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Abstract

We present a general theory of payment systems that is capable of describing both traditional and electronic forms of payment.

Starting from the three basic functions of money and general non-functional requirements, we derive the necessary and sufficient

properties of technical implementations of money and payments. We describe possible scalable implementations of e-money

schemes based on a general description of their data structures (money distributions) and payments. We define the notion

of bill scheme, in which the value units are bills with invariant values, and show that only the bill scheme allows for scalable

and practically efficient implementations through decomposition, where the components have to process a considerably smaller

amount of data and a number of payment requests, compared to the whole system.
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1 Introduction

Money is a social phenomenon that makes trading between people and organizations more efficient and
flexible. Without money, there would only be barter transactions – trading one good for another. This is
inefficient, as a prerequisite to any trade is double coincidence of wants – existence of two parties that can
provide goods or services the other party wants. Money appears as the subject of monetary systems and as
the object of payment systems. A monetary system regulates the money supply. Governments are steering
the money supply via a set of complex measures in a tiered, collateralized system [1, 2] – in these endeavors
they are supported by resp. team together with independent, legally trusted, accountable institutions [3,
4]. Payment systems implement the distribution and exchange of money. They are large-scale systems that
consist of organizational and technical measures [5]. Payment systems enable monetary systems; but must
not be confused with them [1, 2]. In the last decades, electronic payment systems have been crucial for the
development of economies and societies. Currently, we see new forms of electronic payment systems emerging,
as most obvious instances of Fintech [6–8], with a proclaimed potential for a next wave of e-commerce [9–14],
or even with a proclaimed disruptive potential for our societies and monetary systems [15–17]. So it is not
yet clear, in how far and to what extent such promises are realistic and might take off; it is clear that today’s
stack of monetary systems and payment systems is not flexible enough to cope with some concrete challenges.
During the recent European refugee crisis, a concrete flaw of the existing system became clear: a person can
make electronic payments only if he or she has a bank account.

Already since a couple of years now, emerging payment systems leave the vision documents of Tech
Startups; they are discussed by governments and central banks. In her speech at the Bank of England
Conference in September 2017, Christine Lagrange said: “To be clear, this [virtual currencies] is not about
digital payments in existing currencies – through Paypal and other ‘e-money’ providers such as Alipay in
China, or M-Pesa in Kenya. Virtual currencies are in a different category, because they provide their own



unit of account and payment systems. These systems allow for peer-to-peer transactions without central
clearinghouses, without central banks. For now, virtual currencies such as Bitcoin pose little or no challenge
to the existing order of fiat currencies and central banks. Why? Because they are too volatile, too risky,
too energy intensive, and because the underlying technologies are not yet scalable. Many are too opaque
for regulators; and some have been hacked. But many of these are technological challenges that could be
addressed over time. Not so long ago, some experts argued that personal computers would never be adopted,
and that tablets would only be used as expensive coffee trays. So I think it may not be wise to dismiss virtual
currencies.” [18] This 2017 statement of Christine Lagrange addresses the potential disruptive nature of
emerging electronic payment systems. For us, it is important that innovations in electronic payment systems
do not necessarily have to be disruptive and still can add tremendous value to our economies and societies.
In that vein, the European Central Bank (ECB) announced that it “intensifies its work on a digital euro” [19]
and in the respective report on the digital euro [20], again from October 2020, it is stated: “To ensure
that consumers continue to have unfettered access to central bank money in a way that meets their needs in
the digital age, the ECB’s Governing Council decided to advance work on the possible issuance of a digital
euro – an electronic form of central bank money accessible to all citizens and firms. A digital euro would be
introduced alongside cash, it would not replace it.” [20], p. 2, compare also with [21].

Given these current developments, now is the time to develop a deeper, formal understanding of payment
systems, in general, and electronic payment systems, in particular. Such deeper understanding is essential for
successfully addressing the critical challenge of any future electronic payment systems: scalability! And such
deeper understanding is exactly what we aim at in this paper. The work is in the tradition of a long series
of contributions of Guardtime and Tallinn University of Technology to ultra-scalable document verification
infrastructures [22–26], compare also with [27–29]. The theory of payment systems that we build in this
paper, relies on the following basic, simple observation. Money has three main functions:

– Unit of account – money is a measure of value that can be applied to all items, thus simplifying the
accounting process.

– Store of value – money helps to preserve values over time. For example, producing goods and saving
them in warehouses is not necessarily a good way of storing value, because the goods’ value depreciate
over time.

– Medium of exchange – money acts as intermediary between buyers and sellers. Instead of selling goods
for other goods, the seller sells goods for money which can later be used to buy other goods.

An object is more suitable to be used as money if it has properties that allow to serve these functions.
Such properties are not the only ones that have to be considered when designing a money system, but they
are the most fundamental ones. Various different forms of money are in use, and these different forms work in
fundamentally different ways, i.e., there are different money schemes. We are not aware of any prior work that
attempts to formally describe the requirements and properties of money schemes. This is probably because,
in human history, money schemes arose naturally, out of a desire to facilitate certain types of desirable
transactions, rather than from a deliberate process of design.

The emergence of electronic money has considerably increased the number of different money schemes in
use. To implement electronic money, one must solve a different set of technical problems than for physical
money. For example, in ancient times when seashells were used as money, double spending could not be a
problem, whereas for digital money it is. The history of banking began a few thousand years ago. Banks
introduced accounts as a new type of monetary units, and the banker’s job was to keep track of the value of
this monetary unit for each of their depositors. Electronic bank money systems that emerged during the era
of mainframe computers in the implementation of electronic accounting systems, where the accounts are just
numbers stored in a bank’s computer database. One of the biggest challenges in electronic account systems
has been the settlement of inter-bank transactions, where atomic swap operations are required.

More recently, blockchain [30] money schemes (cryptocurrency) such as Bitcoin [31] introduce new types
of monetary units – electronic coins – that offer much more flexible types of payments that may involve several
monetary units. A payment may involve creating several new coins while destroying existing coins. Other
schemes such as Ethereum [32] offer universal programmable money implemented as smart contracts [33,
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34] that enable its users to associate a payment with arbitrary verifiable logical preconditions. Blockchain
money schemes introduced these new possibilities, but also created new fundamental problems, especially
those related to efficient and scalable implementation.

One of the most important requirements for an economy-wide money scheme is that it is capable of
supporting a sufficient level of transactions for a long future period. Unfortunately, it is difficult to foresee
what volume of transactions may be required for future economies. Therefore, it is important to know if a
money scheme can scale as needed in the future. A future-proof electronic money scheme should be derived
from a deliberate process of design, starting from fundamental principles that will ensure its scalability.

A new theory is needed to study the essential and most general properties of money schemes in order
to understand if some of them can be easily scaled while others cannot. In this paper, we will derive what
a money scheme is composed of. Next, we will derive, from those compositional elements, the minimal, yet
sufficient properties of any money scheme that are required for it to perform these three basic functions of
money and support a volume of transactions that can be easily expanded. By doing this in a systematic way,
we will enumerate the full set of possible money schemes. Our aim is to present an abstract mathematical
model for describing money schemes that allows one to draw concrete conclusions about their potential for
implementation. In particular, their scalability.

We proceed as follows. In Sect. 2, we investigate fundamental notions of money distribution and redistri-
bution. Based on this, we are able to formalize the dynamics of money and payments in Sects. 3 and Sect. 4.
Section 5 takes the theory a significant step further, i.e., from composing payments of a single payment
system to the composition of whole payment systems and their interplay. In Sect. 6, we walk through some
example money schemes to illustrate the applicability of the contributed theory. In Sect. 7, we exploit the
theory to provide an exhaustive classification of all possible money schemes. In Sect. 8, we study a more
general notion of decomposability and prove some indecomposability results. We finish with a conclusion in
Sect. 9.

2 Money Distribution and Redistribution

There are several different money schemes in use. Physical cash is represented as physical coins or bills that
are marked with values, and can be given in payment. Bank money is represented by an account which
has a balance representing the upper limit of value that the account can be exchanged for. Bitcoin and
similar money is represented by Unspent Transaction Outputs (UTXOs) in Bitcoin’s ledger [35], which can
be assigned, in parts, to one or more public keys. All of these schemes share some basic properties. For
example, they use some kind of numerical measure that describes the amount of money – its monetary value.
This is the basic property which allows money in the scheme to function as a unit of account.

An implemented money scheme can be modeled as a system with users. In this system, there is a function,
m(a), that describes the amount of money each user a has. Payments in this model are changes to the function
m. It seems obvious that such a function is necessarily a part of any mathematical model of a money scheme.

However, a single function model is not rich enough to describe how a money scheme can, in practice, be
implemented. Since every mathematical model of a money scheme must at least describe such a function m,
all money schemes would look exactly the same. This means that a function m is necessary, but not sufficient
to describe different money schemes.

Our first goal is to find a model that is, on one hand, rich enough to describe implementation aspects. On
the other hand, the model has to be simple enough to describe only the most fundamental aspects required
to implement the scheme.

A useful observation about existing money schemes is that they all have some kind of monetary units that
are physical or digital representations of money. Examples are bills, coins, bank accounts, Bitcoin UTXOs,
etc. Every monetary unit has a unique monetary value and a unique bearer – the owner of that monetary
unit. Monetary units, while often fungible, are distinguishable. They may have some kind of identifiers, such
as the serial number on a bill or a bank account number. They may also be distinguishable because of being
separate physical objects, such as coins.
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In such a model, the state of money scheme – the so called money distribution – is represented by a set
U of value units, where every value unit u ∈ U has a unique monetary value ν(u) and a unique bearer β(u)
which represent the user of the system, to whom the money belongs. So, instead of describing a state of the
money scheme by a single money function, this new model uses one set and two functions. The two-function
model is robust enough to describe how the money distribution can change in the money scheme, i.e., through
payments.

It turns out that this minor extension of the one-function model is sufficient to study the implementation
aspects that affect scalability and show that different money schemes may have dramatically different scala-
bility limitations. These conclusions may be derived in a fundamental manner, and no specific implementation
details or techniques may overcome them.

2.1 Representation of Money and its Distribution

Following the discussion above, a money distribution M involves the following components:

– U is the set of monetary units
– ν : U → N is the value function defining the value ν(u) of every value unit u. The set N is the set of all

natural numbers, but instead, we can use any set of numerals that is totally ordered (e.g. integers, real
numbers).

– β : U → B is the bearer function defining the bearer β(u) of a unit. The set B is the set of possible
bearers. The bearer is usually a legal construction defining any type of legal entity, such as a person, a
family, a company, a state institution, etc.

Hence, the money distribution M defines monetary units, their values, and their bearers. A schematic
view of a money distribution is depicted in Fig. 1.

Fig. 1. Schematic representation of money distribution M = (U, ν, β).

Definition 1 (Money Distribution). A money distribution on a bearer set B is a triple M = (U, ν, β),
where U is a set, ν : U → N and β : U → B are functions, called the value function and the bearer function,
respectively.

We use the indexed representations M = (U, ν, β) = (UM , νM , βM ) to emphasize that these are the
components of M .

Definition 2 (Total Value of a Money Distribution). The total value of a money distribution
M = (U, ν, β) is the natural number σ(M) =

∑
u∈U ν(u).

We only consider money distributions with finite total value.
We define the money of bearer b in a money distribution M as the amount of money that b owns in M .
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Definition 3 (Money of Bearer). By the money of bearer b in a money distribution M we mean the
number σ(M, b) =

∑
u∈β−1(b) ν(u), where β

−1(b) = {u : u ∈ U, β(u) = b} is the inverse image of b under β.

Definition 4. By M we denote the set of all possible money distributions M . By 0M, we denote the empty
money distribution 0M = (∅, ∅, ∅).

2.2 Transformation of Money

Money transformations represent changes in the money distribution. If the original money distribution is
M = (U, ν, β) and the transformation is R, then the changed (transformed) money distribution is R(M) =
M ′ = (U ′, ν′, β′). A transformation may change the values and bearers of monetary units. It may also destroy
(melt) value units and create (mint) new value units.

Definition 5 (Money Transformation). A money transformation T is a partial transformation on M.
(As usual, we use domT and rangeT for the domain resp. the range of T ).

We use 1M to denote the identity mapping, which represents no change in money distribution. Addition-
ally, there is a function which might transform the money distribution, but is defined nowhere; ie. its domain
includes no actual bearers, which means its practical effect is nothing. This transformation Θ with domain
dom(Θ) = ∅ is also a partial transformation.

Note that the domain dom(T ) may be a singleton set {M}, which means that the value of T (M) is only
defined for a single money distribution M .

The money transformations on M form a monoid under the composition operation:

– Composition T1 ◦ T2 of two money transformations yields a money transformation.
– Composition is associative: T1 ◦ (T2 ◦ T3) = (T1 ◦ T2) ◦ T3.
– The identity function 1M is a partial transformation.
– Θ is the zero element of the monoid, i.e., Θ ◦ T = T ◦Θ = Θ for every redistribution T .

A transformation that preserves the total money, is called a redistribution, see Def. 6.

Definition 6 (Redistribution). A redistribution R is a money transformation so that σ(R(M)) = σ(M)
for every M ∈ domR.

Definition 7 (Initial Emission). A transformation E0 defined on the empty money distribution (i.e.,
domE0 = {0M}) that transforms 0M to a non-empty money distribution M0 = E0(0M), is called initial
emission.

3 Dynamics of Money

At any moment of time, the amount of money and its distribution is defined by the money distribution.
Changes in the money distribution are caused by input events, which we call redistributions. Eventually, we
are interested only in such systems where redistributions are caused by payments, which is to say that we
will not consider transformations that change the overall quantity of money in the system.

The money distribution and its redistribution over time is what we callmoney evolution, and is represented
by a pair (M(t), R(t)) of mutually related functions, where M(t) represents the money distribution at time
t, and R(t) represents the redistribution that transforms some initial money distribution M0 to the current
distribution M(t).

Our goal is to study physical implementations of money via M(t) and R(t) as a system. First, we study
the relation between M(t) and R(t) and how they are related to the implementation. Intuitively, M(t)
represents the state of the system, while R(t) represents the input that causes changes in that state. We
observe that in nature similar situation is modeled via differential equations. First, we look at the simplest
physical concept – point mass – to look for useful analogies and see if we may apply our existing intuition
the task of examining different money schemes.
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3.1 Descriptions of R(t) and M(t)

Money evolutions (M(t), R(t)) are not represented by continuous functions but rather piecewise constant
functions also known as step functions, where the change ofM(t) happens at a discrete set T = {t1, t2, t3, . . .}
of time values 0 = t0 < t1 < t2 < t3 . . . as depicted in Fig. 2. The function M(t) is represented as a sequence
of pairs (M0, t0), (M1, t1), (M2, t2), (M3, t3), . . . and is defined by this sequence as follows:

M(t) =Mi,

where i ∈ {0, 1, . . .} is the first index for which ti+1 > t.

Fig. 2. Change of money distribution.

Fig. 3 depicts the corresponding redistribution function R(t), which is 1M everywhere except at the points
t1, t2, t3, and t4, where redistributions R1, R2, R3 happen.

Fig. 3. Redistribution function.

Let (R1, t1), (R2, t2), (R3, t3), . . . be the sequence of non-trivial (Ri 6= 1dom(Ri)) redistributions such that
for every i, the redistribution is assumed to happen at time ti.
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The redistribution function is then defined as follows:

R(t) =

{
Ri if t = ti ∈ T
1M if t 6∈ T (1)

It is easy to see that the functions M(t) and R(t) are related in the following way:

M(t) = (R1 ◦R2 ◦ . . . ◦Rn)(M0) = Rn(Rn−1(. . . R2(R1(M0)) . . .)), (2)

where n is the largest natural number such that tn 6 t.
From equation (2), it follows that M(t) is uniquely defined by M0 and R(t).
However, it is not yet clear how precisely M0 and R(t) are defined by M(t).
The uniqueness of this correspondence depends on how we restrict the properties of redistributions

R1, R2, . . .. First, in Sec. 3.2, we prove the unique correspondence between R(t) and M(t) for the so-called
uni-point redistributions – partial transformations the domain of which is a singleton set, i.e., these trans-
formations are defined for only one initial money distribution. The main motivation for this appraoch is the
simplicity of the proof. In Sec. 3.3, we generalize the result for the so-called shift redistributions that much
more precisely model real life payments.

3.2 Uni-Point Redistributions

A uni-point redistribution R on M is defined for only a single money distribution M . This is equivalent to
saying “A has $10, and B has $2, and the redistribution makes it so that A has $8 and B has $4.”

Definition 8 (Uni-Point Redistribution). A redistribution R is called uni-point if its domain is a sin-
gleton set, i.e., domR = {M} for a certain money distribution M .

Therefore, R is completely described as a pair (M,M ′), where M ′ = R(M).

Lemma 1. Assume that:

– M(t) is represented by the sequence (M0, t0), (M1, t1), (M2, t2), (M3, t3), . . .
– R(t) is represented by the sequence (R1, t1), (R2, t2), (R3, t3), . . .
– R′(t) is represented by the sequence (R′1, t

′
1), (R

′
2, t
′
2), (R

′
3, t
′
3), . . .

where Ri and R′i are uni-point redistributions. Now, if:

– M(t) and R(t) satisfy equation (2), i.e., M(t) = (R1 ◦R2 ◦ . . . ◦Rn)(M0), where n is the largest natural
number such that tn 6 t and

– M(t) and R′(t) satisfy equation (2), i.e., M(t) = (R′1 ◦R′2 ◦ . . . ◦R′n)(M0), where n is the largest natural
number such that t′n 6 t

then R(t) = R′(t), i.e., R1 = R′1, R2 = R′2, . . ., and t1 = t′1, t2 = t′2, . . ..

Proof: Assume that R(t) 6= R′(t) and k be the smallest index such that (Rk, tk) 6= (R′k, t
′
k), i.e. (R1, t1) =

(R′1, t
′
1), . . . , (Rk−1, tk−1) = (R′k−1, t

′
k−1). First, we show that tk = t′k. Indeed, if tk < t′k, then for tk < t < t′k,

we have that, on one hand, M(t) = (R1 ◦R2 ◦ . . . ◦Rk)(M0), but on the other hand, M(t) = (R′1 ◦R′2 ◦ . . . ◦
R′k−1)(M0). This implies:

M(t) = (R1 ◦R2 ◦ . . . ◦Rk)(M0)

= Rk((R1 ◦R2 ◦ . . . ◦Rk−1)(M0))

= Rk((R
′
1 ◦R′2 ◦ . . . ◦R′k−1)(M0))

= Rk(M(t)),

which means that Rk as a uni-point redistribution is trivial, which is a contradiction. If again t′k < tk, then
R′k would be trivial and we have a similar contradiction. Hence, tk = t′k.

If Rk 6= R′k, then for tk < t < min tk+1, t
′
k+1 and Mk−1 = M(tk−1) , we have M(t) = Rk(Mk−1) 6=

R′k(Mk−1) =M(t), which again is a contradiction. �
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3.3 Shift Redistributions

Uni-point redistributions are not good models for real-world payments as they are too restrictive, i.e., defined
only for one particular money distribution and their description – the pair (M,M ′) – involves the entire
money distribution that is currently valid. Real-world payments, in contrast, tend to describe relatively
small “local” changes in the money distribution, and can be represented in a much more compact form.
Payments usually change just a few monetary units, and this is done independently of the other units in
M . Hence, redistributions R should be defined for many money distributions M and hence, dom(R) is
not a singleton set. A redistribution R has to make the same relative changes in all money distributions
M ∈ dom(R). For example, a payment such as “A pays B $10” can be applied to any money distribution M
where A is the bearer of at least ten dollars in M and must decrease the money of A by $10 and increase
the money of B by $10 in every such M and do nothing else, no matter how much money other parties have
in M .

Even though they are more similar, shift redistributions are still not exactly the same as payments.
A payment is an economic term that describes monetary value exchanged for goods or services. A shift
redistribution describes a transformation to the money distribution. For example, a bitcoin block acceptance
is a shift redistribution that contains many independent payments. Likewise in the current financial system,
there are end of day settlement procedures, which take into account many individual payments, some of
which completely or partially offset each other, and simply apply the net effect of all payments.

The changes made by R can be reconstructed if M and R(M) are known for a particular M , i.e., R is
completely defined if just one argument-value pair (M,R(M)) is known.

Real-valued functions of this type are called shift functions. An example of such a function is fδ(x) = x+δ,
where δ is constant. If one knows (x, fδ(x)) for an x, the value δ can be computed by

δ = fδ(x)− x, (3)

and hence the function fδ is uniquely defined by any pair (x, fδ(x)).
Inspired by this analogy, we define shift redistributions R∆, where ∆ is called a difference set that

describes the differences between R∆(M) and M . The difference set ∆ is not itself a money distribution. We
also define the subtraction operation 	 on money distributions such that the equation

∆ = R∆(M)	M

analogous to (3) holds (Lemma 2).
In order to describe local changes that a redistribution R does, we need to define:

– The set U− of monetary units that are deleted by R, and for each such unit u ∈ U− we have to list its
value and bearer before applying R, i.e., we have to describe a function ∆− : U− → N×B.

– The set U+ of new monetary units that are created by R, and for each such unit u ∈ U+ we have to list
its value and bearer after applying R, i.e., we have to describe a function ∆+ : U+ → N×B.

– The set U0 of monetary units u the parameters ν(u) and β(u) of which are changed by R, and for each
such unit we have to list its value change (positive or negative), as well as its previous and current
bearers, .e. we have to describe a function ∆0 : U0 → Z×B×B. For the compactness of representation,
the units that are not changed by R should not belong to U0.

A difference set should describe all these changes and hence it has the next mathematical definition.

Definition 9 (Difference Set). A difference set ∆ is a nested tuple 〈〈U−, U+, U0〉, 〈∆−, ∆+, ∆0〉〉, where:

– U−, U+, and U0 are non-intersecting sets of monetary units.
– ∆− : U− → N×B is a total function.
– ∆+ : U+ → N×B is a total function.
– ∆0 : U0 → Z ×B ×B is a total function so that for every u ∈ U0, if ∆0(u) = (du, bu, b

′
u), then du 6= 0

or bu 6= b′u.
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Definition 10 (Domain of a Difference Set). The set U−∪U0 is called the domain of ∆ and is denoted
by dom∆.

Definition 11 (Creation Set of a Difference Set). The set U+ is called the creation of ∆ and is denoted
by cre∆.

Every difference set ∆ uniquely defines a redistribution R∆, see Def. 12.

Definition 12 (Shift Redistribution R∆). Given a difference set ∆A, a shift redistribution R∆ is defined
by as follows. (i) The domain dom(R∆) of R∆ is the set of all money distributions M = (U, ν, β) such that:

D0: U− ∪ U0 = dom∆ ⊆ U
D1: U+ ∩ U = ∅
D2: ∀u ∈ U− : ν(u) = nu, β(u) = bu, where ∆−(u) = (nu, bu).
D3: ∀u ∈ U0 : ν(u) + du > 0, β(u) = bu, where ∆0(u) = (du, bu, b

′
u).

(ii) For every M = (U, ν, β) ∈ dom(R∆), we define R∆(M) =M ′ = (U ′, ν′, β′) as follows:

R0: U ′ = (U\U−) ∪ U+

R1: For every u ∈ U ′, if u ∈ U\U−, then
• If u ∈ U0 then ν′(u) = ν(u) + du and β′(u) = b′u, where ∆0(u) = (du, bu, b

′
u).

• If u 6∈ U0 then ν′(u) = ν(u) and β′(u) = β(u).
R2: If u ∈ U+, then ν′(u) = nu and β′(u) = bu, where ∆+(u) = (nu, bu).

Definition 13 (Difference of Money Distributions). The difference M ′	M of two money distributions
M = (U, ν, β) and M ′ = (U ′, ν′, β′) is a difference set 〈〈U−,U+〉, 〈U0;∆−,∆0,∆+〉〉 defined as follows:

U− = U\U ′

U+ = U ′\U
U0 = {u ∈ U ′ ∩ U : ν′(u) 6= ν(u) or β(u) 6= β′(u)}

∆−(u) = (ν(u), β(u)) for every u ∈ U−

∆+(u) = (ν′(u), β′(u)) for every u ∈ U+

∆0(u) = (ν′(u)− ν(u), β(u), β′(u)) for every u ∈ U+

A schematic view of of the sets U−,U+,U0 is depicted in Fig. 4.

From the above, we can say that for a shift redistribution, all monetary units in U are either newly
created, newly destroyed, having their value or bearer changed, or are totally unchanged. Since the overall
amount of money in the money distribution remains unchanged in a shift redistribution, we can observe
that there are different ways of accomplishing the shift redistribution, using the above categories, that can
effect the same payments in different ways, depending on how the money scheme works. For example, in the
case of paper or coin money, the value of individual bills do not change, but the bearer changes. In the case
of a bank account payment, the value of both accounts changes – the payer’s account decreases in value,
which is offset by a corresponding increase in the recipients account value. In a bitcoin transaction, UTXO’s
having a certain total value are destroyed, while new UTXO’s with potentially different values and bearers
are created. The new UTXO’s total value equals the sum of those that are destroyed.

Lemma 2. For every shift redistribution R∆ and for every money distribution M ∈ dom(R∆), we have that

∆ = R∆(M)	M (4)
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Fig. 4. Schematic representation of the sets U−,U+,U0 in the difference set M ′ 	M for M = (U, ν, β) and M ′ =
(U ′, ν′, β′).

Proof: Let M = (U, ν, β) ∈ dom(R∆) and R∆(M) = M ′ = (U ′, ν′, β′). We have to prove the equalities
U− = U−, U+ = U+, U0 = U0, ∆− = ∆−, ∆+ = ∆+, and ∆0 = ∆0.
U− = U−: By (R0), we have U ′ = (U\U−) ∪ U+ by definition of R∆. Then, as U− ⊆ U and U+ ∩ U− = ∅:

U− = U\U ′ = U\[(U\U−) ∪ U+] = [U\(U\U−)]\U+ = U−\U+ = U−.

U+ = U+: As by (D1), U+ ∩ U = ∅. Hence:

U+ = U ′\U = [(U\U−) ∪ U+]\U = [(U\U−)\U ]︸ ︷︷ ︸
∅

∪ (U+\U)︸ ︷︷ ︸
U+

= U+.

U0 = U0: If u ∈ U0, then u ∈ U ′ ∩ U and either ν′(u) 6= ν(u) or β(u) 6= β′(u) and hence, u 6∈ U+ by (D1)
in the definition of dom(R∆). Therefore, u ∈ U\U−. If now u 6∈ U0, then ν′(u) = ν(u) and β′(u) = β(u) by
(R1) in the definition of R∆ and we have a contradiction. Therefore, u ∈ U0, and hence U0 ⊆ U0.

Let now u ∈ U0. Then u 6∈ U+, u 6∈ U−, and by (D0), u ∈ U . Then, u ∈ U ′ by (R0), and hence,
u ∈ U0 ∩ U ′. Therefore, by (R1), we have ν′(u) = ν(u) + du and β′(u) = b′u, where ∆0(u) = (du, bu, b

′
u). By

the definition of ∆0, we have du 6= 0 or bu 6= b′u, which again implies that either ν′(u) 6= ν(u) or β(u) 6= β′(u)
and hence u ∈ U0 by the definition of U0. Hence, U0 ⊆ U0.
∆− = ∆−: Let u ∈ U− and ∆−(u) = (nu, bu). Hence, nu = ν(u) and bu = β(u), and by (D2), ∆−(u) =
(ν(u), β(u)) = (nu, bu) = ∆−(u).
∆+ = ∆+: Let u ∈ U+ and ∆+(u) = (nu, bu). Hence, nu = ν′(u) and bu = β′(u), and by (R2), ∆+(u) =
(ν′(u), β′(u)) = (nu, bu) = ∆+(u).
∆0 = ∆0: Let u ∈ U0 and ∆0(u) = (du, bu, b′u). Hence, du = ν′(u) − ν(u), bu = β(u) and b′u = β′(u). Let
∆0(u) = (du, bu, b

′
u). By (D3), β(u) = bu, and hence bu = bu. As u ∈ U0, then u ∈ U ′ and u ∈ U\U−. Hence,

by (R1), we have ν′(u) = ν(u) + du and β′(u) = b′u. Hence, b′u = b′u and du = ν′(u) − ν(u) = du. Hence,
∆0(u) = (du, bu, b′u) = ∆0(u). �

Corollary 1. For every uni-point redistribution represented by a pair (M,M ′), there is one and only one
shift redistribution R with M ′ = R(M).

Theorem 1. Assume that:

– M(t) is represented by the sequence (M0, t0), (M1, t1), (M2, t2), (M3, t3), . . .
– R(t) is represented by the sequence (R1, t1), (R2, t2), (R3, t3), . . .
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– R′(t) is represented by the sequence (R′1, t
′
1), (R

′
2, t
′
2), (R

′
3, t
′
3), . . .

where Ri and R′i are shift redistributions. Then if:

– M(t) and R(t) satisfy equation (2), and
– M(t) and R′(t) satisfy equation (2),

then R(t) = R′(t), i.e., R1 = R′1, R2 = R′2, . . ., and t1 = t′1, t2 = t′2, . . ..

Proof: Direct implication from Lemma 1 and Lemma 2. �

3.4 Velocity of Money

Definition 14 (Money Flow). Given two money distributions M and M ′ on a bearer set B, we define
the money flow between M and M ′ as the following quantity:

ϕ(M ′,M) =
1

2

∑
b∈B

|σ(M ′, b)− σ(M, b)| (5)

Definition 15 (Money Flow of a Redistribution). Given a redistribution R and a money distribution
M ∈ domR, the money flow ψ(R) of the redistribution R is the quantity:

ψ(R) = ϕ(R(M),M) (6)

Let (M(t), R(t)) be a money evolution represented by initial money distribution M0 and a time series
(R1, t1), (R2, t2), (R3, t3), . . .. Let σ0 = σ(M) be the total value of money distributions.

Definition 16 (Velocity of Money in a Money Evolution). By the velocity of money in the interval
[t0, t], where t0 < t, we mean a function V (t0, t) defined as follows:

V (t0, t) =
1

σ0 · (t− t0)
∑

t0<ti<t

ψ(Ri). (7)

Note that for the definition having a practical value, the distance |t − t0| should not be too small, because
for a point ti in the time series the flow V (ti − ε, ti + ε) approaches to infinity, if ε approaches to 0. Usually,
|t− t0| is assumed to be a fixed unit of time such as year, month, day, etc.

We observe that the form of this velocity equation bears strong resemblance to the usual definition of
money velocity seen in economic literature:

V =
P · T
σ0

. (8)

In the above definition, T represents the volume of transactions in the economy during a certain period,
which is equivalent to the sum in our derivation. Additionally, the denominator, σ0 represents the volume of
money in circulation in both definitions. A notable difference is the presence of P in the economic definition,
which ours lacks. The price level can be seen as a function that maps the amount of monetary units to
goods and services. Since we only consider the mechanics of money schemes, specifically, and not the goods
and services they are exchanged for, this is a reasonable result. Additionally, since many theories of money
examine the effect of increasing and decreasing the monetary supply on prices, and here we have mainly
considered cases where the overall monetary supply remains fixed, derivation of a price function will be left
as future work.
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3.5 Emission and Withdrawal

In most practical money solutions, the total amount of money is not constant, but changes from time to time
because of emissions and withdrawals. For example, this is the case with Central Bank controlled money.

Therefore, in the mathematical model of money, we also have to consider emission and withdrawal
transformations. The time series of the system is in the form (T1, t1), (T2, t2), . . ., where Ti is a transformation
of one of the following types:

– Redistribution Ri that does not change the total amount σ0 of money.
– Emission Ei that:

1. Extends the total amount σ0 of money
2. Deletes no monetary units
3. Changes the bearer of no monetary units
4. Reduces the value of no monetary units

– Withdrawal Wi that:
1. Reduces the total amount σ0 of money
2. Creates no monetary units
3. Changes the bearer of no monetary units
4. Extends the value of no monetary units

The mathematical model of money with emission and withdrawal is similar to the theory of invariant
money. An emission or withdrawal transformations T can also be modeled as shift transformation that are
uniquely defined by the difference set T (M)	M for any money distribution M .

The unique correspondence theorem (Theorem 1) also holds for general shift transformations and hence,
also for the money theory with emission and withdrawal.

The velocity of money equations (7) and (8) can also be generalized to money with emission and with-
drawal. However, there are several ways of doing so because σ0 is no more a constant but rather a function
σ0(t).

4 Payments

We study the definition of allowed redistributions by certain compositions of atomic redistributions that are
called payments. For formal description of payments we have to use coproduct – a standard concept in set
theory and category theory [36, 37].

The coproduct also turns out to be the most relevant composition operation when modeling decompos-
ability of implementations of money. This is because, if payments and shift redistributions can be modeled
using the coproduct operation, we will see that it becomes easier to split them apart so these smaller pieces
can be handled in parallel on different computers.

4.1 Coproduct

Let U be any set that is partitioned into to subsets U1 and U2, i.e., U = U1 ∪ U2 and U1 ∩ U2 = ∅. Then we
write U = U1 ⊕ U2 and say that U is a coproduct of its subsets U1 and U2.

If f1 : U1 → V and f2 : U2 → V are arbitrary functions, then we can define a function f : U → V in the
next way:

f(u) =

{
f1(u) if u ∈ U1

f2(u) if u ∈ U2

Such a function f is called the coproduct of functions f1 and f2 and is denoted by f1 ⊕ f2.
Let ι1 : U1 → U and ι2 : U2 → U be the inclusion maps, i.e., ι1(u1) = u1 and ι2(u2) = u2 for every

u1 ∈ U1 and u2 ∈ U2.
Coproduct has the next universal property : For every functions f1 : U1 → V and f2 : U2 → V there is a

unique function f : U → V denoted by f1 ⊕ f2 such that f ◦ ι1 = f1 and f ◦ ι2 = f2.
Coproduct can be defined for any number of sets.
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Definition 17 (Coproduct of Sets and Functions). If U1, U2, . . . , Un are sets, then the coproduct U1 ⊕
U2 ⊕ . . . ⊕ Un of these sets is (U ; ι1, ι2, . . . , ιn), where U is a set and ιi : Ui → U are functions so that for
every set V and functions fi : Ui → V (where i ∈ {1, 2, . . . , n}), there is a unique function f : U → V so
that f ◦ ιi = fi for every i ∈ {1, 2, . . . , n}. This function f is denoted by f1 ⊕ f2 ⊕ . . .⊕ fn and is called the
coproduct of f1, f2, . . . , fn. (Fig. 5)

Fig. 5. Set diagram (left) and commutative diagram (right) for coproduct construction.

It is easy to show that for any sets U1, U2, . . . , Un, their coproduct always exists U1⊕U2⊕ . . .⊕Un. One
possible construction is as follows:

U = {(u, i) : 1 6 i 6 n, u ∈ Ui}
ιi(u) = (u, i)

For example, if U1 = U2 = {a, b}, then U1 ⊕ U2 = (U ; ι1, ι2), where

U = {(a, 1), (b, 1), (a, 2), (b, 2)}
ι1(a) = (a, 1)

ι1(b) = (b, 1)

ι2(a) = (a, 2)

ι2(b) = (b, 2)

Set partitioning is a special case of the set coproduct operation, which is what we will show to be the
most important capability required to shard and scale a money scheme.

4.2 Payment Rules

In this section, we describe characterize payments as building blocks of redistributions. Payments are certain
kind of redistributions that are defined on money subdistributions. Payments can be converted to more
general redistributions via general composition and coproduct as a special (parallel) form of composition.
Hence, the properties of payments define the properties of redistributions.
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Payments usually change the status of just a few monetary units and are hence, defined on subdistribu-
tions. This is for the sake of having short descriptions. First, we define subdistributions, then characterize
the payments and provide a few examples of payment types.

For any money distribution M = (U, ν, β), and for any subset V ⊆ U with the corresponding inclusion
map ιV : V → U , the triple V =M |V = (V, ν|V , β|V ), where ν|V = ιV ◦ ν and β|V = ιV ◦ β, is also a money
distribution, which we denote by M |V .

Definition 18 (Sub-Distribution). The money distribution M |V is said to be a sub-distribution of M .

Definition 19 (Payment of Type ∆). A payment of type ∆ is a shift redistribution P = R∆ defined by
a difference set ∆ that is called a payment type.

If P = R∆ is a payment and V = dom∆ and M = (U, ν, β) ∈ domP , then P can be viewed as a shift
redistribution on a sub-distribution M |V = (V, ν|V , β|V ) of M that has the following properties:

– Money preservation: σ(P (M |V )) = σ(M |V ), which means that payments preserve the total money of
the sub-distribution M |V .

– Non-redundancy : From dom(∆) = V , it follows that V does not contain monetary units u that do not
change under P , i.e., are not deleted by P neither the values of ν(u) and β(u) are changed by P .

According to Sec. 3.3, such payments are uniquely defined by their types.
The following type of payments are some examples of payment types.

Bill Payments P = R∆, where ∆ = 〈〈∅, ∅, {u}〉, 〈∅, ∅, {(u, 0, b1, b2)}〉〉, where u ∈ U and b1 6= b2 ∈ B, i.e.,
P changes the bearer of a single monetary unit u from b1 to b2 and does nothing else.

Account Payments P =R∆, where

∆=
〈
〈∅, ∅, {u, v}〉 , 〈∅, ∅, {(u,−n, a, a), (v, n, b, b)}〉

〉
, (9)

where n ∈ N, u, v ∈ U and a 6= b ∈ B, i.e., P changes the value of two monetary units u, v by −n and n,
respectively, and does nothing else.

Bitcoin Payments P = R∆ where

∆ = 〈
〈{u1, . . . , uk}, {v1, . . . , v`}, ∅〉,
〈{(u1, n1, a1), . . . , (uk, nk, ak)}, {(v1,m1, b1), . . . , (v`,m`, b`)}, ∅〉
〉

(10)

where

n1, . . . , nk,m1, . . . ,m` ∈ N, (11)
u1, . . . , uk, v1, . . . , v` ∈ U, (12)
a1, . . . , ak, b1, . . . , b` ∈ B, (13)

and
n1 + . . .+ nk = m1 + . . .+m`, (14)

i.e., P destroys units u1, . . . , uk and creates new units v1, . . . , v` with the same total value.
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4.3 Coproducts of Money Distributions

For developing a suitable decomposition theory for money solutions, we first have to define decomposition
rules for money distributions.

If U = U1∪U2∪. . .∪Un is a partition of U , then every component Ui defines a sub-distributionMi =M |Ui
.

Note that
σ(M) = σ(M1) + σ(M2) + . . .+ σ(Mn). (15)

Definition 20 (Coproduct of Money Distributions). Given money distributions
M1 = (U1, ν1, β1), . . . ,Mn = (Un, νn, βn), the following is also a money distribution:

M = (U1 ⊕ . . .⊕ Un, ν1 ⊕ . . .⊕ νn, β1 ⊕ . . .⊕ βn) (16)

We call M in (16) a coproduct of money distributions, that we also denote by M =M1 ⊕M2 ⊕ . . .⊕Mn.

4.4 Coproducts of Payments

Payments act on money sub-distributions. If two payments P1 and P2 act independently on two different com-
ponentsMi andMj of the coproduct of money distributions, these payments can be executed independently,
and in parallel.

A precise mathematical definition for parallel execution of such payments turns out to be related to the
coproduct of functions construction described in Sec. 4.1.

Let M = (U, ν, β) be a money distribution. Let U = U1 ⊕ U2 ⊕ . . . ⊕ Un. Let P1 = R∆1 , . . . , Pn = R∆n

be payments such that:

– dom∆1 ⊆ U1, . . . ,dom∆n ⊆ Un, i.e., Pi acts on the sub-distribution Mi =M |Ui .
– cre∆i ∩ cre∆j for every i 6= j, i.e., no Pi and Pj with i 6= j will create the same new monetary units.

Hence, if M ′i = Pi(Mi) = (U ′i , ν
′
i, β
′
i) (for i ∈ {1, 2, . . . , n}), then the sets U ′i are mutually non-intersecting

and we have a coproduct:

P (M) =M ′1 ⊕M ′2 ⊕ . . .⊕M ′n = P1(M1)⊕ P2(M2)⊕ . . .⊕ Pn(Mn).

It is easy to see that P (M) is a money distribution and hence the shift transformation P is uniquely
defined by the pair (M,P (M)). There is a unique difference set ∆, such that P = R∆, where ∆ = P (M)	M .
Moreover, from equation (15) it follows that P preserves the total money, and hence, P is a redistribution
of M .

Definition 21 (Coproduct of Payments). Such a redistribution P is called the coproduct of P1, P2, . . . , Pn
and is denoted by P = P1 ⊕ P2 ⊕ . . .⊕ Pn.

If ∆i = 〈〈U−i , U
+
i , U

0
i 〉, 〈∆

−
i , ∆

+
i , ∆

0
i 〉〉 (for i ∈ {1, 2, . . . , n}), then:

∆ = 〈
〈U−1 ⊕ . . .⊕ U−n , U

+
1 ⊕ . . .⊕ U+

n , U
0
1 ⊕ . . .⊕ U0

n〉,
〈∆−1 ⊕ . . .⊕∆−n , ∆

+
1 ⊕ . . .⊕∆+

n , ∆
0
1 ⊕ . . .⊕∆0

n〉
〉

Definition 22 (Coproduct of Difference Sets). Such ∆ is called the coproduct of ∆1, ∆2, . . . ,∆n and
is denoted by ∆ = ∆1 ⊕∆2 ⊕ . . .⊕∆n.

A commutative diagram for the payments coproduct construction is depicted in Fig. 6.
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Fig. 6. Diagram for the construction of coproduct of payments.

4.5 Coproduct, Unitwise Decomposition, and Atomicity

A redistribution is any finite composition of payments Pi ∈ P:

R = P1 ◦ P2 ◦ . . . ◦ Pm 6= Θ. (17)

If R is a coproduct of payments P1, P2, . . . , Pn:

R = P1 ⊕ P2 ⊕ . . .⊕ Pn.

then this means in practice that these payments can be executed in parallel, while in the composition given
by equation (17) the payments cannot, in general, be executed in parallel. Payments and their coproducts
are implemented as atomic operations.

If the money system is decomposed via U = U1 ⊕ U2 ⊕ . . . ⊕ Un, i.e., the set U of monetary units is
partitioned into non-intersecting components U1, U2, . . . , Un that are stored and maintained in physically
separated computers C1, C2, . . . , Cn, then every payment P can only be processed in on only one of those
computers Ci. Both the input parameters and the output parameters P have to be stored and be available
in Ci. If there were inputs from several computers, Ci would have to obtain synchronize the input data
from several computers. If there were outputs of P in two different computers, the system would have to
implement simultaneous atomic swap operations in these computers. None of these tasks can be solved by
any communication protocol in guaranteed deterministic time. Therefore, it is assumed that both the inputs
and outputs of P are stored in the single machine Ci and hence, P only changes the money distribution Mi

related to Ui.
This requirement leads to the requirement that the total money distribution M is a coproduct M =

M1 ⊕ M2 ⊕ . . . ⊕ Mn, and every atomic operation R in the system has to be a coproduct of payments
R = P1 ⊕ P2 ⊕ . . .⊕ Pn each Pi acting on a single component Mi of the total money distribution.

5 Money Schemes and Their Coproducts

So far, we have described money distributions and redistributions as compositions of payments. In this
section, we define money schemes as mathematical abstractions of money solutions that only use certain type
of payments. For example, account-based money solutions and bill-based money solutions define two different
money schemes. In general, to define a money scheme, we have to define all possible money distributions, as
well as all possible payments that are allowed in a particular solution.

We define the coproduct of money schemes that reflect situations where several independent money
schemes are in use. For example, we have got used to having bank money in an account-based system and
cash, and sometimes, we use them in parallel for payments.

We also define the universality property of money schemes that is motivated by the fact that in some
money schemes (such as account-based schemes), that we call universal, we can pay arbitrary amount of
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money that we have to any other bearer, while in other schemes (such as bill-based schemes) this is not
always possible.

It turns out that a coproduct of universal money schemes is always universal itself, and vice versa: if
a coproduct of certain money schemes is universal, also its components have to be universal. One of the
consequences of this is that account-based schemes cannot be efficiently unitwise-decomposed.

5.1 Money Schemes

Money schemes are characterized by the set M of all possible money distributions and by certain shift
redistributions on M that happen only because of payments. Different types of payments define different
types of money schemes.

Definition 23 (Money Scheme). A money scheme is a pairM = (M,P) where M 6= ∅ is a set of money
distributions and P is a set of payments that contains at least the identity payment 1.

For every money schemeM = (M,P), we define the set Umax of all potential monetary units and the set
B of all potential bearers by:

Umax(M) = {u : u ∈ U for some M = (U, ν, β) ∈M}
B(M) = {b : b = β(u) and u ∈ U for some M = (U, ν, β) ∈M}

5.2 Coproducts of Money Schemes

For every two money schemesM1 = (M1,P1) andM2 = (M2,P2) one can construct a new money scheme
denoted byM1 ⊕M2 = (M,P), where

M = {M1 ⊕M2 : M1 ∈M1,M2 ∈M2}
P = {P1 ⊕ 1: P1 ∈ P1} ∪ {1⊕ P2 : P2 ∈ P2}

Definition 24 (Coproduct of Money Schemes). The money schemeM1 ⊕M2 is called the coproduct
of money schemes M1 andM2.

As σ(M1 ⊕M2) = σ(M1) + σ(M2) for every M1 ∈ M1,M2 ∈ M2, every payment P ∈ P preserves both
invariants σ(M1), σ(M2), and hence, also the money invariant ofM1⊕M2. In practice, the coproduct means
that two parallel types of money are in use, while the total amounts of both types of money stay the same.
It is easy to check that B(M) = B(M1) ∪B(M2) and Umax(M) = Umax(M1) ∪ Umax(M2). More generally,
for n money distributions M1 = (M1,P1), . . . ,Mn = (Mn,Pn) their coproduct (M,P) =M1 ⊕ . . . ⊕Mn,
where

M = {M1 ⊕ . . .⊕Mn : M1 ∈M1, . . . ,Mn ∈Mn}

P =

n⋃
i=1

{1⊕ ...⊕ 1︸ ︷︷ ︸
i−1

⊕Pi ⊕ 1⊕ ...⊕ 1︸ ︷︷ ︸
n−i

: Pi ∈ Pi}

The key aspect of efficient and scalable implementability of a money scheme is related to coproduct
decomposability. The storage complexity of a money schemeM is proportional to the number |U | of monetary
units. If |U | gets too large, it will be necessary to decompose the money scheme:

M =M1 ⊕M2 ⊕ . . .⊕Mn,

where every Mi manages money distributions Mi = (Ui, νi, βi) with |Ui| � |U |, ideally, |Ui| ∼ |U |
n . In

practice, for an electronic money scheme, this means that different money units are stored on different
databases.
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5.3 Universal Money Schemes

Universal money schemes allow for any bearer a in any money distribution to pay arbitrary amount of money
to any other bearer b, assuming only that a has that much money.

Definition 25 (Universal Money Scheme). A money schemeM = (M,P) is called universal on a
bearer set B, if for every money distribution M = (U, ν, β) ∈M, for every two bearers a, b ∈ B and for any
amount n 6 σ(M,a), there is a coproduct R = P1 ⊕ P2 ⊕ . . .⊕ Pm of payments, such that:

σ(R(M), a) = σ(M,a)− n
σ(R(M), b) = σ(M, b) + n

∀u ∈ U : if u ∈ U\U ′ or ν(u) > ν′(u) or β(u) 6= β′(u), then β(u) = a

whereR(M) = (U ′, ν′, β′)

(i.e., any bearer a whose money is at least n can pay n units to any other bearer b without changing the
money of other bearers, whereas the corresponding redistribution R does not delete, reduce a value or change
the bearer of any monetary unit u with β(u) 6= a.)

This implies that σ(R(M), c) = σ(M, c) of any user c 6∈ {a, b}. Indeed, the third condition implies that R
does not reduce the money of any user except a, and as the reduced money of a is completely compensated
by the increased money of b, there is no room to change the money of any other users, because R does not
change the total money of the money scheme.

Not all money schemes have to be universal. For example, physical cash is not universal because, for
example, if a bearer a has a single 20 dollar bill, it is not possible for a to pay 10 dollars to b with a single
payment transaction. However, a is able to pay 20 dollars to any other bearer. More generally, if a has a set
V of bills with total value of n dollars, it is possible for a to pay n dollars to any other user. This property
is formally defined as the weak universality.

Definition 26 (Weakly Universal Money Scheme). A money scheme M = (M,P) is called weakly
universal on a bearer set B, if and for every money distribution M = (U, ν, β) ∈ M, for every two bearers
a, b ∈ B and for any amount n =

∑
u∈V ν(u), where V ⊆ U and β(V ) = {a}, there is a coproduct

R = P1 ⊕ P2 ⊕ . . .⊕ Pm of payments, such that:

σ(R(M), a) = σ(M,a)− n,
σ(R(M), b) = σ(M, b) + n, and
∀u ∈ U : if u ∈ U\U ′ or ν(u) > ν′(u) or β(u) 6= β′(u), then β(u) = a,

whereR(M) = (U ′, ν′, β′).

(i.e., any bearer a can pay to a bearer b any n units that is a total value of a subset U of value units owned
by a, whereas the corresponding redistribution R does not delete or reduce a value, ore change the bearer of
any monetary unit u with β(u) 6= a.)

We will show that money schemesM = (M,P) with account payments are universal on B(M), but are
not universal on any proper superset B ⊃ B(M). The schemes with bill payments are weakly universal on
B(M) but not necessarily universal.

The universal properties may seem trivial and be taken for granted. However, they have important
consequences for unitwise-decomposability.

5.4 Unitwise Decomposability of Universal Money Schemes

In order to understand which money schemes can be decomposed, we need to draw some conclusions about
their composability.
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Theorem 2. If M1 = (M1,P1) and M2 = (M2,P2) are [weakly] universal on B with |B| > 2, then their
coproductM1 ⊕M2 is also [weakly] universal on B.

Proof: We prove the weakly universal case. The proof in the universal case is completely analogous.
LetM =M1⊕M2 ∈M withM1 = (U1, ν1, β1) andM2 = (U2, ν2, β2) be a money distribution. Let a, b ∈ B

be two bearers, V ⊆ U = U1 ⊕ U2, β(V ) = {a}, and n =
∑
u∈V ν(u) =

∑
u∈V ν1(u), where ν = ν1 ⊕ ν2.

Obviously, n = n1 + n2. Let U1 = V ∩ U1 and U2 = V ∩ U2, n1 =
∑
u∈U1

ν1(u), n2 =
∑
u∈U2

ν2(u). Due to
the universality ofM1, there is a redistribution R1 = P 1

1 ⊕ . . .⊕ P
m1
1 inM1, such that:

σ(R1(M1), a) = σ(M1, a)− n1,
σ(R1(M1), b) = σ(M1, b) + n1,

∀u∈U1 : if u∈U1\U ′1 or ν1(u)>ν′1(u) or β1(u) 6=β′1(u), then β1(u)=a,
where R1(M1) = (U ′1, ν

′
1, β
′
1).

Due to the universality ofM2, there is a redistribution R2 = P 1
2 ⊕ . . .⊕ P

m2
2 inM2, such that:

σ(R2(M2), a) = σ(M2, a)− n2,
σ(R2(M2), b) = σ(M2, b) + n2,

∀u∈U2 : if u∈U2\U ′2 or ν2(u)>ν′2(u) or β2(u) 6=β′2(u), then β2(u)=a,
where R2(M2) = (U ′2, ν

′
2, β
′
2).

Hence, for the redistribution R1 ⊕R2 = P 1
1 ⊕ . . .⊕ P

m1
1 ⊕ P 1

2 ⊕ . . .⊕ P
m2
2 , we have

σ(R(M), a) = σ(R1(M1), a) + σ(R2(M2), a)
= σ(M1, a) + σ(M2, a)− n1 − n2
= σ(M,a)− n,

σ(R(M), b) = σ(R1(M1), b) + σ(R2(M2), b)
= σ(M1, b) + σ(M2, b) + n1 + n2
= σ(M, b) + n,

∀u ∈ U : if u ∈ U\U ′ or ν(u) > ν′(u) or β(u) 6= β′(u), then β(u) = a,

where R(M) = (U ′, ν′, β′) = (U ′1 ⊕ U ′2, ν′1 ⊕ ν′2, β′1 ⊕ β′2).

Hence,M is [weakly] universal. �

Note that ifM1 is [weakly] universal on B(M1) andM2 is [weakly] universal on B(M2), then this does
not mean thatM1 ⊕M2 is [weakly] universal on B(M1) ∪B(M2).

Theorem 3. IfM1 = (M1,P1) andM2 = (M2,P2) are money schemes so that their coproduct
M = M1 ⊕M2 = (M,P) is [weakly] universal on B with |B| > 2, then M1 and M2 are also [weakly]
universal on B.

Proof: We prove thatM1 is [weakly] universal. The proof forM2 is analogous. Let a, b ∈ B be two bearers.
We first prove that there is M0

2 ∈ M2, where σ(M0
2 , a) = 0. Indeed, due to the [weak] universality of

M, for every money distribution M = M1 ⊕M2 ∈ M there is a redistribution R0 such that σ(R0(M), a) =
σ(M,a) − σ(M,a) = 0. Note that due to M 6= ∅, there is at least one M ∈ M to which one can apply R0.
Let R0(M) =M0

1 ⊕M0
2 . As σ(R0(M), a) = σ(M0

1 , a)+σ(M
0
2 , a) = 0, we also have σ(M0

2 , a) = 0, and hence,
such M0

2 ∈M2 exists.
LetM1 = (U1, ν1, β1) ∈M1 be a money distribution. Let U1 ⊆ U1 where β1(U1) = {a}. LetM =M1⊕M0

2 .
Due to the universality ofM, there is a redistribution R = P1 ⊕ . . .⊕ Pm with R(M) = (U ′, ν′, β′).such

that:

σ(R(M), a) = σ(M,a)− n,
σ(R(M), b) = σ(M, b) + n,

∀u ∈ U : if u ∈ U\U ′ or ν(u) > ν′(u) or β(u) 6= β′(u), then β(u) = a.
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Due to the coproduct properties, we can assume w.l.o.g. that R = R1 ⊕ R2, where R1 = P1 ⊕ . . . ⊕ Pk is a
redistribution inM1 and R2 = Pk+1⊕ . . .⊕Pm is a redistribution inM2. As σ(M,a) = σ(M1, a)+σ(M

0
2 , a)

and σ(M0
2 , a) = 0, we have that σ(M,a) = σ(M1, a). Note also that R(M) = R1(M1) ⊕ R2(M

0
2 ) and

σ(R(M), a) = σ(R1(M1), a) + σ(R2(M
0
2 ), a).

As R2 does not delete, reduce the value, or change the bearer of any monetary unit not beared by a, we
conclude that σ(R2(M

0
2 ), a) = σ(M0

2 , a) = 0. Hence, σ(R(M), a) = σ(R1(M1), a) and

σ(R1(M1), a) = σ(R(M), a) = σ(M,a)− n = σ(M1, a)− n.

As R2 must preserve the total value of M0
2 and it does not decrease the money of any other bearer, we

have that σ(R2(M
0
2 ), b) = σ(M0

2 , b) and hence σ(R1(M1), b) = σ(M1, b) + n and the [weak] universality of
M1 follows. �

These composability results imply (shown in the next section) that:

– Universal account schemes do not allow efficient unitwise-decompositions.
– [Weakly] universal bill schemes allow ideal unitwise-decompositions with |Ui| ∼ |U |n .

6 Examples of Money Schemes

Now we will offer some examples of common and important money schemes. We assume the same universe
Umax in all examples.

We also assume that the total money σ(M) of every money distribution M ∈ M is the same, i.e.,
σ(M) = σ0 for a constant σ0.

6.1 The Bill Scheme

In the bill scheme, the monetary units are called bills. All payments are bill payments, as described in Sec. 4.2,
i.e., the shift distributions P = R∆ with

∆ =
〈
〈∅, ∅, {u}〉 , 〈∅, ∅, {(u, 0, b1, b2)}〉

〉
,

where u ∈ U and b1 6= b2 ∈ B, i.e., P changes the bearer of a single monetary unit u from b1 to b2 and
does nothing else.

The bill scheme is the oldest money scheme, starting from seashells and stones and ending with coins and
bills. A bill is a value unit that has a fixed nominal value that does not change during payments. Only the
bearers of bills change during redistributions. We note that functionally, bills and coins are equivalent, and
we refer to both forms using the word “bill”. In physical bill schemes, payments occur when physical control
over a bill changes hands at a unique moment in time. Payments may be effected by changing the bearer of
several bills, ie. A payment of $15 may be composed of the transfer of one $5 bill and one $10 bill.

Further, In electronic bill schemes, it may be that multiple payments may be combined into a single,
atomic redistribution, such that multiple multi-bill payments are combined into a single atomic redistribution.

In some bill schemes, all bills may have equal nominal values. In other schemes, bills of different nominal
values are used. Bills never have nominal value zero. In physical bill schemes, bill issuers usually select
regular, physically convenient denominations for their issued bills, ie. $1, $5, and $10 or e1, e2, and e5.
In electronic bill schemes, regular denominations are not required, and it may be more convenient to allow
irregular values for bills.

It is easy to see that for any composition R of bill payments preserves the set and values of monetary
units, i.e., for every money distribution M = (U, ν, β):

UP (M) = UM

νP (M) = νM .
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By a single bill money scheme we mean a bill scheme that describes a one single bill, i.e., in which all
allowed money distributions are in the form M = ({u}, ν, β), where ν = {(u, v)} and β = {(u, b)}, where
v ∈ N and b ∈ B.

Theorem 4. Every bill schemeM is a coproduct of single bill money schemes.

Proof: The set U of monetary units is constant in the bill scheme and can be represented as the coproduct of
singleton subsets U =

⊕
u∈U{u}. As every payment P only changes the bearer of one single bill u, it can be

considered as a payment in the single bill money distribution ({u}, νu, βu), where νu = {(u, ν(u))} and βu =
{(u, β(u))}. If we define Mu to be the set of all money distributions in the form ({u}, {(u, ν(u))}, {u, β(u)}),
Pu to be the set of all payments P with type ∆ = 〈〈∅, ∅, {u}〉, 〈∅, ∅, {(u, 0, b1, b2)}〉〉, andMu = (Mu,Pu), we
haveM =

⊕
u∈UMu. �

This theorem means that bill schemes are arbitrarily unitwise-decomposable – every partition of U induces
a coproduct decomposition.

Theorem 5. Every universal bill scheme (M,P) on a bearer set B (where |B| > 2) has only bills with unit
value, i.e., β(u) = 1 for every M = (U, ν, β) and u ∈ U .

Proof: Let u be a bill with ν(u) > 1. Let M be a money scheme where b ∈ B is the bearer of u and has no
more bills. It is not possible for b to pay 1 unit to any other bearer, and hence, the scheme is not universal.
�

The bill scheme with only unit-value bills is not very efficient as the number of bills has to be large and
for making a payment of value n, one has to execute (in parallel) n separate payments. Efficient bill schemes
have to use bills with various denominations but then, we lose universality. Still, the lack of universality can
be compensated for by using an exchange mechanism, and indeed we have already shown that we all have
and use weakly universal money schemes. If we can design a practical bill scheme, we know that, because it
is unitwise-decomposable, it can be made to scale by processing more transfers in parallel.

6.2 The Account Scheme

In account schemes, the monetary units are called accounts. All payments are account payments, as described
in Sec. 4.2, i.e., shift distributions P = R∆ with

∆ =
〈
〈∅, ∅, {u, v}〉 , 〈∅, ∅, {(u,−n, a, a), (v, n, b, b)}〉

〉
,

where n ∈ N, u, v ∈ U and a 6= b ∈ B, i.e., P changes the value of two monetary units u, v by −n and n,
respectively, and does nothing else. In this case, a is called the payer, u is called the payer account, b is called
the receiver and v the receiver account.

It is easy to see that for any composition R of account payments preserves the set and bearers of monetary
units, i.e., for every money distribution M = (U, ν, β):

UR(M) = UM

βR(M) = βM .

It turns out that universal account schemes cannot be efficiently unitwise-decomposed.

Theorem 6. If an account scheme (M,P) is universal on B, then |U | > |B| for every M = (U, ν, β) ∈M.

Proof: For the universality to hold, every bearer b ∈ B must have an account. �

Corollary 2. Universal account schemes do not have efficient unitwise-decompositions, i.e., for every de-
composition M =M1 ⊕M2 of an account scheme M universal on B, then by Thm. 3, also M1 and M2

are universal on B and hence operate on the sets of monetary units U1, U2 with size at least |B|.
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To put it more practically, in every unitwise-decomposition of a universal account scheme, all users must
have accounts in every component. This is equivalent to all users having an account at every bank.

Such a decomposition is hence by value not by the number of monetary units. But representing a bigger
value is not a problem in today’s machines, as for example, representation of a twice bigger values just need
one additional bit.

The only reason why decomposition by value makes sense is load balancing, i.e., even if every user
has account in every component, the requests served by the system may be equally distributed between
components. From a banking standpoint, it would mean that if one bank’s payment system was overloaded,
one could simply make your payment at a less busy bank, where your payee also, conveniently, has an
account. In this way we avoid the banks needing to talk to each other to process a payment.

6.3 The Extended Account Scheme

In the extended account scheme, the monetary units are called accounts. All payments are either account
payments (Sec. 6.2) or bill payments (Sec. 6.1). The payments either change the value of two accounts as in
the account scheme, or change the bearer of a one single account. This simply means that payments can be
effected using extended accounts by changing their bearer as well as by reducing their value.

It is easy to see that for any composition R of extended account payments preserves the set of monetary
units, i.e., for every money distribution M = (U, ν, β):

UR(M) = UM .

Extended account scheme offers some flexibility compared to the account scheme. It is no more true that in
a composition of a universal extended account scheme, every bearer has to have account in every component,
because accounts can be created on demand by using the bill payments. However, after sufficiently long time,
there will most probably be accounts for most of the bearers in every component, if the components are large
enough in value.

If there are many components of low value, the scheme will resemble the bill scheme.

6.4 The Bitcoin Scheme

In the Bitcoin scheme, the monetary units are called UTXOs (Unspent Transaction Outputs). All payments
are shift distributions P = R∆, compare with (10) – (14), i.e., P destroys UTXOs u1, . . . , uk and creates
new UTXOs v1, . . . , v` with the same total value.

Bitcoin payments are effected by creating a transaction that spends one or more Unspent Transaction
Outputs and, in their place, creating one or more new Unspent Transaction Outputs with potentially different
individual values – though the total remains the same. These new UTXO’s may have the same or different
bearers.

In case the set {u1, . . . , uk} in ∆ can contain arbitrary UTXOs, then such a full-scale Bitcoin scheme is
not decomposable.

Theorem 7. Full-scale Bitcoin scheme is not unitwise-decomposable.

Proof: Assume that we have a decomposition. Let u1 and u2 be two UTXOs in different components.
As the scheme is full-scale, there is a payment that deletes u1 and u2 and creates a new coin v with
ν(v) = ν(u1) + ν(u2). As such a payment deletes coins in different components, it cannot be defined as a
payment in one component. �

Theorem 8. Full-scale Bitcoin scheme is universal.

Proof: Let M = (U, ν, β) be a money distribution. Let a be a bearer that has (bears) the coins u1, . . . , um
and these are all the coins that a has. Hence, σ(M,a) = ν(u1) + . . .+ ν(um). Let 0 < n 6 σ(M,a) and b be
any other bearer. As the scheme is full-scale, there is a payment P transforming M to M ′ = (U ′, ν′, β′) that
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deletes the coins u1, . . . , um, creates two coins v1 and v2 with ν′(v1) = n, β′(v1) = b, ν′(v2) = σ(M,a)− n,
and β′(v2) = a, and does nothing else. For such a payment:

σ(P (M), a) = σ(M,a)− n
σ(P (M), b) = σ(M, b) + n,

which proves that the money scheme is universal. �
By Theorems 2 and 8, the coproduct of full-scale Bitcoin schemes is universal. However, by Theorem 7,

it follows that such a coproduct is not full-scale.
Therefore, the only way of making the Bitcoin type money scheme to scale is to use many independent

Bitcoin type schemes in parallel. This means that in every component, the total amount of money stays the
same. Limited value payment transactions can then be localized, but for larger payments, one has to use
parallel payments in several components.

In an extreme cases of decomposition, where the total values of the components become very small, the
scheme becomes similar to the bill scheme. In fact, if the total value of every component is 1, every payment
can only delete one coin and create one coin of the same value, and we have a scheme that is equivalent to
the universal bill scheme.

7 Classification of Money Schemes

Now we have all the tools needed to classify all possible money schemes. The basis of a classification is the
properties of the payments of the omney scheme. First, in Section 7.1, we present a classification of money
schemes based on certain invariants.

7.1 Classification by Invariance

In this section, we present a full list (M,P), based on the invariance of components U , ν, and β of money
distributions under the payments P ∈ P of the money scheme.

Table 1. Map of money schemes.

Scheme U ν β Comment
Trivial scheme const const const Only identity payment allowed
Bill scheme const const var
Account scheme const var const
Extended account scheme const var var Account payments + account ownership change
- var const const If U changes, the so do ν and β
- var const var If U changes, the so do ν and β
- var var const If U changes, the so do ν and β
Hybrid schemes var var var Bitcoin Scheme

From a purely combinatorial viewpoint, there are eight classes of schemes as presented in Tab. 1:

1. If all three parameters U , ν, and β are invariant, then the payments do not change the money distribution,
which means that money does not flow, and hence, this class of schemes is not interesting.

2. There exist no schemes, in which only U changes, because, by changing the domain of a function, we
also change the bearer and value functions, since every monetary unit must have a value and a bearer.

So, only five of these eight types are of practical interest:
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1. Schemes in which only the bearer function β changes, i.e., bill schemes (Sec. 6.1).
2. Schemes in which only the value function ν changes, i.e., account schemes (Sec. 6.2).
3. Schemes in which only β and ν change, one example of which is the extended account scheme (Sec. 6.3).
4. Schemes in which all parameters may change, i.e., the hybrid schemes, an example of which is the the

Bitcoin scheme (Sec. 6.4).

7.2 Descriptional Complexity of Payments

As the measure of descriptional complexity of a payment P = R∆, we use the storage size of ∆ represented
as a data structure.

Intuitively, the complexity has to be proportional to the number of monetary units that P changes. Also,
the more units P creates, the more complex it is. If ∆ = (U+, U−, U0;∆+, ∆−, ∆0) is the difference set of
P , then for every u ∈ U+ ∪ U− ∪ U0, the storage space needed for ∆+(u), ∆−(u), and ∆0(u) is constant,
and hence, the value |dom∆| + | cre∆| = |U+| + |U−| + |U0| is indeed proportional to the descriptional
complexity.

Definition 27 (Descriptional Complexity of a Payment). By the descriptional complexity of a payment
P = R∆, we mean the value ‖P‖ = |dom∆|+ | cre∆| = |U+|+ |U−|+ |U0|, where

∆ = (U+, U−, U0;∆+, ∆−, ∆0)

.

Lemma 3 (Descriptional Complexity of Coproduct). For every payments P1, P2, the descriptional
complexity of P = P1 ⊕ P2 is the sum of the descriptional complexities of P1 and P2, i.e., ‖P1 ⊕ P2‖ =
‖P1‖+ ‖P2‖.

Proof: Direct consequence of the definitions in Sect. 4.4. �

7.3 Equivalence of Money Distributions and Payments

As our goal in this section is to present a general classification of payment types, we do not want to be too
specific about the details of the payments. For example, if a payment creates a new monetary unit v, the
only things that matter are the value of v and the bearer of v. If there is another payment P ′ that does the
same things as P , except it creates a new unit v′ 6= v that has the same value and bearer, then P and P ′
are considered equivalent.

In order to give a precise mathematical definition for the equivalence of payments, we start from defining
equivalent money distributions.

Intuitively, two money distributions are equivalent if, for any bearer b, the sets of monetary units beared
by b in the money distributions contain the monetary units of similar values.

Definition 28 (Equivalent Money Distributions). Two money distributions M1 = (U1, ν1, β1) and
M2 = (U2, ν2, β2) are equivalent (M1 ∼ M2) if there is a bijection f : U1 → U2, such that ν2(f(u)) = ν1(u)
and β2(f(u)) = β1(u) for every u ∈ U1.

Equivalently, we can define the equivalence of money distributions through a special kind of redistributions
called unit permutations.

Definition 29 (Unit Permutation). For any bijection f : Umax → Umax, there is a redistribution Sf
called a unit permutation that transforms every money distribution M = (U, ν, β) to a money distribution

Sf (M) = (f(U), ν ◦ f, β ◦ f) (18)

Definition 30 (Equivalent Money Distributions – Alternative Definition). Money distributionsM1

and M2 are equivalent (M1 ∼M2) if there is a unit permutation Sf so that M1 = Sf (M2).
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Two payments are considered equivalent if they are defined on the same domain D of money distributions
and for every money distribution M ∈ D the produced money distributions are equivalent.

Definition 31 (Equivalent Payments). Payments P1 and P2 are equivalent (P1 ∼ P2) if dom(P1) =
dom(P2) = D and P1(M) ∼ P2(M) for every money distribution M ∈ D.

For example, a single bill payment P1 that changes the bearer of a bill u from a to b is equivalent to a
payment that deletes u and creates a new bill v with the same value and the bearer b.

Two payments are defined to be of equivalent type, if in addition to arbitrary permutation of monetary
units, we may also apply arbitrary permutation of the bearer set.

Definition 32 (Unit-Bearer Permutation). For any two bijections f : Umax → Umax and g : B → B,
there is a redistribution Sf,g called a unit-bearer permutation that transforms every money distribution
M = (U, ν, β) to a money distribution

Sf,g(M) = (f(U), ν ◦ f, g ◦ β ◦ f) (19)

Definition 33 (Payments of Equivalent Type). Two payments P1 and P2 are of equivalent type if there
is a unit-bearer permutation Sf,g so that:

dom(P2) = Sf,g(dom(P1)) (20)
P2 ◦ Sf,g = Sf,g ◦ P1 (21)

7.4 Classification of ◦-Irreducible Payments

In this section, we study how arbitrary payments can be decomposed into a general composition of simpler
payments, i.e., payments with smaller descriptional complexity.

Definition 34 (◦-Irreducible Payment). A payment P is ◦-irreducible (composition-irreducible) if it
cannot be represented as a composition P = P1 ◦ P2 of P1 and P2 with ‖P1‖ < ‖P‖ and ‖P2‖ < ‖P‖.

There are the following equivalent classes of ◦-irreducible payments, where a pays b an amount n:

1. Single unit transfer, where a single monetary unit u with value n owned by a is converted to a single
unit v with value n owned by b (Fig. 7).

2. Two-unit swap, where two monetary units u1 with value n1 owned by a, and u2 with value n2 owned
by b are converted to two units v1 with value n1 − n owned by a, and v2 with value v2 + n owned by b
(Fig. 7).

3. Two-unit split, where single monetary unit u with value m owned by a is converted to two units v1 with
value m− n owned by a, and v2 with value n owned by b

4. Two-unit join, where two monetary units u1 with value n1 owned by a,and u2 with value n2 owned by
a are converted to a single unit v with value n = n1 + n2 owned by b (Fig. 7).

Every payment is a composition of ◦-irreducible payments.

7.5 Classification of ⊕-Irreducible Payments

In this section, we study how arbitrary payments can be decomposed into a coproduct of simpler payments,
i.e., payments with smaller descriptional complexity.

Definition 35 (⊕-Irreducible Payment). A payment P is ⊕-irreducible (coproduct-irreducibly) if it can-
not be represented as a coproduct P = P1 ⊕ P2 of P1 and P2 with ‖P1‖ < ‖P‖ and ‖P2‖ < ‖P‖.

As every ◦-irreducible payment is also ⊕-irreducible, the four types depicted in Fig. 8 are ⊕-irreducible.
We have three additional ⊕-irreducible payment types:
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Fig. 7. Composition irreducible payments.

1. General split, where a single monetary unit u with value n and bearer a is converted into a set of units
v1, v2, . . . , vk with values n1, n2, . . . , nk, and bearers b1, b2, . . . , bk, respectively, where n = n1 + . . .+ nk
(Fig. 8).

2. General join, where a set of units u1, u2, . . . , uk with values n1, n2, . . . , nk, and bearers a1, a2, . . . , ak,
respectively, is converted to a single unit v with value n1 + n2 + . . .+ nk and bearer a (Fig. 8).

3. General swap, where a set of units u1, u2, . . . , uk with values n1, n2, . . . , nk, and bearers a1, a2, . . . , ak, re-
spectively, is converted to a set of units v1, v2, . . . , v` with valuesm1,m2, . . . ,m`, and bearers b1, b2, . . . , b`,
respectively, where n1 + . . .+ nk = m1 +m2 + . . .+m` (Fig. 8).

General swap P is irreducible only if σ(W ′) 6= σ(W ) for every non-empty proper subsets W ⊂ V and
W ′ ⊂ V ′.

Fig. 8. Coproduct irreducible payments.
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8 Parallel Decomposability of e-Money

So far, we have studied unitwise-decomposability. In this section, we study a more general form of decompos-
ability of e-money, where a money scheme is implemented as a parallel decomposition of two state machines.
The states of the component machines are not necessarily money distributions. Only assumption we make
is that the pair of states can somehow be interpreted as a money distribution.

The two component machines model two physically separated machines. Every payment is executed by
sending two separate commands t1 and t2 to corresponding components through communication channels.
As physical communication channels may delay and lose information, we assume that it is not possible to
guarantee that both commands are received.

If only t1 is received, then the other component does nothing, i.e. executes the identity operation 1.
We want the decomposition to be organized in a way that executing (t1, 1) or (1, t2) instead of (t1, t2) also
corresponds to a legal payment of the implemented money scheme. We call such a property as atomicity of
the decomposition.

8.1 Decomposability of State Machines

Definition 36 (State Machine (Standard Definition)). A state machine is a triple (S, I, δ), where S
is a non-empty set of states, I is a set of inputs, and δ : I × S → S is a state transition function. There is
one and only one input 1 ∈ I such that δ(1, s) = s for every s ∈ S.

Definition 37 (State Machine (Standard Definition)). A state machine is a pair (S, T ), where S is a
non-empty set of states, T is a set of state transitions. Every transition t ∈ T is a function t : S → S. There
is one and only one identity transition 1 ∈ T , such that 1(s) = s for every s ∈ S.

Fig. 9. State machine as a state transition system.

Defs. 36 and 37 are equivalent. Given (S, T ), we define (S, I, δ) with I = T and δ(i, s) = i(s) for every
i ∈ I and s ∈ S. Given (S, I, δ), we define T = I and t(s) = δ(t, s). In this work, we will use the alternative
definition Def. 37, because, in definitions and proofs, it allows for algebraic expressions that are easier to
handle. Every statement and result about state machines with the alternative definition can be translated
to the corresponding statements and results about conventional state machines and vice versa.

Definition 38 (Generating Set). Given a state machine (S, T ), a subset T0 ⊆ T is a generating set, if for
every transition 1 6= t ∈ T there exist t1, t2, . . . , tk ∈ T0 so that t = t1 ◦ t2 ◦ . . . ◦ tk.

Definition 39 (Anti-Commutator Graph). Given a state machine (S, T ), an anti-commutator graph of
T0 is a graph (T0, o), where o is a binary relation on T0 so that t o t′ iff t ◦ t′ 6= t′ ◦ t.

Definition 40 (Implementation of a State Machine). An implementation of a state machine (S, T )
by a state machine (S′, T ′) is a pair (π, ψ) of maps π : S′ → S (surjective) and ψ : T → T ′ so that for every
t ∈ T :

t ◦ π = π ◦ ψ(t) , (22)
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i.e., t(π(s′)) = π(ψ(t)(s′)) for every s′ ∈ S′.

Fig. 10. Implementation of (S, T ) by (S, T ).

Definition 41 (Direct Product of State Machines). A direct product of state machines (S1, T1) and
(S2, T2) is a state machine (S, T ), where S = S1 × S2, T = T1 × T2, and

(t1, t2)(s1, s2) = (t1(s1), t2(s2))

for every s1 ∈ S1, s2 ∈ S2, t1 ∈ T1, t2 ∈ T2.

Fig. 11. Direct product (S, T ) of (S1, T1) and (S2, T2).

For a direct product of state machines, the identity transition is (1, 1).
Algebraic decomopsition theory of state machines was developed by Hartmanis and Stearns [38]. The

definition of parallel composition is equivalent to that of parallel full-decomposition presented by Jóźwiak
[39].

Definition 42 (Parallel Decomposition of a State Machine). A parallel decomposition of a state
machine (S, T ) is an implementation (π, ψ) of (S, T ) by the direct product of state machines (S1, T1) and
(S2, T2).

Let us denote ψ(t) = (ψ1(t), ψ2(t)).

Definition 43 (Trivial Decomposition of a State Machine). A parallel decomposition (π, ψ) of a state
machine (S, T ) is trivial, if either:
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Fig. 12. Parallel decomposition (π, ψ) of (S1, T1) and (S2, T2).

– t ◦ π = π ◦ (ψ1(t), 1) for all t ∈ T , or
– t ◦ π = π ◦ (1, ψ2(t)) for all t ∈ T .

Theorem 9 (Indecomposability). If (π, ψ) is a parallel decomposition of a state machine (S, T ) by the
direct product of state machines (S1, T1) and (S2, T2) such that (S, T ) has a generating set T0 with connected
anti-commutator graph, and for every t ∈ T0, either t ◦ π = π ◦ (ψ1(t), 1) or t ◦ π = π ◦ (1, ψ2(t)), then the
decomposition is trivial.

Proof: If t1, t2 ∈ T0, t1 ◦ π = π ◦ (ψ1(t1), 1), and t2 ◦ π = π ◦ (1, ψ2(t2)), then t1 and t2 commute, i.e.
t2 ◦ t1 = t1 ◦ t2. Indeed:

t2 ◦ t1 ◦ π = t2 ◦ π ◦ (ψ1(t1), 1) = π ◦ (1, ψ2(t2)) ◦ (ψ1(t1), 1)

= π ◦ (ψ1(t1), 1) ◦ (1, ψ2(t2)) = t1 ◦ π ◦ (1, ψ2(t2))

= t1 ◦ t2 ◦ π,

and hence, t2 ◦ t1 = t1 ◦ t2 because π is surjective. Therefore, if t1, t2 ∈ T0 and t1 o t2 , then either:

– t1 ◦ π = π ◦ (ψ1(t1), 1) and t2 ◦ π = π ◦ (ψ1(t2), 1), or
– t2 ◦ π = π ◦ (1, ψ2(t2)) and t2 ◦ π = π ◦ (1, ψ2(t2)),

but the case of t1 ◦π = π ◦ (ψ1(t1), 1) and t2 ◦π = π ◦ (1, ψ2(t2)) is impossible because of the argument above.
As the anti-commutator graph of T0 is connected, either t ◦ π = π ◦ (ψ1(t), 1) for all t ∈ T0, or t ◦ π =

π ◦ (1, ψ2(t)) for all t ∈ T0, and hence, the decomposition is trivial. �
Let (π, ψ) be an implementation of a state machine (S, T ) by a state machine (S′, T ′) .

Definition 44 (Acceptable Error). An acceptable error is a function E : T → 2T .

Definition 45 (Implementation Error). An implementation error is a function E ′ : T ′ → 2T
′
.

Definition 46 (Error Tolerance). An implementation (π, ψ) is (E , E ′)-error tolerant if for every transition
t ∈ T :

π ◦ E ′(ψ(t)) ⊆ E(t) ◦ π. (23)

Definition 47 (Atomic Decomposition). A parallel decomposition (π, ψ) of a state machine (S, T ) by the
direct product of state machines (S1, T1) and (S2, T2) is atomic with respect to acceptable error E : T → 2T (or
simply E-atomic) if it is (E , E ′)-error tolerant, where E ′(t1, t2) = {(1, t2), (t1, 1)} for every (t1, t2) ∈ T1 × T2.

8.2 Indecomposability of the Account Money Scheme

– States: tuples (v1, v2, . . . , vm) ∈ Nm with v1 + v2 + . . .+ vm = v, where v > 1 is total amount of money.
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– Transitions: all transformations ti,j,n : Nm → Nm such that i, j ∈ {1, . . . ,m}, i 6= j, n ∈ N, and
ti,j,n(v1, v2, . . . , vm) = (v′1, v

′
2, . . . , v

′
m) , where:

• v′i = vi − n , if vi > n, otherwise v′i = vi

• v′j = vj + n , if vi > n, otherwise v′j = vj

• v′k = vk , if k 6∈ {i, j} .
– Acceptable Error Mode E0: E0(ti,j,n) = {ti,j,n, 1} for every transition ti,j,n
– Acceptable Error Mode E1: E1(ti,j,n) = {ti,j,n′ : 0 6 n′ 6 n} for every transition ti,j,n
– Elementary Transitions: transitions of type ti,j,1. Obviously, elementary transitions form a generating

set T0. For elementary transitions, E0(ti,j,1) = E1(ti,j,1) = {ti,j,1, 1}.

Lemma 4. The anti-commutator graph of the generating set T0 of an account-based money scheme is con-
nected.

Proof: Elementary transitions ti,j,1 and tj,k,1 do not commute. Indeed, let si be a state where vi = 1 and
vj = 0. Let sj = ti,j,1(si). Hence, tj,k,1(si) = si and tj,k,1(sj) 6= sj which implies:

tj,k,1(ti,j,1(si)) 6= sj = ti,j,1(si) = ti,j,1(tj,k,1(si)) .

Hence, for every two elementary transitions ti,j,1, tk,l there is a two-step chain ti,j,1 o tj,k,1 o tk,l,1 in the
anti-commutator graph, and hence, the graph is connected. �

Lemma 5. Let (π, ψ) be an E1-atomic parallel decomposition of the account-based money scheme (S, T ) by
the direct product of state machines (S1, T1) and (S2, T2). Then for every elementary transition t = ti,j,1 ∈ T0
, either t ◦ π = π ◦ (ψ1(t), 1) or t ◦ π = π ◦ (1, ψ2(t)).

Proof: If π ◦ (ψ1(t), 1) = π ◦ (1, ψ2(t)) = π , then:

t ◦ π = π ◦ (ψ1(t), ψ2(t)) = π ◦ (ψ1(t), 1) ◦ (1, ψ2(t)) = π ◦ (1, ψ2(t)) = π

and hence, t = 1 because π is surjective, a contradiction. By atomicity, {π ◦ (ψ1(t), 1), π ◦ (1, ψ2(t))} ⊆
E0(ti,j,1) = {t ◦ π, π}, and hence, either t ◦ π = π ◦ (ψ1(t), 1) or t ◦ π = π ◦ (1, ψ2(t)). �

Corollary 3. Every E1-atomic parallel decomposition of the account-based money scheme by the direct prod-
uct of state machines (S1, T1) and (S2, T2) is trivial.

Proof: Immediate Corollary from Lemmas 4 and 5. �

8.3 Indecomposability of the Bitcoin Money Scheme

– Supporting data structures: A universe U of potential UTXOs that is assumed to be a totally ordered
infinite set. By total ordering, we mean that every non-empty subset has the smallest element.

– States: Every state is a money distribution, i.e. consists of a finite set U ⊂ U , a value function ν : U → N,
and a bearer function ν : U → N.

– Transition: transformation t that deletes from U a subset D ⊆ U and adds a subset C ⊂ U\U to U , so
that every element of C is larger (in terms of the total ordering of U) that any element of U . It is also
assumed that:

ν(C) =
∑
c∈C

ν(c) =
∑
d∈D

ν(d) = ν(D) ,

i.e. the total money in the system is preserved. The transition also defines the bearers of new UTXOs.
If C 6⊆ U , then nothing is done, i.e. then t behaves like the identity transaction 1.

– Acceptable Error Mode E0: E0(t) = {t, 1} for every transition t
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– Acceptable Error Mode E1: E1(t) consists of all partial transitions that delete a subset D′ ⊆ D and creates
a subset C ′ ⊆ C so that ν(C ′) = ν(D′) in terms of the function ν as updated by the transition.

– Elementary Transitions (Set T0): ⊕-irreducible Bitcoin payments – transitions with D 6= ∅ and C such
that there exist no proper subsets ∅ 6= D′ ⊂ D and ∅ 6= C ′ ⊂ C with ν(D′) = ν(C ′). For elementary
transitions t, E0(t) = E1(t) = {t, 1}.

Lemma 6. The anti-commutator graph of the generating set T0 of a Bitcoin money scheme is connected.

Proof: Let t, t′ ∈ T0 such that t deletes a set D and creates a set C, and t′ deletes a set D′ and creates
a set C ′. Let d ∈ D and d′ ∈ D′ be two arbitrary elements. We define a third transaction t′′ as follows. It
deletes the subset {d, d′} and creates a new UTXO c ∈ U that is greater (in terms of the total order) that
any UTXOs in U,C,D,C ′, D′.

It is easy to see that t o t′′ because as the sets D and {d, d′} contain a common element d, only one of
these transactions can be executed. Hence, t(t′(s)) = t′(s) and t′(t(s)) = t(s) for every state s. Analogously,
t′′ o t′.

Hence, for every two elementary transitions t, t′ there is a two-step chain t o t′′ o t′ in the anti-commutator
graph, and hence, the graph is connected. �

Lemma 7. Let (π, ψ) be an E1-atomic parallel decomposition of the Bitcoin money scheme (S, T ) by the
direct product of state machines (S1, T1) and (S2, T2). Then for every elementary transition t ∈ T0 , either
t ◦ π = π ◦ (ψ1(t), 1) or t ◦ π = π ◦ (1, ψ2(t)).

Proof: Follows proof of Lemma 5, please see there. �

Corollary 4. Every E1-atomic parallel decomposition of the Bitcoin money scheme by the direct product of
state machines (S1, T1) and (S2, T2) is trivial.

Proof: Immediate Corollary from Lemma 6 and 7. �

9 Conclusion

There are many differences between the money schemes, but there are some similarities. In both account
schemes and in the bitcoin scheme, there is a requirement for coordination, or consensus between multiple
monetary units.

With accounts, it’s important that the debiting and crediting happens correctly. When these accounts
are located in different databases, it means that the parties who control those databases need to agree to
the transaction, and then each must adjust their own database correctly, and nearly simultaneously, to avoid
the possibility of errors.

With Bitcoin, it’s possible to spend multiple UTXO’s in the same transaction. This requires a similar kind
of coordination, because the transaction is valid only if all of the inputs are still unspent. Bitcoin’s blockchain
is a single large database, containing all transactions, so Bitcoin validators do not actually perform any kind
of coordination. However, if one were to create a different Bitcoin-like scheme, where UTXO’s were stored
in different databases, say at different banks, it would require the same kind of coordination that is required
for account-based payments, in order to spend several of them in a single transaction.

Interestingly, the bill scheme does not share this characteristic. In fact, it is the only possible money scheme
that does not. Bills can be stored in different databases, and no coordination between those databases is ever
required in order to make payments. Arbitrary payments can be made, by decomposing them into multiple
payments of different bills, and these decomposed parts can be processed in parallel. The bill scheme benefits
from its simplicity, and so it is much easier to scale to large transaction volumes – just add more databases
of bills. This is called horizontal sharding, and any system that can utilize it is easier to scale than one that
cannot.
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