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Abstract

State-of-the-art Heterogeneous System on Chips (HMPSoCs) can perform on-chip embedded inference on its CPU and GPU.
Multi-component pipelining is the method of choice to provide high-throughput Convolutions Neural Network (CNN) inference
on embedded platforms. In this work, we provide details for the first CPU-GPU pipeline design for CNN inference called
Pipe-All. Pipe-All uses the ARM-CL library to integrate an ARM big.Little CPU with an ARM Mali GPU. Pipe-All is the
first three-stage CNN inference pipeline design with ARM’s big CPU cluster, Little CPU cluster, and Mali GPU as its stages.
Pipe-All provides on average 75.88% improvement in inference throughput (over peak single-component inference) on Amlogic
A311D HMPSoC in Khadas Vim 3 embedded platform. We also provide an open-source implementation for Pipe-All.
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High-Throughput CNN Inference
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Abstract—State-of-the-art Heterogeneous System on Chips (HMPSoCs)
can perform on-chip embedded inference on its CPU and GPU. Multi-
component pipelining is the method of choice to provide high-throughput
Convolutions Neural Network (CNN) inference on embedded platforms. In
this work, we provide details for the first CPU-GPU pipeline design for CNN
inference called Pipe-All. Pipe-All uses the ARM-CL library to integrate an
ARM big.Little CPU with an ARM Mali GPU. Pipe-All is the first three-stage
CNN inference pipeline design with ARM’s big CPU cluster, Little CPU
cluster, and Mali GPU as its stages. Pipe-All provides on average 75.88%
improvement in inference throughput (over peak single-component infer-
ence) on Amlogic A311D HMPSoC in Khadas Vim 3 embedded platform.
We also provide an open-source implementation for Pipe-All.

Keywords—Convolutional Neural Networks (CNNs), throughput, on-edge
inference, Heterogeneous System on Chips (HMPSoCs).

1 INTRODUCTION

Heterogeneous Multi-Processor System On Chips (HMPSoCs)
combines several processors (such as an embedded CPU and
GPU) on a single chip. Figure 1 shows the abstract block di-
agram for the state-of-the-art Amlogic A311D HMPSoC within
Khadas Vim 3 embedded platform. It contains a hexa-core ARM
big.Little asymmetric multi-core CPU and a dual-core Mali
GPU. The ARM big.Little CPU itself contains two CPU clusters –
a high-performance high-power quad-core big CPU cluster and
a low-performance low-power dual-core Little CPU cluster.

Both the CPU clusters and GPU are capable of performing
Machine Learning (ML) inference by deploying state-of-the-
art conventional Convolutional Neural Networks (CNNs) [8].
Though it is common in non-embedded platforms for GPUs
to significantly outperform the CPUs while inferencing, em-
bedded GPUs (given their constrained design) deliver per-
formance comparable to the embedded CPUs in embedded
platforms. Therefore, CPUs are still relevant for inference in
embedded platforms and must not be ignored [9].

Figure 2 shows the stand-alone inference throughput for
both CPU clusters and GPU on Khadas Vim 3 embedded
platform. The results show that depending upon the network,
either the big CPU cluster or GPU can provide the peak single-
component performance. The Little CPU cluster provides a
comparatively smaller but still significant throughput. How-
ever, in absolute terms, the single-component performance is
still low. None of the benchmarks can attain even 30 Frames
per Second (FPS), the least recommended FPS for basic user
experience [5] running on CPU and GPU alone. Therefore, it
is best to use both CPU clusters and GPU simultaneously for
boosting inference throughput in embedded platforms.

A73 Core A73 Core

A73 Core A73 Core

L2 Cache

A53 Core A53 Core

L2 Cache

Core Core

L2 Cache

CCI Bus

DRAM

big CPU Cluster

Little CPU Cluster Mali-G52 MP4 GPU

Fig. 1: An abstract block diagram of Amlogic A311D HMPSoC
in Khadas Vim 3 embedded platform.
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Fig. 2: The inference throughput for different inference capable
components for different CNNs on Khadas Vim 3.

A common approach to boost throughput is to employ
multi-component inference. A CNN consists of several lay-
ers that are generally processed sequentially. However, direct
multi-component inference wherein a given layer from a given
frame (kernels within) processes simultaneously on both CPU
clusters in an asymmetric multi-core is detrimental to the
inference performance [7]. Authors of [7] attribute the drop
in performance to the large memory traffic generated on the
interconnect to maintain cache coherence between components
while processing the same layer. Furthermore, there is no
known framework capable of processing a given layer from
a given frame simultaneously on CPU and GPU.

One of the best-known approaches to employ multi-
component inference that leads to a boost in inference through-
put is to use a pipeline design that operates at the layer-level
granularity. In such a pipeline design, each inference capable
component act as one stage of the pipeline. Multiple frames are
then processed through the pipeline simultaneously, wherein
if one stage is processing layers from Frame N, then the other
stage process the layers from Frame N+1. Consecutive layers
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Fig. 3: The CNN architecture for Alexnet.
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Fig. 4: The graph for Alexnet in ARM-CL corresponding to its CNN architecture.

of the CNNs are processed in the same pipeline stage, as much
as possible, to minimize off-component coherence traffic on the
interconnect as the output of the preceding layer is often the
input for the succeeding layer.

A CPU-GPU inference pipeline design is best suited for
HMPSoCs, wherein a CPU and a GPU can perform inference
using the same framework. In such HMPSoCs, we can tightly
integrate the CPU and GPU (as a single binary) with minimal
overhead. Therefore, we use ARM-CL to create a pipeline
between an ARM big.Little processor and an ARM Mali GPU
in this work. ARM-CL library in its default release provides
support for highly optimized stand-alone single-component
CNN inference on both ARM CPU clusters or GPUs out-of-
the-box. We build upon the default implementation to create
a multi-component ARM CPU-GPU inference pipeline. We
introduce a three-stage pipeline design, called Pipe-All, that has
big CPU cluster, Little CPU cluster, and GPU as its stages.

Our Novel Contributions: We make the following novel
contributions in this work.

• Our work is the first to create a tightly integrated three-
stage CPU-GPU pipeline between ARM big.Little CPU
and Mali GPU using ARM-CL, called Pipe-All, for CNN
inference. We describe the implementation in detail.

• We implement and evaluate Pipe-All in Amlogic A311D
HMPSoC in Khadas Vim 3 embedded platform, wherein
it provides 75.88% throughput improvement, on aver-
age, over peak single-component inference throughput.

Open Source Contributions: The code for Pipe-All is
publicly available for download at https://github.com/Ehsan-
aghapour/ARMCL-Pipe-All under MIT license.

2 RELATED WORK:
Multi-component inference through pipelining is an active
subject of research. The authors of [7] were the first to create
a layer-level inferencing pipeline between big and Little CPU
clusters in an ARM big.Little asymmetric multi-core processor

to improve CPU’s inference throughput. Their work also em-
ploys ARM-CL. However, their pipeline design works by mi-
grating CPU threads between big and Little cores. One cannot
extend this design to include a GPU as no one can migrate
CPU threads to a GPU. Authors of [6], [10] propose techniques
to optimize the inference pipelines on asymmetric multi-cores.

Recently, there have been works [2], [3], [4] that propose to
use CPU and GPU synergistically to improve CNN inference
throughput on embedded platforms with Nvidia GPUs using
the TensorRT framework. These works use GPU primarily
as an accelerator to offload computations from a CPU-only
pipeline design. However, the CPUs used in these works are of
symmetric design. These designs form a potential alternative
to the pipeline design we propose in this work. Nevertheless,
direct comparison between the two designs is difficult given
the differences in the platform and frameworks. Finally, to the
best of our knowledge, none of the works above have made
their design open-source.

In contrast to the above works, we are the first to introduce an
open-source integrated three-stage pipeline design, called Pipe-All,
with the big CPU cluster, Little CPU cluster, and GPU as its stages.

3 INFERENCE WITH ARM-CL
In this section, we elaborate on how one performs inference
with the help of ARM-CL. This information is quintessential to
comprehend the Pipe-All’s implementation details we present
in the next section.

Framework: ARM-CL is a collection of low-level machine
learning functions optimized for ARM Cortex-A CPU and Mali
GPU cores. The library provides ML acceleration on Cortex-
A CPU through Neon (or SVE) and acceleration on Mali GPU
through OpenCL [1]. By design, a CNN consists of some hidden
layers sandwiched between the input and output layers. Each
hidden layer takes in some inputs, which it then processes to
produce an output. The output from a hidden layer forms one
of the inputs for the next hidden layer connected to it. Weights
and biases, specific to a layer, form the layer’s other inputs.
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Figure 3 shows the CNN architecture for AlexNet. ARM-CL uses
a graph to represent CNN. Figure 4 shows the ARM-CL graph
corresponding to the Alexnet CNN architecture.

In an ARM-CL graph, an Input and Output node rep-
resents the input and output layer of the CNN, respectively.
There exist a Main node for each hidden layer in the graph.
The graph connects the Input and Output node through a
series of sequentially connected Main nodes. The number of
Main nodes is not required to be equal to the number of layers
in the CNN. For example, the graph subsumes minor non-
convolution layers such as max-pooling layers in AlexNet in the
Main nodes corresponding to convolutions layers. The graph
also connects each Main node with its two exclusive Weight
and Bias nodes. Weight and Bias node provides the weights
and biases input to the Main node, respectively. The primary
input for the Main node itself comes from the preceding
Main (or Input) node in the graph. After processing, the Main
node sends its output to the succeeding Main (or Output)
node in the graph. Therefore, the graph binds the nodes in
a nexus of consumer-producer relationships. In the ARM-CL
graph, edges provide the connections between the nodes. For
each edge, there is a unique tensor that provides the memory
for the data getting transferred.

Environment Setup: ARM-CL provides (Application Pro-
gramming Interfaces) APIs for users to define layers of a CNN
and then connect them. While setting up the execution environ-
ment, ARM-CL begins by generating a graph corresponding to
the user-defined CNN. It then sets up the back-end context on
the target processor (CPU or GPU). For the CPU, the setup
includes the generation of worker threads either automatically
based on the number of CPU cores or as per a user-defined
number of requested threads. For the GPU, it first extracts the
details such as the number of cores and model number. Then,
it creates an OpenCL context with a CLScheduler optimized
for the detected GPU device.

After setting up context for the back-end, ARM-CL de-
termines the features of tensors (such as their shape and
data types) based on the producing nodes of the edges. For
each type of the Main node, there is a corresponding highly
optimized implementation of kernel functions in ARM-CL to
support its execution. ARM-CL selects and configures the op-
timal implementation for each node based on specifications of
the underlying hardware and the dimensions of its operands.
Consequently, it assigns memory to the tensors corresponding
to the weights and biases and load them with values. It then
serializes the kernels and prepares them for execution in the
correct sequence on the target processor.

Running the Graph: ARM-CL sends the frame (initial
input) to the Input node to trigger the processing of the graph
on the CPU. After loading the frame, kernels start processing
the data within. Kernels primarily perform matrix operations
on the data. If the target processor is CPU, ARM-CL partitions
the computations within the matrix operation and distributes
them between the CPU worker threads. Threads after per-
forming the computation, fill the results in the corresponding
output tensors. The process continues till all kernels (Main
nodes) have finished execution. ARM-CL puts the output from
the last Main node in the input tensor of the Output node.
The Output node then makes the decision based on the values
in this tensor. If the target processor is GPU, after loading the
frame (initial input) in the Input node, ARM-CL pushes the

Sub-Graph1
Processing
Frame N+3

Sub-Graph2
Processing
Frame N+2

Sub-Graph3
Processing
Frame N+1

Pipe-ALL Stage 1 Pipe-ALL Stage 2 Pipe-ALL Stage 3

Buffer 0 Buffer 1

Frame N+4 Frame N

Fig. 5: An abstract block diagram showing high-
throughput (low-latency) pipelined inferencing of a stream on
a HMPSoC using Pipe-All design.

Graph Layers Partition
Points

Design
Space

Search
Time

AlexNet 11 7 126 2 Hours
GoogleNet 58 12 396 5 Hours
MobileNet 28 27 2106 11 Hours
ResNet50 54 17 816 8 Hours
SqueezeNet 26 18 918 7 Hours

TABLE 1: The design space parameters for different CNNs
under Pipe-All.

kernels to the OpenCL queue instead of CPU worker threads.
OpenCL then executes the kernel on the GPU cores.

4 Pipe-All CPU-GPU PIPELINE DESIGN

The pipelined design within Pipe-All proposed in this work
process three separate frames simultaneously on Little CPU,
big CPU, and GPU, as shown in Figure 5 with an abstract block
diagram. However, it doesn’t process these frames in their
entirety in any component. The pipeline allows us to distribute
the processing of a given frame between the three components
at node-level (near layer-level) granularity. The processing
distribution between the components inversely correlates to
their inference capabilities for the given CNN. For example, the
Little CPU cluster always receives the least processing load for
a frame as it is the weakest inference-capable component in the
HMPSoC for all CNNs. Nevertheless, this distribution allows
all the frames processed on HMPSoC with Pipe-All to have the
same latency. The slowest stage in the pipeline determines the
inference latency with the pipeline.

Design Space: Since the number of stages in Pipe-All is
only three and the processing distribution between the stages
must maintain the sequential layer-wise processing order, the
design space for Pipe-All is small. Table 1 shows the number of
layers and number of partition points in different CNNs. The
number of partition points is less than the number of layers
because non-convolution layers (except fully-connected layers)
do not have a Main node associated with them in the ARM-CL
graph and are therefore not viable partition points. Further-
more, within Pipe-All, all Main nodes that can be processed
independently are grouped into a single partition point and
processed simultaneously in parallel to maximize throughput.

Let N be the number of potential partition points in a
CNN. To create a three-stage pipeline, we have to choose two
partition points for splitting. Since it is always beneficial for
throughput to engage a component in inferencing, we ignore
the possibilities of empty pipeline stages. So, if we choose to
perform the first split at the first partition point, there are N−1
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partition points (2, ..., N) to choose from for the second split.
Similarly, if we choose to perform the first split at the second
partition point, there are N − 2 partition points (3, .., N) to
choose from for the second split. Therefore, under Pipe-All,
there can be (N−1)+(N−2)+....+1 = N ·(N−1)/2 potential
ways to split the inference workload in the three-stage pipeline.
Since each stage can go on to any of three components (little
CPU cluster, big CPU cluster, and GPU), there are 3! ways to
assign a given workload split between the component.

Therefore, there are 6 · N · (N − 1)/2 different pipeline
configurations possible for a CNN with N partition points
under Pipe-All. Since the CNN inference workload is static,
these configurations can be reliably profiled at design time for
throughput quickly. Even for MobileNet with the highest num-
ber of configurations (2106 configurations) among all CNNs,
we can do this in 11 hours on our platform. Therefore, we
obtain the optimal configuration ( with the highest throughput)
for all CNN using an exhaustive search. Table 1 shows the
number of configurations and time for the exhaustive search
for different CNNs. We leave the option of creating faster
design space exploration algorithms open as future work.

5 IMPLEMENTING Pipe-All IN ARM-CL
We now present the new modifications done to the ARM-CL
library that enable the pipeline design within Pipe-All.

Sub-Graphs: We introduce the concept of sub-graphs to
ARM-CL. We add new APIs to ARM-CL that allow users to
partition the network (defined using existing ARM-CL APIs)
into sub-networks. Instead of producing a single graph for the
entire network, we modify ARM-CL to produce multiple sub-
graphs, one for each user-defined sub-network.

Like a graph in ARM-CL, the sub-graph contains Main,
Weight, and Bias nodes, and optionally an Input node or an
Output node. The functionality of these nodes is the same in
sub-graphs as it was in the original ARM-CL graph. In addition
to these nodes, we introduce two new nodes in sub-graphs –
a Transmitter node and a Receiver node. A Receiver
node is at the start of the sub-graph unless it is the sub-graph
representing the first sub-network. In that case, the Input
node replaces the Receiver node. The role of the Receiver
node is to receive input data from the preceding sub-graph.
There is a Transmitter node at the end of the sub-graph
unless it is the sub-graph representing the last sub-network. In
that case, the Output node replaces the Transmitter node.
The role of the Transmitter node is to transmit output data
to the succeeding sub-graph.

Pipeline Setup: Pipe-All employs a three-stage pipeline. We
divide a CNN into three sub-graphs, one for each stage of the
pipeline. Input tensors for the second and third sub-graphs
get their shapes from output tensors of the first and second
sub-graphs, respectively. The selected Pipe-All configuration
provides the parameters which determine the size of the sub-
graphs. Figure 6 shows an example trio of ARM-CL sub-
graphs for AlexNet, wherein we split the CNN at the fourth
and sixth layers. Technically, it is possible to create up to N
sub-networks (sub-graphs) for a CNN with N layers with our
new ARM-CL APIs to support an N-stage pipeline. However,
we leave that option open for exploration in the future.

Environment Setup: We set up the execution environment
for each sub-graph depending upon the target processor it
expects to execute on. For a sub-graph running on the big
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Fig. 6: The three sub-graphs for Alexnet obtained from parti-
tioning it into three sub-networks.

or Little CPU cluster, we create worker threads equal to the
number of big and Little cores in the CPU, respectively. To
prevent worker threads from migrating between the clusters
at will, we also pin the threads to corresponding big or Little
cores (using taskset) in the cluster under a one-thread per-
core model. For the sub-graph running on the GPU, we set
up an OpenCL context with a CLScheduler optimized for
the detected ARM Mali GPU. We then prepare the kernels
corresponding to the Main nodes within the sub-graph. Finally,
we load the weights and biases in the Weight and Bias nodes
within the sub-graph. The sub-graph is now ready to execute.

Pipeline Frame Processing: The selected Pipe-All configu-
ration determines the one-to-one mapping between the three
sub-graphs and three processors (big CPU Cluster, Little CPU
Cluster, and GPU) in the pipeline. Since it is infeasible to have
a perfectly balanced pipeline, we use two buffer tensors to
synchronize exchange between the pipeline stages, as shown
in Figure 5. We then trigger a run-time daemon to initiate
processing and subsequent run-time management. The run-
time daemon pushes the first frame in the streaming queue
to the initial sub-graph with the Input node. The initial sub-
graph then starts processing the first frame. Once it finishes
processing the sub-frame, it pushes the processed data into
the first-stage buffer tensor through its Transmitter node.
The middle sub-graph pulls the data from the first-stage buffer
tensor into its input tensor through its Receiver node. It
then processes the data and then pushes the processed data
to the second-stage buffer tensor through its Transmitter
node. The final sub-graph then pulls the data from the second-
stage buffer tensor into its input tensor through its Receiver
node. After processing, it pushes the final output data to
the output node signaling the end of processing. Given its
pipelined design, stages in Pipe-All are free to process kernels
from another frame as soon as they finish processing kernels
from their current frame.
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Fig. 7: Results for different CNNs with different approaches.

6 EXPERIMENTAL EVALUATION

Experimental Setup. We use Amlogic A311D HMPSoC in
Khadas Vim 3 embedded platform, as shown in Figure 1, for
evaluating Pipe-All. It contains a hexa-core asymmetric ARM
big.Little multi-core CPU with two CPU clusters, big and Little.
The quad-core big CPU cluster contains four A73 cores. The
dual-core Little CPU cluster contains two A53 cores. HMPSoC
also contains a dual-core Mali G52 MP4 GPU. The maximum
frequency for big CPU cluster, Little CPU cluster, and GPU is
1.8 GHz, 2.2 GHz, and 0.8 GHz, respectively. Though both CPU
clusters and GPU support Dynamic Voltage Frequency Scal-
ing (DVFS), in this work, we run them only at their maximum
frequency, given our emphasis only on performance. A 4 GB
LPDDR4 main memory supports the HMPSoC. In software,
the platform is running Android v9.0 with kernel v4.9. We run
ARM-CL v21.02 on top of it.

Metrics: We evaluate Pipe-All on two metrics – throughput
measured in FPS and latency measured in milliseconds (ms).
Ideally, we want the highest throughput with minimal latency.

Baselines: We use two baselines to evaluate the efficacy
of Pipe-All. The first baseline is the peak single-component
inference performance, symbolized by Peak. We obtain the
second baseline, called Parallel, by performing independent
simultaneous inference on all inference-capable components of
HMPSoCs, as suggested by [8].

Performance Evaluation: Figures 7a and 7b show the
throughput and corresponding latency that we can obtain
using different techniques for different CNNs on our setup.
Peak baseline has a low throughput since only the highest
performing component for a CNN is engaged in inferencing
while other components are idle. However, this approach has
a very low latency which also forms an empirical lower bound
of the latency we can achieve with Pipe-All. On the other hand,
Parallel [8] baseline has a high throughput. However, with this
approach, the latency of the slowest component (the Little CPU
cluster) determines the worst-case latency of the inference.
Consequently, the Parallel baseline suffers from high latency.

Figure 7 shows the Pipe-All approach, on average, provides
5.42% and 75.88% higher throughput than the Parallel and Peak
baseline, respectively. However, compared to the Peak baseline,
high throughput from Pipe-All comes at the cost of only a

55.59% increase in latency versus a 419.87% increase in latency
with the Parallel baseline. We can attribute the results to the
ability of the pipelined design within Pipe-All to distribute
processing between components to balance out the latency of
individual pipeline stages.

7 CONCLUSION

ML inferencing on embedded platforms using HMPSoCs is
now ubiquitous. However, to achieve a high enough through-
put, we must engage all components synergistically in infer-
encing. High throughput should also not come at the cost
of high latency. Thererfore, in this work, we introduced a
new open-source pipeline design called Pipe-All for multi-
component CNN inference on HMPSoC with ARM big.Little
asymmetric multi-core processors and Mali GPUs. Pipe-All has
a three-stage pipeline with the big CPU Cluster, Small CPU
Cluster, and GPU as its three stages. The on-board evaluations
show Pipe-All, on average, can provide 75.88% higher inference
throughput than single peak-component inference with only a
55.59% increase in latency. In the future, one must extend the
CPU-GPU pipeline to incorporate ML accelerators in HMP-
SoCs such as Neural Processing Units (NPU) into the design
for even higher throughput.
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