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Abstract

This work addresses the problem of reference tracking in autonomously learning agents with unknown, nonlinear dynamics.

Existing solutions require model information or extensive parameter tuning, and have rarely been validated in real-world

experiments. We propose a learning control scheme that learns to approximate the unknown dynamics by a Gaussian Process

(GP), which is used to optimize and apply a feedforward control input on each trial. Unlike existing approaches, the proposed

method neither requires knowledge of the system states and their dynamics nor knowledge of an effective feedback control

structure. All algorithm parameters are chosen automatically, i.e. the learning method works plug and play. The proposed

method is validated in extensive simulations and real-world experiments. In contrast to most existing work, we study learning

dynamics for more than one motion task as well as the robustness of performance across a large range of learning parameters.

The method’s plug and play applicability is demonstrated by experiments with a balancing robot, in which the proposed method

rapidly learns to track the desired output. Due to its model-agnostic and plug and play properties, the proposed method is

expected to have high potential for application to a large class of reference tracking problems in systems with unknown, nonlinear

dynamics.
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Bridging Reinforcement Learning and Iterative
Learning Control: Autonomous Reference

Tracking for Unknown, Nonlinear Dynamics
Michael Meindl, Dustin Lehmann, and Thomas Seel

Abstract— This work addresses the problem of reference
tracking in autonomously learning agents with unknown,
nonlinear dynamics. Existing solutions require model infor-
mation or extensive parameter tuning, and have rarely been
validated in real-world experiments.

We propose a learning control scheme that learns to
approximate the unknown dynamics by a Gaussian Process
(GP), which is used to optimize and apply a feedforward
control input on each trial. Unlike existing approaches, the
proposed method neither requires knowledge of the system
states and their dynamics nor knowledge of an effective
feedback control structure. All algorithm parameters are
chosen automatically, i.e. the learning method works plug
and play. The proposed method is validated in extensive
simulations and real-world experiments. In contrast to most
existing work, we study learning dynamics for more than
one motion task as well as the robustness of perfor-
mance across a large range of learning parameters. The
method’s plug and play applicability is demonstrated by
experiments with a balancing robot, in which the proposed
method rapidly learns to track the desired output. Due to its
model-agnostic and plug and play properties, the proposed
method is expected to have high potential for application
to a large class of reference tracking problems in systems
with unknown, nonlinear dynamics.

Index Terms— Autnomous systems, Gaussian pro-
cesses, Iterative learning control, Nonlinear systems, Re-
inforcement learning, Robot learning

I. INTRODUCTION

Recent developments in robotic technology remarkably con-
tribute to the quality of human live: Hazardous tasks on
rescue missions are handled by mobile robots that rifle through
wreckage to locate people in need of help [1]. Advances in
medical robotics strive for minimizing complications during
surgery [2]. And the combination of exoskeletons and control
algorithms aims for a future in which people struck by dis-
ability can walk again [3]. The way to such accomplishments
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Fig. 1. A robot with unknown dynamics is meant to track a reference
trajectory leading to a desired, highly dynamic motion (top). On each
iteration, the proposed learning method determines, based on experi-
mental data, a Gaussian Process model, which is in turn used to design
and apply a feedforward control input (bottom).

is paved by control techniques that enable robots to precisely
perform agile and dynamic motions.

For example, model predictive control can achieve accu-
rate motion if a precise model of the dynamics is available
[4]–[6]. Requirements regarding the model’s precision can
be relaxed by robust or adaptive control techniques if the
uncertainties comply with preset assumptions [7]–[9]. Un-
der similar conditions, Iterative Learning Control (ILC) can
overcome model uncertainties and unknown disturbances by
learning from errors of previous trials [10], [11]. However,
all of these control approaches require system-specific prior
knowledge to craft a suited model, controller, or learning
configuration. Autonomy requires a methodology that self-
reliantly learns a solution to the control problem without
requiring any system-specific prior knowledge. In particular,
Reinforcement Learning (RL) techniques have been employed
to solve complex motion tasks without requiring any prior
information. However, RL solutions typically suffer from two
major drawbacks: First, most of the results were obtained in
simulated environments [12]–[14]. Second, the few real-world
applications typically required multiple hours of learning,
and the resulting controllers can be prone to failure [15]–
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[18]. A major breakthrough with respect to robustness and
data-efficiency was achieved by hybrid techniques that learn
parameter-free models, namely Gaussian Processes (GP), but
also employ system-specific information such as knowledge
of a state vector and an effective state feedback structure
[19]. In the prominent example of PILCO [20], experimental
data are used to approximate the unknown dynamics by a
GP, which is used to determine the optimal parameters of
a state feedback controller. By this approach, an inverted
pendulum on a cart could be swung up and stabilized in 12
seconds of system interaction [20]. However, in the context
of autonomous motion learning, GP-based learning methods
still suffer from two drawbacks: First, previously proposed
methods only solve set-point stabilization tasks, which do not
enable robots to perform challenging, dynamic maneuvers.
These require reference tracking. Second, GP-based learning
techniques still require system-specific prior knowledge such
as the configuration of cost functions, a state vector that fully
describes the system dynamics, and a control structure that
is effective with respect to the problem at hand. Hence, the
methods are not suited for plug & play learning of highly
dynamic robotic motions.

The present contribution proposes a GP-based learning
method for autonomously solving highly dynamic reference
tracking tasks in systems with unknown, nonlinear dynamics.
The proposed method autonomously determines all of its nec-
essary parameters such that plug & play application becomes
feasible. The method’s capability to rapidly learn solutions
to various reference tracking tasks while not requiring any
system-specific prior knowledge is validated by extensive
simulations and real-world experiments using a two-wheeled
inverted pendulum robot.

A. Related Work

Learning for control has been considered in a large body
of literature that can be categorized by (i) the considered
control problem respectively control strategy, (ii) necessary
system-specific prior knowledge, and (iii) speed of learning.
Reinforcement Learning (RL) techniques typically do not
require any model and only few learning parameters such as
step sizes or weights in cost functions. Furthermore, general
RL approaches such as genetic algorithms [21] or policy
gradient approaches [22] can be applied to arbitrary control
problems with unknown, nonlinear dynamics, but in turn
require comparatively long periods of learning [20]. The speed
of learning can be significantly increased if the technique is
targeted towards a specific control problem and strategy such
as stabilization by state feedback control, see e.g. [23], [24]. A
particularly data-efficient approach are so called model-based
techniques that model the unknown, nonlinear dynamics by a
GP, which is then used to design a state feedback controller
[25]. Some successful applications to real-world examples are
the control of a single inverted pendulum [20], double inverted
pendulum [26], and robotic manipulator [27]. The concept of
GP-based learning control has been further investigated in a
variety of contributions. Stability of feedback-controlled GPs
has been analyzed [28], [29], the problem of computational

and data requirements has been investigated [30], [31], and
solutions for safely improving an existing feedback controller
have been proposed [32]–[34]. While all of these works
consider the challenging problem of efficiently learning con-
trol solutions for unknown, respectively uncertain, nonlinear
dynamics, they have focused on the problem of set-point sta-
bilization of systems, for which an effective feedback control
structure is known. If the control tasks consists in performing
a highly-dynamic motion, the achievable performance of time-
domain feedback control is inherently limited by phenomena
such as unknown delays, measurement noise, or non-minimum
phase dynamics. To overcome the performance limitations of
feedback control, a feedforward control component is required,
see Fig. 2.

In contrast to GP-based learning techniques, Iterative Learn-
ing Control (ILC) has focused on reference tracking tasks
solved by feedforward control [35], [36]. Model-based tech-
niques like norm-optimal or H∞ ILC automatically determine
the learning parameters, but require a model of the linear
plant dynamics [37]–[39]. Model-free approaches like PD-
ILC do not require a model but learning parameters that are
typically tuned in experiment [40]. The concepts of PD-type
[41] and norm-optimal [42] ILC have been extended to the
case of nonlinear dynamics, but assume the dynamics to be
known. To relax requirements with respect to available model
information, recent research has focused on so called data-
driven ILC (DD-ILC) [43], which does not require a model of
the plant. In the case of nonlinear, unknown dynamics, DD-
ILC methods typically employ dynamic linearization of the
plant dynamics and estimate the gradient of said linearization
[44]–[46]. Alternatively, neural networks (NN) have been
employed in DD-ILC to model the unknown dynamics [47],
[48]. While DD-ILC methods can solve reference tracking
tasks without requiring a plant model, some system-specific
prior knowledge is required as, e.g., the signs of the dynamic
linearization [44]–[46] or the layout of a suited neural network
[47], [48].

In summary, we conclude that reference tasks in systems
with unknown, nonlinear dynamics can be solved by DD-
ILC methods, which, however, require system-specific prior
knowledge such that autonomous plug & play application
is generally not possible. In contrast, set-point stabilization
problems can be solved by GP-based learning that assume
comparatively little system-specific prior knowledge. However,
in the context of reference tracking tasks, GP-based learning
methods suffer from the inherent limitations of feedback
control. To the best of our knowledge, there exists no learning
method that autonomously solves reference tracking tasks for
unknown, nonlinear systems, employs feedforward control to
overcome the limitations of feedback control, and does not
require system-specific prior knowledge such that autonomous
plug & play application is enabled.

B. Contributions

In this contribution, a GP-based ILC scheme is proposed
that autonomously solves reference tracking tasks in systems
with unknown, nonlinear dynamics. The proposed method
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Fig. 2. Comparison of feedforward (left) and feedback learning control (right) for reference tracking with a system affected by input delay and
measurement noise: Feedforward, unlike feedback control, achieves almost perfect tracking (middle). Hence, the learning method proposed in this
work employs feedforward control.

includes a procedure to autonomously determine necessary
parameters and enable plug & play application. Since the
proposed method employs a GP to model the input/output
dynamics, only the output variable, instead of an entire state
vector, has to be known and measured. To overcome the
inherent limitations of feedback control, the proposed method
employs feedforward control.

The proposed method is first validated by extensive simu-
lations of a two-wheeled inverted pendulum robot (TWIPR),
in which precise tracking is achieved after a small number
of trials. Unlike existing approaches, the proposed method is
not only verified for a single, well-chosen parameter config-
uration but for a wide range of parameter combinations such
that robustness with respect to the autonomously determined
parameters is ensured. In contrast to a variety of contributions,
in which validation was restricted to simulated environments,
the proposed method’s capability of solving real-world refer-
ence tracking tasks in a plug & play manor is validated by
experiments on a TWIPR, see Fig. 1.

C. Notation
Let N≥0 and N denote the set of nonnegative, respectively

positive, integers. Let R denote the set of real numbers. Vectors
are in lower-case letters and bold type, e.g., v. Matrices are in
upper-case letters and bold type, e.g., A. The ith component
of a vector v is denoted by [v]i. The element in row i and
column j of matrix A is denoted by [A]ij . Let ‖v‖ denote a
norm of vector v, and ‖A‖ the corresponding, induced matrix
norm of matrix A. A specific example is the infinity norm,
denoted by ‖·‖∞.

II. PROBLEM FORMULATION

Consider an autonomous system that can repeatedly attempt
a reference tracking task, as, e.g., a robot trying to perform a
desired maneuver. We assume that the system’s output, e.g., a
joint angle or position, can be influenced by an input signal,
e.g., a motor torque, and that the relation of these variables is
deterministic, causal, and time-invariant. However, we do not
assume that a model of the dynamics is available and we do
assume the general case of nonlinear dynamics.

Formally, consider a discrete-time, single-input, single-
output, repetitive system with a finite trial duration of N ∈ N
samples, and, on trial j ∈ N≥0 and sample n ∈ [1, N ], output
variable yj(n) ∈ R, respectively input variable uj(n) ∈ R.
The samples are collected in the so called output trajectory
yj ∈ RN , respectively input trajectory uj ∈ RN , i.e., ∀j ∈
N≥0,

yj :=
[
yj(1) yj(2) . . . yj(N)

]T
(1)

uj :=
[
uj(1) uj(2) . . . uj(N)

]T
. (2)

Without loss of generality, the dynamics can be written in the
lifted form

∀j ∈ N≥0, yj = p(uj) , (3)

where p is the unknown dynamics function. The task consists
of updating the input uj from trial to trial such that the output
yj converges to the desired reference trajectory r ∈ RN .
Tracking performance is measured by the error trajectory

∀j ∈ N≥0, ej := r− yj (4)

and root-mean-squared error (RMSE)

∀j ∈ N, eRMS
j :=

√√√√ N∑
i=1

[e]
2
i

N
. (5)

The problem considered in this work consists in developing
a learning method that updates the input trajectory on each
trial such that the RMSE decreases. Learning performance
is judged based on the progression of the RMSE through
trials, and the RMSE shall decline quickly and monotonically.
The learning method must not require any a priori model
information on the plant dynamics. To support plug & play
application, the method must autonomously determine neces-
sary parameters. Furthermore, the method must provide a fair
degree of robustness with respect o autonomously determined
parameters.

III. PROPOSED LEARNING METHOD

We address the proposed problem by an iterative learning
scheme, in which each iteration consists of three steps. First, a
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Gaussian Process Model Identification
• Training data selection by choosing last H trials
• Hyper-parameter selection by minimizing LOO-SME

dynamics
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Fig. 3. Overview of the proposed learning method: First a Gaussian Process (GP) model is identified, which in turn is used to determine an input
trajectory via optimization. The resulting input trajectory is applied in experiment yielding new data to refine the GP model.

parameter-free model of the plant dynamics is identified using
the experimental data of previous trials, see Section III-A. To
accommodate for possibly nonlinear dynamics, a generic GP
model is employed, which predicts the output trajectory for a
given input trajectory. Second, the updated input trajectory is
determined by solving an optimal feedfoward control problem
based on the GP model, see Section III-B. Third, the updated
input trajectory is applied to the plant and resulting data is
in turn used to refine the GP model. The structure of the
proposed learning scheme is depicted in Fig. 3. To enable
plug & play application, the proposed method autonomously
determines necessary parameters, see Section III-C.

A. Gaussian Process Model

We propose a Gaussian Process (GP) model, formally a
function m : RN 7→ RN , that predicts the plant’s output
trajectory ŷ ∈ RN based on an input trajectory u ∈ RN , where
the trial index is omitted for sake of notational simplicity.

Let f(v) : RD 7→ R denote the unknown target function that
that depends on the regression vector v ∈ RD. Predictions are
based on K ∈ N observations zk ∈ R stemming from

∀k ∈ [1,K], zk = f(vk) + wk | wk ∼ N (0, σ2
w) . (6)

The K observation pairs (zk,vk) are collected in the obser-
vation training vector z̄ ∈ RK and regression training matrix
V̄ ∈ RD×K , i.e.,

z̄ :=
[
z1 z2 . . . zK

]T
, (7)

V̄ :=
[
v1 v2 . . . vK

]
. (8)

The kernel function of two regression vectors v ∈ RD and
v̂ ∈ RD is denoted by kvv̂ ∈ R. The kernel matrix of two
regression matrices V ∈ RD×K , V̂ ∈ RD×K̂ , which are
assembled according to (8), is denoted by KVV̂ ∈ RK×K̂

and has entries
[
KVV̂

]
ij

= kviv̂j
.

Given F ∈ N test regression vectors assembled in the
regression matrix V ∈ RD×F , the predicted mean µ ∈ RF

and covariance Σ ∈ RF×F are given by

µ = KVV̄

[
KV̄V̄ + σ2

wI
]−1

z̄ (9)

Σ = KVV −KVV̄

[
KV̄V̄ + σ2

wI
]−1

KV̄V . (10)

The general GP framework can be employed in three
ways to model the unknown dynamics (3), where the model
characteristics are determined by the definition of observation
variable z, regression vector v, and kernel function k. First, we

exploit the dynamics’ time-invariance by employing a single
GP for predicting each output sample. Hence, the observation
variable and regression vector are time dependent, i.e., ∀n ∈
[1, N ], zn, vn. Secondly, the model can be chosen to be of type
finite impulse response (FIR), infinite impulse response (IIR),
or state space (SS). A FIR model results when the regression
vector consists of the current and all previous input samples,
i.e.,

∀n ∈ [1, N ], vn := [u(n) . . . u(1) . . . 0 . . . 0]T . (11)

An IIR model results when the regression vector consists of
the current input and the P ∈ N previous output samples, i.e.,

∀n ∈ [1, N ], vn := [u(n) y(n−1) . . . y(n−P ) 0 . . . 0]T .
(12)

A SS model results when the regression vector consists of the
current input and the previous state sample, i.e.,

∀n ∈ [1, N ], vn := [u(n) xT (n− 1)]T . (13)

The SS model requires multiple GPs with each predicting
the progression of a single state variable [49], which not
only increases computational complexity, but also requires
measurement of the full state vector. Furthermore, IIR and
SS models require roll-out predictions meaning that previous
predictions are required for predicting the current sample [49],
which also increases model complexity. In contrast, the FIR
model only requires a single batch prediction according to (9).
We, hence, employ a FIR model and the regression vector is
defined as in (11).

We further choose difference-predictions, i.e.,

∀n ∈ [1, N ], zn := y(n)− y(n− 1) | y(−1) = 0 , (14)

which, compared to absolute predictions, increase the model’s
capability of extrapolation, see [49].

As kernel function, we employ a squared-exponential kernel
(SEK)

k(v, ṽ) = exp

(
− 1

2l2
(v − ṽ)T (v − ṽ)

)
, (15)

where l ∈ R is a so called length scale.

Remark 1. SEKs allow a GP to model arbitrary target
functions. In the context of dynamic systems, a SEK leads
to a nonlinear, time-invariant (NTI) model. Using a squared
kernel instead, as e.g.

kvṽ := vT ṽ , (16)
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results in a linear, time-invariant (LTI) model. If the plant
dynamics are linear, one may employ a squared kernel to
decrease computational complexity in comparison to a NTI
model.

To predict an output trajectory ŷ for an arbitrary input
trajectory u, the latter is used to determine N regression
vectors vn, n ∈ [1, N ], according to (11), which are assembled
in a regression matrix V according to (8). The predicted mean
vector µ follows from (9). By (14), µ contains difference
predictions such that the components of ŷ follow from the
cumulative sum of µ, i.e.

∀n ∈ [1, N ], [ŷ]n =

n∑
i=1

[µ]i . (17)

Mean and covariance predictions require the measurement
variance σ2

w and length-scale l, which are so called hyper-
parameters. Typically, hyper-parameters are determined based
on training data, and numerous approaches have been detailed
in the literature [50]. We propose selecting hyper-parameters
by minimizing the so called leave-one-out squared-mean-error
(LOO-SME). For each of the k ∈ [1,K] available observations
zk, the remaining observation pairs are used to predict zk.
The LOO-SME follows from summing the squared difference
between the K leave-one-out predictions and respective ob-
servations zk. Formally, the kth LOO-prediction µ̂k is given
by

µ̂k = zk −

[(
KV̄V̄ + σ2

wI
)−1

z̄
]
k[

(KV̄V̄ + σ2
wI)
−1
]
kk

(18)

leading to the LOO-SME eLOO

eLOO =

K∑
k=1

(zk − µ̂k)2 (19)

and the hyper-parameters θ :=
[
σ2
w l
]T

follow from

θ = argmin
θ̃

eLOO . (20)

The optimization problem (20) can be solved efficiently,
because analytic expressions of the gradients are available,
see [50].

Remark 2. Determining hyper-parameters by LOO-SME min-
imization is a rather uncommon choice as the variance of the
predictions is not taken into account [50]. However, compari-
son of LOO-SME minimization with state of the art methods
such as evidence maximization, see [50], has shown that the
former leads to more reliable performance of the learning
scheme proposed in this work. We assume that this is due to
the proposed learning scheme solely relying on the GP’s mean
prediction and, hence, hyper-parameters should be chosen such
that the accuracy of mean predictions is maximized.

GP predictions are known to become computational ex-
pensive with increasing amounts of training data [51]. To
overcome this limitation, various data selection approaches
have been proposed to reduce training data to a tractable
amount, see, e.g., [51], [52]. In the present work, we simply
propose limiting the training data to the last H ∈ N trials.

B. Optimal Feedforward Control

After the GP model has been identified, it is used to
determine an input trajectory that leads to a smaller differ-
ence between reference and output trajectory than the input
trajectories of previous trials. We propose an optimal control
design, where the input is chosen to minimize a quadratic cost
criterion. The latter not only considers the predicted tracking
error, but also the change of the input trajectory to avoid model
inversion and, hence, increase robustness with respect to the
uncertainty of the current trial’s model. Formally, the cost
criterion is given by

∀j ∈ N≥0, J(uj+1) = q ‖r− ŷ(uj+1)‖22 +

s ‖uj+1 − uj‖22 , (21)

where q, s ∈ R>0 are scalar weights. On each trial, the updated
input trajectory uj+1 is chosen to minimize the cost criterion,
i.e.,

∀j ∈ N≥0, uj+1 = argmin
ũ

J(ũ) . (22)

The optimization problem (22) can be solved efficiently since
analytic expressions of the cost’s gradient with respect to the
input variable can be obtained [20].

C. Autonomous Parameterization

Ideally, autonomous learning methods should require neither
a priori model information nor manual tuning of parameters.
In contrary to previous contributions, the proposed method
automatically determines necessary parameters by the proce-
dure outlined in this section, and, as a result, plug & play
application is enabled, see Fig. 4.

First, we consider the choice of the initial data set I that is
used to determine the first GP model and consists of I ∈ N
trajectory pairs (yi,ui), i.e.,

I := {(yi,ui) | i ∈ [1, I]} . (23)

For this purpose, we first determine the largest significant
frequency fO of the reference trajectory. The frequency fO
is used to design a zero-phase low-pass filter fLP. The low-
pass filter fLP is applied to a zero mean normal distribution
with covariance σ2

I I, and the initial input trajectories are drawn
from the resulting distribution, i.e.,

∀i ∈ [1, I], ui ∼ fLP

(
N (0, σ2

I I)
)
. (24)

The input variance σ2
I is iteratively increased until an input

trajectory drawn according to (24) leads to an output trajec-
tory, whose maximum roughly equals the maximum of the
reference, i.e.,

u ∼ fLP

(
N (0, σ2

I I)
)

=⇒ ‖p(u)‖∞ ≈ ‖r‖∞ . (25)

The number of initial trials is a robust parameter and is set to
one, I = 1. The following simulations are going to show that
larger values of I increase the learning method’s robustness.

Once the parameters fO, σ2
I , and I have been determined,

the initial trials are performed, and the weights q and s are
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Fig. 4. Learning methods typically require some learning parameters. left : If no procedure for determining the parameters is provided, iterative
experimental tuning is required. right : If a procedure for determining reliable parameters is available, plug & play application without iterative tuning
is possible.

chosen based on the experimental data. The scalar q, which
weights the error trajectory, is chosen as unity, i.e.,

q = 1 . (26)

The scalar s, which weighs the change in input variable, is
chosen as the average squared ratio of output to input maxima
over the I initial trials, i.e.,

s =
1

I

I∑
i=1

‖yi‖2∞
‖ui‖2∞

. (27)

The procedure described in this section automatically deter-
mines all the necessary parameters without requiring any a
priori information on the plant. The following simulations
are going to demonstrate that the automatically determined
parameters lead to the desired learning performance and that
the method provides a fair degree of robustness with respect
to the automatically determined parameters.

IV. VALIDATION BY SIMULATION

In this section, the proposed learning method is validated
by simulation of a two-wheeled inverted pendulum robot
(TWIPR) that is meant to perform challenging maneuvers, see
Fig. 5. The TWIPR and automatic determination of learning
parameters are presented in Section IV-A. Afterwards, the
learning performance for three representative references is
investigated in Section IV-B, and the proposed method’s
robustness with respect to learning parameters is verified in
Section IV-C. Lastly, the effect of the weight s on the learning
characteristics is studied in Section IV-D.

A. The Learning Problem
Consider the TWIPR and three desired maneuvers depicted

in Fig. 5. The corresponding pitch angle reference trajectories
are denoted by r1 ∈ R25, r2 ∈ R50, and r3 ∈ R71 and
formal definitions are given in Appendix II. The robot consists
of a pendulum body housing main electronics including a
microcomputer, inertial measurement units, motors and ac-
cumulator. Wheels are mounted onto the motors such that
the robot can drive while balancing its chassis. A model of
the TWIPR’s nonlinear dynamics is not available. Only an
approximate, linear model of the dynamics at the upright
equilibrium has been obtained, which merely suffices to design

a stabilizing feedback controller, see Appendix III. Due to
the imprecise model, the feedback controller can not track
the references precisely, and we instead employ the proposed
learning method.

Instead of a state vector, the learning method only requires
knowledge of the output variable, which is given by the pitch
angle, i.e.,

∀n ∈ N≥0, y(n) := Θ(n) . (28)

The input variable is given by the motor torque, ∀n ∈ [1, N ],
uL(n) ∈ R.

Application of the proposed learning method requires learn-
ing parameters that are automatically determined by the pro-
cedure outlined in Section III-C. We aim at tracking pitch
trajectories with a maximum of approximately 75 degrees and
and spectral content roughly below 5 Hertz, i.e.,

‖r‖∞ ≈ 75 ◦ fO ≈ 5 Hz . (29)

Based on the frequency fO, a forward-backward, second order
Butterworth filter fLP is designed, which is used for drawing
initial input trajectories, see (24). To determine the input
variance σ2

I , three test input trajectories are applied to the
unknown, nonlinear dynamics [53], which are implemented
as a black-box simulation model. The input trajectories are
drawn according to (24) with respective variances

σ2
I ∈ {1, 25, 225} . (30)

As detailed in Fig. 6, the parameterization selects σ2
I = 25

because the resulting output trajectory has the some order of
magnitude as the reference.

Next, the weights s and q of the cost function are deter-
mined. According to (26), q = 1 is selected. To determine the
weight s, one initial trial with the previously determined input
variance is performed. As detailed in Fig. 7, the value of of s
directly results from (27) and the experimental data, i.e.,

s =
‖yI‖2∞
‖uI‖2∞

≈ 0.42

42
= 10−2 . (31)

To demonstrate the data-efficiency of the proposed learning
method, the training data are limited to the last five trials, i.e.,
H = 5.



MEINDL et al.: BRIDGING REINFORCEMENT LEARNING AND ITERATIVE LEARNING CONTROL: AUTONOMOUS REFERENCE TRACKING FOR UNKNOWN,
NONLINEAR DYNAMICS 7

Fig. 5. The learning problem: A TWIPR (left) is meant to perform three challenging maneuvers (middle). The corresponding pitch angle references
(right) differ in length, amplitude, and frequencies.

Fig. 6. Determination of the input variance σ2
I : Three different values are used to draw random input trajectories that are applied to the plant. The

input variance σ2
I = 1 hardly excites the system. In contrary, the input variance σ2

I = 225 leads to an output trajectory that significantly exceeds
the reference’s maximum. The input variance σ2

I = 25 is selected, because the corresponding output trajectory has the same order of magnitude
as the reference.

Fig. 7. Determination of the weight s: Based on the maxima of input
and output trajectory in an initial trial, the weight s is chosen according
to (27).

B. Learning Performance
First, learning performance for the desired references r1, r2,

and r3 is investigated. The parameters are chosen according
to the previous section and only one initial trial I = 1 is
used. In Fig. 8, progressions of the output trajectories and error
norms over the trials are depicted. For all three references,
the proposed method achieves precise tracking after roughly
15 trials. The respective RMSEs rapidly decline over the first
trials and converge to a small value close to zero. In case of
the references r2 and r3, the RMSE decreases monotonically.
The simulations demonstrate that, by using the automatically
determined parameters, the proposed method rapidly learns to
track three different reference trajectories without requiring
any system-specific prior knowledge.

C. Robustness Analysis
The previous simulations have validated the method’s ca-

pability of achieving satisfying tracking performance when
using the automatically determined parameters. However, a
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Fig. 8. The proposed learning method is employed to track the three desired references. Despite varying lengths, amplitudes and frequencies of
the references, satisfying tracking performance is achieved within 10-15 trials. The RMSE is monotonically declining for two of the references and
converges to a small value close to zero in all three scenarios.

Fig. 9. The proposed learning method is run for a total of 5000 different combinations of parameters and initial data. The RMSE’s maximum over
all runs converges to a value significantly lower than the initial. Hence, robust learning is guaranteed for a large parameter space.
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learning method should, ideally, not only achieve satisfying
performance for a single parameter configuration, but for a
wide parameter space. Hence, the proposed method’s robust-
ness with respect to the automatically determined parameters
is validated in the following study, where we aim at tracking
reference r1. We consider two different scenarios, namely, the
greedy case of one initial trial, I = 1, and the conservative
case of five initial trials, I = 5. Recall the two parameters s
and σ2

I , which are the weight in the optimal control problem
and the initial input variance.

In the case of I = 1, the weight s is chosen from the set
S1 that consists of ten logarithmically spaced values and the
initial input variance σ2

I is chosen from the set V1 that consists
of ten quadratically spaced values, i.e., for I = 1,

S1 =
{

10−1, . . . , 10−3
}
|S1| = 10 , (32)

V1 =
{

32, . . . , 62
}
|V1| = 10 , (33)(

s, σ2
I

)
∈ P1 := S1 × V1 |P1| = 100 . (34)

For each of the 100 parameter pairs in P1, 50 runs are
performed. A run r consists of choosing a parameter pair
(s, σ2

I )k from PI , producing I initial input trajectories, and
executing the proposed learning method for an additional 50
trials such that a progression of the RMSE throughout trials
is obtained, which we denote by

eRMS
j,k,r , (35)

where j ∈ [0, I + N ] is the trial index, k ∈ [1, 100] is the
parameter index, and r ∈ [1, 50] is the run index.

The same procedure is applied in the case of I = 5, but the
parameters are chosen from larger sets, i.e., for I = 5,

S5 =
{

10−1, . . . , 10−4
}
|S5| = 10 , (36)

V5 =
{

32, . . . , 72
}
|V5| = 10 , (37)(

s, σ2
I

)
∈ P1 := S1 × V5 |P1| = 100 . (38)

To evaluate performance, the maximum emax
j ∈ R, 99th

percentile eP99
j ∈ R, 75th percentile eP75

j ∈ R, and median
emed
j ∈ R of the RMSE over parameters and runs are

considered. Formally,

∀j ∈ N≥0, emax
j := max

k∈[1,100],r∈[1,50]

(
eRMSE
j,k,r

)
, (39)

and eP99
j , eP75

j , emed
j are defined accordingly. Results depicted

in Fig. 9 show that, for both I = 1 and I = 5, the maximum
of the RMSE converges to a value that is a roughly ten times
smaller than the initial value such that the method’s robustness
is validated. The RMSE’s 99th percentile is monotonically
decreasing, which implies that, besides single outliers, the
method achieves the desired form of convergence as defined in
Section II. Furthermore, the RMSE’s median declines below a
value of five degrees within 25 trials meaning that satisfying
tracking performance is achieved. Lastly, it should be noted
that a wider parameter space could be considered in the case
of I = 5 meaning that, by increasing the amount of initial
data, the robustness of the method can be further increased.

Fig. 10. Investigation of the effect of weight s on the learning charac-
teristics: Large values of s lead to slow learning with small performance
variance. Increasing the value leads to faster learning but also a larger
variance in performance. Excessively small values of s may lead to a
RMSE that diverges for some initial data.

D. Effects of Weights

The previous analysis has shown that the method rapidly
learns to track a desired reference while also being robust with
respect to the automatically determined parameters. Next to
the use case of automatic plug & play application, the method
can also be tuned to meet the needs of a specific application.
Hence, we next investigate how the choice of weight s affects
learning characteristics, namely the rate of convergence and
robustness with respect to initial data. For this purpose, we
consider the weights

s ∈ {100, 10−2, 10−4, 10−6} . (40)

The remaining learning parameters are chosen as one initial
trial I = 1 and an initial input variance σ2

I = 25. For each
weight, 50 runs with differing initial data are performed and
performance is judged based on the RMSE’s 90th percentile
and median over the 50 runs.

Results depicted in Fig. 10 show that for a comparatively
large value of s = 100, the RMSE monotonically declines
at a slow pace. Furthermore, there is hardly any difference
between median and 90th percentile performance. Decreasing
the value to s = 10−2 leads to a significant increase in
speed of convergence. Speed of median convergence can be
further increased by lowering the value of the weight to
s = 10−4, which, however, comes at the price of larger 90th

percentile RMSEs, which imply an increase in performance
variance. If the weight is lowered to an even smaller value,
s = 10−6, median performance is not further increased, but the
90th percentile RMSE does no longer converge meaning that
learning fails in a significant portion of runs. In summary, the
study indicates that the weight s may be used to tune learning
behavior, whereby comparatively large values of s lead to slow
learning that is robust with respect to initial data. Decreasing
the value of s can increase the speed of learning, but may
come at the price of sensitivity with respect to initial data.
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V. VALIDATION BY EXPERIMENT

To demonstrate the plug & play applicability of the pro-
posed learning method, it is applied to a real-world TWIPR,
which has been previously used to validate learning control
methods [54]. The robot is meant to dive beneath an obstacle
as depicted in Fig. 1 with the corresponding reference trajec-
tory r ∈ R75, ∀n ∈ [1, 75],

[r]n =

 80 sin(πTn) n ≤ 25
80 25 < n ≤ 50

80 sin(πT (n− 25)) 50 < n
[◦] . (41)

First, the proposed method determines the learning parameters
yielding I = 1, σ2

I = 2, and s = 0.1. The initial input
trajectory is drawn according to (24) an applied to the TWIPR.
The corresponding output trajectory significantly differs from
the reference with a RMSE of roughly 75◦, see Fig. 11. From
here onwards, the method iteratively determines a GP model,
updates the input trajectory, and performs an experimental
trial. Once learning begins, the RMSE rapidly declines, the
RMSE drops below 20◦ on the fourth trial, and a RMSE of
less than 10◦ is reached on the eighth trial. Sufficiently precise
tracking precision for diving beneath the obstacle is achieved
on the seventh trial and a RMSE close to zero is achieved
on the tenth trial. Note, that the RMSE slightly increases on
some of the trials, which is likely due to the initial conditions
varying from trial to trial.

In summary, the experiments validate that the proposed
method enables a real-world robot with unknown, nonlinear
dynamics to learn a challenging maneuver. Not only did
learning require a small number of trials (≈ 10) but the method
could also be applied in a plug & play manor without iterative
tuning of parameters.

VI. CONCLUSION

In this work, a GP-based learning control scheme has been
proposed that autonomously solves reference tracking tasks in
systems with unknown, nonlinear dynamics. On each itera-
tion, the unknown dynamics are approximated by a Gaussian
Process (GP), which is then used to determine and apply an
optimal feedforward control input. The method is completely
plug & play, since all required algorithms parameters are
determined automatically and manual tuning is avoided. The
effectiveness and efficiency of the method were demonstrated
by simulations and experiments using the example of a
two-wheeled inverted pendulum robot that rapidly learns to
perform several challenging maneuvers without any manual
tuning or system-specific prior knowledge.

In contrast to previous GP-based learning control ap-
proaches, the proposed method overcomes the inherent lim-
itations of time-domain feedback control; it neither assumes
knowledge of an effective feedback control structure, nor does
it assume the entire state vector to be known. Instead, the
proposed method directly adjusts the input based on the mea-
sured output. It is therefore as model-agnostic and independent
of system-specific prior knowledge as pure reinforcement
learning schemes.

While reinforcement learning approaches typically require
hundreds of trials for convergence and are therefore unsuitable

Fig. 11. Experimental results of the TWIPR learning to dive beneath
an obstacle. Starting from an initial RMSE of roughly 75◦, the tracking
error rapidly declines over the the following trials and sufficiently precise
tracking for diving beneath the obstacle is achieved on the seventh trial.
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for experimental validation, the proposed learning control
method solves reference tracking problems in a small two-digit
number of trials and was successfully validated in real-world
experiments.

While the vast majority of previous contributions either
validate methods only in simulations or provide only a single
results for one carefully chosen parameterization and one
specific motion, the present validation has proven effectiveness
of the proposed method for several different motions and
a large range of algorithm parameterizations. We thereby
demonstrated robustness with respect to the automatically
determined parameters, and we further investigated the effect
of the learning weights on the trade-off between speed of
learning and robustness.

We believe that the proposed method is highly suitable
for use in kinematic systems that must perform challenging,
highly dynamic maneuvers. Beyond the use case of rigid
robotics, we expect the proposed method to have a major
impact on the development of soft robotics, exoskeletons, and
neuroprosthetics, and will therefore contribute to the evolution
of autonomous robotic systems that rapidly learn to perform
complex, dynamic motions under unknown conditions.

Future work will be concerned with extending the proposed
approach to multi-input/multi-output systems and applying the
method to other real-world applications. Moreover, combined
approaches for simultaneous learning of feedfoward and feed-
back control will be devised and studied.

REFERENCES

[1] R. Murphy, “Activities of the rescue robots at the world trade center
from 11-21 september 2001,” IEEE Robotics & Automation Magazine,
vol. 11, pp. 50–61, Sept. 2004.

[2] C. Coulson, R. Taylor, A. Reid, M. Griffiths, D. Proops, and P. Brett,
“An autonomous surgical robot for drilling a cochleostomy: preliminary
porcine trial,” Clinical Otolaryngology, vol. 33, pp. 343–347, Aug. 2008.

[3] O. Harib, A. Hereid, A. Agrawal, T. Gurriet, S. Finet, G. Boeris,
A. Duburcq, M. E. Mungai, M. Masselin, A. D. Ames, K. Sreenath,
and J. W. Grizzle, “Feedback control of an exoskeleton for paraplegics:
Toward robustly stable, hands-free dynamic walking,” IEEE Control
Systems Magazine, vol. 38, no. 6, pp. 61–87, 2018.

[4] T. Apgar, P. Clary, K. Green, A. Fern, and J. Hurst, “Fast online
trajectory optimization for the bipedal robot cassie,” in Robotics: Science
and Systems XIV, Robotics: Science and Systems Foundation, June 2018.

[5] M. Hehn and R. D’Andrea, “Real-time trajectory generation for in-
terception maneuvers with quadrocopters,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 4979–4984, IEEE,
2012.

[6] S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson, “Optimization
based full body control for the atlas robot,” in 2014 IEEE-RAS Interna-
tional Conference on Humanoid Robots, IEEE, Nov. 2014.

[7] W. Dong and K. D. Kuhnert, “Robust adaptive control of nonholonomic
mobile robot with parameter and nonparameter uncertainties,” IEEE
Transactions on Robotics, vol. 21, no. 2, pp. 261–266, 2005.

[8] Z. T. Dydek, A. M. Annaswamy, and E. Lavretsky, “Adaptive Control of
Quadrotor UAVs :,” IEEE Transactions on Control Systems Technology,
vol. 21, no. 4, pp. 1400–1406, 2013.

[9] I. Golovin and S. Palis, “Robust control for active damping of elastic
gantry crane vibrations,” Mechanical Systems and Signal Processing,
vol. 121, pp. 264–278, Apr. 2019.

[10] F. L. Muller, A. Schoellig, and R. D’Andrea, “Iterative learning of
feed-forward corrections for high-performance tracking,” in Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 3276–
3281, 2012.

[11] T. Seel, C. Werner, J. Raisch, and T. Schauer, “Iterative learning control
of a drop foot neuroprosthesis—generating physiological foot motion
in paretic gait by automatic feedback control,” Control Engineering
Practice, vol. 48, pp. 87–97, 2016.

[12] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. de Las Casas,
D. Budden, A. Abdolmaleki, J. Merel, A. Lefrancq, T. P. Lillicrap, and
M. A. Riedmiller, “Deepmind control suite,” CoRR, vol. abs/1801.00690,
2018.

[13] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa,
T. Erez, Z. Wang, S. Eslami, et al., “Emergence of locomotion be-
haviours in rich environments,” arXiv preprint arXiv:1707.02286, 2017.

[14] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter, “Deep-
gait: Planning and control of quadrupedal gaits using deep reinforce-
ment learning,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 3699–3706, 2020.

[15] E. Schuitema, Reinforcement Learning on autonomous humanoid robots.
PhD thesis, Delft University of Technology, 2012.

[16] S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan, “Learning to walk in the real
world with minimal human effort,” arXiv preprint arXiv:2002.08550,
2020.

[17] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine,
“Scalable deep reinforcement learning for vision-based robotic manip-
ulation,” in Proceedings of The 2nd Conference on Robot Learning
(A. Billard, A. Dragan, J. Peters, and J. Morimoto, eds.), vol. 87 of
Proceedings of Machine Learning Research, pp. 651–673, PMLR, 29–
31 Oct 2018.

[18] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “Tossing-
bot: Learning to throw arbitrary objects with residual physics,” IEEE
Transactions on Robotics, vol. 36, no. 4, pp. 1307–1319, 2020.

[19] M. P. Deisenroth, Efficient reinforcement learning using Gaussian pro-
cesses, vol. 9. KIT Scientific Publishing, 2010.

[20] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A model-based
and data-efficient approach to policy search,” Proceedings of the 28th
International Conference on Machine Learning, ICML 2011, no. July,
pp. 465–472, 2011.

[21] D. E. Moriarty and R. Miikkulainen, “Efficient Reinforcement Learning
through Symbiotic Evolution,” 2007.

[22] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems,
IEEE, Oct. 2006.

[23] F. L. Lewis and D. Vrabie, “Adaptive dynamic programming for
feedback control,” Proceedings of 2009 7th Asian Control Conference,
ASCC 2009, pp. 1402–1409, 2009.

[24] F. L. Lewis and K. G. Vamvoudakis, “Reinforcement learning for
partially observable dynamic processes: Adaptive dynamic programming
using measured output data,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol. 41, no. 1, pp. 14–25, 2011.

[25] M. P. Deisenroth, “A survey on policy search for robotics,” Foundations
and Trends in Robotics, vol. 2, no. 1-2, pp. 1–142, 2011.
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APPENDIX I
COMPARISON OF FEEDFORWARD AND FEEDBACK

CONTROL FOR REFERENCE TRACKING

We consider a discrete-time, linear system of first order with
sampling period T = 0.02 seconds, output y ∈ R, and input

u ∈ R. The system is affected by an input delay of one sample
leading to state-space dynamics

∀n ∈ N, x(n+ 1) =

[
0.5 1
0 0

]
x(n) +

[
0
1

]
u(n) , (42)

where x ∈ R2 is the state vector. The system’s output is
affected by measurement noise, i.e.

∀n ∈ N≥0, y(n) =
[
1 0

]
x(n) + w(n) , (43)

where w(n) ∈ R is zero-mean measurement noise with
variance 10−4, i.e.

∀n ∈ N≥0, w(n) ∼ N (0, 10−4) . (44)

The task consist of having the output y follow the reference
r ∈ R over a finite horizon of N = 100 samples with

∀n ∈ [1, N ], r(n) = sin(2πTn) . (45)

The feedforward control strategy consists of applying an input
trajectory

uFF :=
[
uFF(0) uFF(1) . . . uFF(N − 1)

]T
. (46)

The input values are determined by optimization such that the
squared tracking error is minimized, i.e.

uFF = argmin
u

N∑
n=1

[r(n)− y(n)]
2
. (47)

The feedback control strategy consists of a generic, non-linear
function to ensure that performance is not limited by the
structure of the feedback law. In particular, the input values
uFB are computed as the sum of ten polynomials of tenth
order, to which the current and nine previous error samples
serve as inputs, i.e., ∀n ∈ [1, N ],

uFB(n) =

10∑
i=1

10∑
j=1

kij [r(n)− y(n)]
j
. (48)

The set of feedback parameters K = {kij | i, j ∈ [1, 10]}
is determined via optimization such that the squared tracking
error is minimized, i.e.

K = argmin
K̃

N∑
n=1

[r(n)− y(n)]
2
. (49)

APPENDIX II
REFERENCE TRAJECTORIES

The first reference r1 ∈ R25 is given by, ∀n ∈ [1, 25],

[r1]n = 75 sin(2πTn) . (50)

The second reference r2 ∈ R50 is given by, ∀n ∈ [1, 50],

[r2]n =

 57 sin(1.38πTn) ∀n ≤ 17
57 ∀17 < n ≤ 31

57 sin(1.38πT (n− 13)) ∀31 < n
[◦] .

(51)



MEINDL et al.: BRIDGING REINFORCEMENT LEARNING AND ITERATIVE LEARNING CONTROL: AUTONOMOUS REFERENCE TRACKING FOR UNKNOWN,
NONLINEAR DYNAMICS 13

The third reference r3 ∈ R71 is given by, ∀n ∈ [1, 71],

[r3]n =


−20 sin(1.5πTn) ∀n ≤ 16

−20 ∀16 < n ≤ 31
−20 sin(2.4πT (n− 11)) ∀31 < n ≤ 43
46 sin(1.8πT (n+ 13)) ∀43 < n

[◦] .

(52)

APPENDIX III
FEEDBACK CONTROL OF THE TWIPR

First, the dynamics of the TWIPR moving along a straight
line are considered. The robot dynamics have two degrees of
freedom, namely, the pitch angle Θ ∈ R and the position
s ∈ R. The state vector follows with

x =
[
Θ Θ̇ s ṡ

]T
. (53)

The motor torque serves as input variable and is denoted by
u ∈ R. To stabilize the TWIPR in its upright equilibrium, the
nonlinear dynamics are approximated by a linear, discrete-time
model of the form

∀n ∈ N, x(n+ 1) = Ax(n) + Bu(n) (54)

has been determined using a sampling period of T = 0.02
seconds. The stabilizing control input uC ∈ R is computed by
linear state feedback of the form

∀n ∈ N, uC(n) = −Kx(n) , (55)

where the feedback matrix K is designed by LQR [55].
To track the desired reference maneuvers, the feedback input

uC is superposed by a learned feedforward input uL leading
to the overall input

∀n ∈ N, u(n) = uC(n) + uL(n) . (56)
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