig. 8 of the main paper for the ab-
lation studies of Model 1 in the leave-one-participant-out
setup. This table presents the medians and IQRs specified
for numerical comparison. The ablation studies justify the



use of (i) nonlinear channel combinations and (ii) convo-
lutional layers for temporal feature extraction. In ablation
study 1, we replace the nonlinear channel combination with
a single linear channel combination layer with no activation
function as the first variant of Model 1. In ablation study
2, we replace the convolutional layers for temporal feature
extraction with fully-connected dense layers as the second
variant of Model 1.

Table 4: Ablation studies for Model 1 in the leave-one-
participant-out mode. This table is a supplement to Figure
8 of the main paper.

Method ρ MAE(%) RMSE(%)
Linear Ch. Comb. Median 0.46 2.14 2.66

+ Conv. layer for Feat. Extra. IQR 0.38 0.73 0.93
Nonlinear Ch. Comb. Median 0.41 2.29 2.66

+ Fully Connec. layer for Feat. Extra. IQR 0.39 0.63 0.70
Model 1 (Proposed): Nonlinear Ch. Comb. Median 0.46 1.97 2.32

+ Conv. layer for Feat. Extra. IQR 0.36 0.80 0.87

Note that the following analysis based on Table 4 is the
quantitative version of the first paragraph in Section 4.4 of
the main paper. Conclusions are exactly the same.

First, we compare the first and the third rows in Table 4
for ablation study 1. Our proposed Model 1 achieves a bet-
ter correlation with a median of 0.46 and IQR of 0.36 and
a better RMSE with a median of 2.32 and IQR of 0.87 than
its linear channel combination variant. Besides, Model 1
achieves a comparable MAE with a better median of 1.97
but a wider IQR of 0.80. The overall better performance
of Model 1 suggests the necessity of using the nonlinear
channel combination method. Second, in ablation study 2,
we compare the second and the third rows in Table 4. We
observe that Model 1 outperforms its second variant with
fully-connected layers for feature extraction with better me-
dians in terms of correlation (0.46 vs. 0.41), MAE (1.97 vs.
2.29), and RMSE (2.32 vs. 2.66) and narrower IQR of cor-
relation. This suggests that convolutional layers are better
than fully connected layers for temporal feature extraction.


