
P
os
te
d
on

8
S
ep

20
20

—
C
C
-B

Y
-N

C
-S
A

4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
50
22
7
79
.v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
o
u
ld

n
ot

b
..
.

New Levenshtein-Marker Code for DNA-based Data Storage

Capable of Correcting Multiple Edit Errors

Zihui Yan 1 and Cong Liang 2

1Tianjin university
2Affiliation not available

October 30, 2023

Abstract

With the development of DNA synthesis and sequencing technologies, DNA becomes a promising medium forlong-term data

storage. Three types of errors may occur in the DNA strand, insertions, deletions and substitutions,which we collectively call

edit errors. It is still challenging to design a code that can correct multiple edit errors onnon-binary alphabets. In this paper, we

propose a new coding schema for correcting multiple edit errors on DNAstrands by splitting the whole strand into consecutive

blocks with appropriate length and correcting a single editerror in each block. Our method, called theDNA-LMcode, could

be considered a generalization of the Levenshteincode combined with the marker code. We provide a linear encoding and

decoding algorithm for ourDNA-LMcode.Compared to other encoding methods for DNA strands of several hundred base-pairs,

ourDNA-LMcode achievedsimilar code rates and a much lower average nucleotide error rate in decoding.

1

1

New Levenshtein-Marker Code for DNA-based Data

Storage Capable of Correcting Multiple Edit Errors

Zihui Yan and Cong Liang

Abstract

With the development of DNA synthesis and sequencing technologies, DNA becomes a promising medium for

long-term data storage. Three types of errors may occur in the DNA strand, insertions, deletions and substitutions,

which we collectively call edit errors. It is still challenging to design a code that can correct multiple edit errors on

non-binary alphabets. In this paper, we propose a new coding schema for correcting multiple edit errors on DNA

strands by splitting the whole strand into consecutive blocks with appropriate length and correcting a single edit

error in each block. Our method, called the DNA-LM code, could be considered a generalization of the Levenshtein

code combined with the marker code. We provide a linear encoding and decoding algorithm for our DNA-LM code.

Compared to other encoding methods for DNA strands of several hundred base-pairs, our DNA-LM code achieved

similar code rates and a much lower average nucleotide error rate in decoding.

Index Terms

DNA storage channel, Error-correcting codes, Synchronization errors, Varshamovs-Tenengolts codes, Marker

codes.

I. INTRODUCTION

DNA is a promising storage medium with its longevity and enormous information density. In recent

years, the researches and applications of DNA-based storage have been widely concerned and studied [1],

[2], [3], [4], [5]. In a typical DNA storage pipeline (Fig. 1), digital messages were encoded into a massive

amount of short DNA strands. The lengths of the DNA strings are usually 200-300 nucleotides (nt),

which is limited by the current DNA synthesis technology. The encoded DNA strings were subsequently

synthesized into DNA strands (also called DNA fragments), which could then be stored, duplicated, and

Z. Yan and C. Liang are with the Center for Applied Mathematics, Tianjin University, China, Tianjin, 300192 USA e-mail:
cong.liang@tju.edu.cn.

2

read. The data extraction from the stored DNA contains DNA amplification via polymerase chain reaction

(PCR) experiments and DNA sequencing. The DNA sequencing procedure includes random sampling

and sequencing from a large pool of DNA fragments, which could be described by a random shuffling-

sampling channel [6], [7]. DNA fragments were sequenced to varied depths, i.e., obtained a different

number of reads. Undesired fragment structures, such as unbalanced GC content or long homopolymers,

may also lead to no-readout for some DNA sequences, called dropouts [4], [8]. Besides the random

sampling channel in the sequencing procedure, the DNA fragments themselves may obtain substitution,

insertion, or deletion errors during the synthesize, amplification, and sequencing procedure [9]. We usually

call an insertion or deletion error an indel, and call a substitution, insertion or deletion error an edit. Thus

the DNA-based storage channel could be considered as a concatenated shuffling-sampling and edit-error

channel [6], [10], [11].

Fig. 1. Typical DNA-based storage system. Binary messages will be encoded and synthesized into DNA strands. DNA strands need to

be sequenced and decoded to recover the original message. The DNA synthesis and sequencing procedures may bring additive errors and

synchronization errors, which require error-correcting codes to ensure the accurate extraction of the stored information.

Various error correction methods have been employed in the DNA-based storage error channels. The

most common design is a concatenated code, where the outer code deals with the dropouts in the shuffling-

sampling channel, and the inner code deals with the edits in the DNA strands (Fig. 2). Some typical outer

codes are the Reed-Solomon (RS) code [12], [13], [14], the low-density parity-check (LDPC) code [15],

[16], [17], and the fountain code [4], [18], [19]. All of them have shown good performances in solving the

3

problem of dropouts of DNA strands. A variety of error correction codes have been proposed as the inner

code, for example, the RS code [4], the HEDGES convolutional code [14], or the modified Levenshtein

code by Cai [20]. Although the concatenated encoding scheme can usually achieve the desired error rate,

none of the inner codes are optimal. The RS code can only correct substitution errors. Decoding failure

would happen for any sequencing reads with indels. But studies have shown that the probabilities for

insertions or deletions are at the same scale with substitutions [5]. The HEDGES is a convolutional code

that is capable of correcting both indel and substitution errors. But the code has a low code rate and a

high decoding complexity. Recently, Cai designed a single-edit-correction code with a high asymptotic

code rate with linear encoding and decoding complexity. This code is attractive when the error rates per

nucleotide are relatively low. While when the error rates increase, it is very likely that multiple errors

exist in a single DNA strand, which Cai’s code cannot correct. As a result, it is desired to design an inner

code capable of correcting multiple edit errors with efficient encoding and decoding algorithms.

Fig. 2. Overview of the concatenated coding scheme and the inner code structure used in this paper.

The indel error in DNA sequences is analogous to the synchronization error in a communication

channel [14]. Although compelling error-correction methods have been developed for channels such

as the binary symmetric channel (BSC) or the binary symmetric erasure channel (BSEC), codes that

could correct synchronization errors are still quite challenging to design [10], [21]. The Varshamovs-

Tenengolts (VT) code, also called the Levenshtein code, is one of the most celebrated classes for correcting

synchronization errors. VT codes that could correct single [22] or multiple [23] indels on binary alphabet

4

have been designed, and also be extended to non-binary alphabets [24], [25], [26], with an open-source

implementation available at [27]. Many generalized Levenshtein methods have been applied to the DNA

storage system [20], [28], [29], [30], [31]. But it remains difficult to correct multiple edit errors in the

quaternary alphabet for DNA storage applications. Another class of codes for detecting synchronization

errors is the marker codes [32]. They were first proposed in 1962 by Sellers, but haven’t attracted much

attention probably because they can only detect out-of-sync events but have no error correction capability

between the markers. In this paper, we designed a hybrid Levenshtein-Marker code as the inner code for

DNA-based storage (Fig. 2). The code consists of a series of composite codeword blocks. In each block,

the code integrates the marker with the VT code to enable the detection and correction of one edit error.

The error analysis of experiment of Organick et al. showed that the average error rate per position is

0.6%, with 0.4% substitutions, 0.2% deletions and 0.04% insertions [5]. For 200nt to 300nt length DNA

strands, it is likely that more than one errors occurred in the whole strand, but we could segment the

message into multiple blocks such that each block contains one error with high probability. Hence, our

code has higher error correction capability than the single edit error-correcting VT codes in the quaternary

alphabet.

Our paper is organized as follows. In section II, we summarize single edit-correcting VT codes on

the quaternary alphabet. These are codes that could be utilized as the inner code in DNA-based storage

systems, but none are not optimal. In section III, we introduce the Sellers marker code, and describe its

concatenation with the codes in section II to generate multiple error-correcting codes. In section IV and

section V, we present our new DNA Levenshtein-Marker (DNA-LM) code, and prove its error correction

capability. We also provide the linear encoder and decoder algorithms of our code. In section VI, we

discuss the capacities of this code, which include code rate, algorithm complexity and decoding success

rate.

II. SINGLE ERROR CORRECTING LEVENSHTEIN CODES ON THE QUATERNARY ALPHABET

The Varshamov-Tenengolts (VT) codes [33] is a class of binary algebraic block codes which consists

all binary vectors of length = belonging to

+)0,< (=) =
{
x ∈ {0, 1}= :

=∑
8=1
8G8 ≡ 0 (mod <)

}
. (1)

5

0 is an integer with 0 ≤ 0 ≤ < − 1. It is usually called the syndrome or the remainder of sequence

x. Different 0 partition all length-= sequences x ∈ {0, 1}= into < sets. VT codes were first introduced

for channels with asymmetric errors by Varshamov and Tenengolts [33]. Levenshtein [22] later proved

that for < ≥ = + 1 and a fixed integer 0 with 0 ≤ 0 ≤ < − 1, VT codes are asymptotically optimal

single-synchronization error correction codes. Levenshtein also showed that when < ≥ 2=, VT codes can

correct one insertion, deletion or substitution error. So VT codes were also referred as Levenshtein codes.

Although an efficient decoding algorithm for VT codes was known since 1965, a systematic encoding

method for VT code that can correct a single insertion or deletion was introduced only until 1998 by

Abdel-Gaffar et al [34]. Later, Saowapa at el [35] adopted it to get a systematic encoder for codes that

can correct a single edit. In brief, the idea is to insert "parity" bits at dyadic positions to ensure that

the constructed codeword has the desired syndrome. We call this Encoder SS (systematic encoded by

Saowapa), and restate the linear encoding method here since we will utilize this method for the interleaved

encoding scheme in Section II - B.

Encoder SS: For any message sequence x = {G1, G2, . . . , G: } ∈ {0, 1}: , the encoder ((can stick it into

a Levenshtein codeword y = (((x) ∈ +)0,2= (=), where : = = − dlog =e − 1. The encoding idea is to insert

"parity" bits at dyadic positions, ie., 228 , for 0 ≤ 8 ≤ C − 2 and 2=, and attach message symbols to other

positions, to ensure that
∑=
8=1 8H8 ≡ 0 (mod 2=). Here C = = − : is the number of redundancy bits.

Example: Consider the message is 01011 and 0 = 0, so = = 10, C = 5 and < = 20. The codeword

y = (H1, H2, . . . , H10) should satisfy that
∑10
8=1 8H8 ≡

∑4
9=1 2 9−1H2 9−1 + 10 · H10 + 5 + 7 + 9 ≡ 0 (mod 20). And

expand 19 − 10 = 9 into binary form 1 · 23 + 1 · 20. Hence codeword is 1̄0̄00̄1011̄11̄, where the overbar

bits are check bits.

Many scholars have studied the generalization of VT code to non-binary alphabets [24], [25], [26].

Since the DNA base system contains four elements, in this work, we focus on codes that could correct

edit errors for the quaternary alphabet. We map four DNA nucleotides D = {�,), �, �} to the quaternary

alphabet Σ = {0, 1, 2, 3}:

�↔ 0,) ↔ 1, � ↔ 2, � ↔ 3. (2)

Given any DNA sequence 2 ∈ D# , it could be one-to-one mapped to a quaternary sequence x ∈ Σ# .

As a result, we discuss the encoding method from a binary sequence to a quaternary sequence on Σ. The

encoded quaternary sequence on Σ could then be mapped to DNA sequences following the rule above.

Next, we describe some quaternary codes that could correct a single indel or edit error.

6

A. Non-binary VT codes for single indel correction

Tenengolts generalized Levenshtein’s single indel-correcting codes to non-binary alphabets in 1984 [24].

For any @-ary sequence s = (B1, B2, . . . , B=), Tenengolts defined a corresponding length (= − 1) auxiliary

binary sequence �s = (U1, U2, . . . , U=−1), where U8 = 0 when B8 < B8−1 and otherwise U8 = 1. And defined

a "parity" check function

BD<(s) ≡
=∑
8=1

B8 (mod @).

For 0 ≤ 0 ≤ = − 1 and 0 ≤ 1 < @, the Tenengolts’s code is defined as

)4=0,1 (=) :=
{
s ∈ Z=@ : BD<(s) = 1,

=−1∑
8=1
8U8 ≡ 0 (mod =)

}
.

Each of the sets)4=0,1 (=) is a single indel error correcting code.

Tenengolts’s paper introduced the algebraic structure of the code, but didn’t provide a method to encode

messages into such codes. Only recently, Abroshan et al [25] proposed a method to systematically map :

bits message onto = length @-ary generalized Levenshtein codeword. We call it Encoder TA (introduced

by Tenengolts and systematic encoded by Abroshan). Considering its application in DNA storage, we take

@ = 4, and have

: = 2= − 3dlog =e − 2.

B. Interleaved binary VT codes

Since we are particularly interested in codes for 4-ary alphabets, it is also quite intuitive to construct

a quaternary code by interleaving two binary Levenshtein codes. The quaternary code interleaved by two

binary one-edit-correction Levenshtein codes is capable of correcting one edit error. This idea was first

mentioned in Helberg [23], but hasn’t been explicitly stated in the literature. Here we call this Encoder

IBS (interleaved binary VT codes and encoded by Saowapa) and describe the method in detail.

Definition 1. For a sequence y = (H1, H2, . . . , H:) ∈ Σ: , let H8 = H
(0)
8

20 + H (1)
8

21 be the binary form of

symbol H8, then y(0) = (H (0)1 , . . . , H
(0)
=), y(1) = (H (1)1 , . . . , H

(1)
=). y is the interleaved sequence of y(1) and

y(2) , which we denote by y(1) ‖ y(0) .

Encoder IBS: Then for 2: bits message set, we can encode them to the codeword set

��(:,0 (=) =
{
y = y(1) ‖ y(0) : x = x(1) ‖ x(0) ∈ Σ: , y(i) = Encoder SS(x(i)) ∈ +)0,2= (=), 8 = 0, 1

}
,

7

Here : = = − dlog2(=)e − 1, and we can conclude that ��(:,0 (=) is a single edit error-correcting code on

the quaternary alphabt.

Example: Consider the message is 02312 and can be expanded as 01101 ‖ 00110. Set 0 = 0, so = = 10

and < = 20. Encode (((01101) = 0000110010 and (((00110) = 1101011000. Hence the codeword

y = 0000110010 ‖ 1101011000 = 1101231020.

C. Cai order-optimal code

The redundancy of VT codes and their generalizations is always log = + >(log =) bits, where = is the

length of the codeword, and is a constant. Small is usually preferred to ensure high code rate. To

minimize , Cai [20] designed a single edit correcting code on the quaternary alphabet by enforcing the

k-sum balanced constraint on the message sequence and appending the syndromes next to it. Here we

call it Encoder Cai. The redundancy of it is dlog =e + $ (log log =) bits. It has = 1 and Cai called it

order-optimal. Specifically, this code encodes 2: bits message and outputs a length = quaternary codeword,

where = = (: + d(log(4: + 5))/2e + d(log 1440 + log log(: + 1))/2e + 6). As mentioned in Cai’s paper, this

code has an efficient code rate when = is large (say = > 512). While the advantage of order-optimality is

impacted when the message sequence is short because some constant redundant bits are required.

III. MULTIPLE INDEL CORRECTION AND THE MARKER CODE

The codes mentioned above all have linear encoding and decoding methods, but their application is

still limited since they could only correct a single indel or edit error. To solve this problem, Helberg [23]

introduced a class of binary codes that can correct multiple edit errors by increasing the intervals between

each congruent class. Tuan and Hieu [26] generalized this method to non-binary alphabets. However, no

encoding method has been proposed for these codes, and their codeword contains much more redundancy

bits compared to the original design of the VT codes.

Another technique to deal with synchronization errors is the marker code. Sellers [32] first suggested

inserting the subsequence "001" into a long sequence at regular intervals as "markers" to detect synchro-

nization errors. Because the markers appear periodically in the transmitted sequence, the synchronization

can be regained by aligning the markers. If there is a shift of the marker position, deletion or insertion

events could be detected. However, the marker code has no error correction capability: we could regain

synchronization in future sequences according to the marker position, but we cannot correct the fragment

that contains synchronization errors, not to mention correct substitution errors.

8

To tackle the issue that the marker code has no error correction capability, we could intuitively encode

the messages between markers with the single-edit-correction codes that we have described in section

II. Ferreira et al [36] has proposed a similar idea, where they used markers with Levenshtein encoded

blocks to detect and correct edit errors. In the scenario of DNA storage, current synthesis technologies

can produce strands of lengths 200nt to 300nt. We can split the message sequence into several shorter

blocks, then encode each message block into a codeword block, and insert markers between blocks. This

method enables us to correct more than one error in the whole DNA strand. We illustrate the strand

structure in Fig. 3. We call the concatenated codes with such a construction the 4-ary TA-Marker code,

the IBS-Marker code, and the Cai-Marker code, respectively. Note that the code rate of the whole strand

will decrease a bit because of the marker.

Fig. 3. The concatenated encoding structure of the generalized Levenshtein codes and the marker code proposed in this paper.

With the design above, we can correct multiple errors in each DNA strand. But if an error occurred

in the marker region, the decoder will not be able to identify the marker and the synchronization will be

lost, then the codewords before and after the marker will be corrupt. This is because the segmentation

of codewords relies on the correct identification of the marker position, but no protective encoding was

designed for the marker code. As a result, we redesigned the marker codes and integrated them with

a modified systematic encoding of VT codes. Compared to the single error correction codes in section

II, our hybrid code achieved a higher error-correcting rate while maintaining a high code rate for DNA

sequences between 200-300 base pairs. We describe this code in the next section.

IV. THE GENERALIZED LEVENSHTEIN-MARKER CODE

We are also interested in the application of systems of congruences like (1) in the encoding for DNA

storage. We designed a class of 4-ary codes that can correct multiple edit errors, and termed it the DNA

Levenshtein-Marker (DNA-LM) code. The DNA-LM code is concatenated by several segments, which we

9

call "blocks" in this paper. Each of the blocks is encoded with a systematic DNA-segment-Levenshtein-

Marker (DNA-sLM) code. The DNA-sLM code consists of five components, the marker, the message, the

check, the separator, and the syndrome. We designed the separator and the marker to locate the positions

of the message and the syndrome cooperatively. The message and the syndrome can correct each other.

Knowing the sequence of one could assist the identification of the other. The check was designed to

locate the error if a substitution event happens. We show below that the DNA-sLM code is a single edit

correction code, so one error in the marker segment will not deterministically corrupt the entire block.

To encode a message sequence into a DNA-LM codeword string, we first split the message sequence into

several short blocks, then encode each message block into a DNA-sLM codeword, and concatenate them

together (Fig. 4). Note that the first block do not need the marker to keep synchronization so that we skip

it and encode the message straightly.

Fig. 4. The construction of a DNA Levenshtein-Marker codeword.

We introduce some relevant notations and terminologies to describe our DNA-sLM code in detail. Denote

the message sequence x = (G1, G2, . . . , G:) ∈ Σ: .

• (H= : {0, 1}: → [0, 2:) calculates the syndrome of a binary sequence. For a binary sequence

z ∈ {0, 1}: , (H=(z) is a function that

(H=(z) ≡
:∑
8=1
8I8 (mod 2:). (3)

We use �(H=(z) to represent the binary form of the number (H=(z). Recall the definition 1, for

quaternary message sequence x = x(1) ‖ x(0) , where x(1) , x(0) ∈ {0, 1}: , the map ��(H= : Σ: → ΣC

satisfies

��(H=(x) = �(H=(x(1)) ‖ �(H=(x(0)),

10

here, C = dlog(2:)e . We call ��(H=(x) the syndrome sequence of x.

• �: : Σ: → Σ is the check function of the message x, where �: (x) ≡ ∑:
8=1 G8 (mod 4).

• (? : Σ3 → Σ is the separator function, where (?(0, 1, 2) is the symbol which not in the set {0, 1, 2}.

To be specific, if 0+2 ≠ 1, 2, set (?(0, 1, 2) = 0+2, if 0+3 ≠ 1, 2, set (?(0, 1, 2) = 0+3, otherwise,

(?(0, 1, 2) = 0 + 1.

• ": : Σ3 → Σ is the marker function, which is same as the function (?.

Definition 2. The DNA-sLM code sLM(k) is defined as

B!" (:) :=
{
(<, <, G1, G2, . . . , G: , 2, B, B, B, 01, . . . , 0C) ∈ Σ:+C+6 :

2 = �: (G1, G2, . . . , G:), (01, 02, . . . , 0C) = ��(H=(G1, G2, . . . , G:),

B = (?(21, 01, 02), < = ": (5 , G1, G2)
}
.

Here 5 is the last symbol of the previous codeword block. And we call (<, <) the marker segment,

x = (G1, G2, . . . , G:) the message segment, (2) the check segment, (B, B, B) the separator segment, and

a = (01, 02, . . . , 0C) the syndrome segment. These five segments form one codeword block of the DNA-LM

codeword string.

Since we are interested in concatenating multiple DNA-sLM codes into one consecutive codeword string,

in the rest of this section, we discuss the error correction capability of the DNA-sLM code assuming that

the received codeword has an undetermined endpoint. Theorem 1 states that the first message block x as

well as the starting position of the next codeword block could be uniquely determined from the received

codeword string r, when there is at most one edit error in the first block. Thus after decoding the first

block, we can trim the codeword string at the starting position of the next block and iterate the decoding

process.

Theorem 1. The DNA-sLM code sLM(k) can correct a single edit error, and realize re-synchronization

after this block even if the decoder doesn’t know where the block ends.

Before proving this theorem, we need to generate some lemmas.

Let xBD1, x8=B, and x34; be the first : elements of a sequence obtained from x via a single edit when there

is a substitution, insertion, or deletion, respectively. For ∀A ∈ Σ, the obtained sequence has the form xBD1 =

(G1, . . . , G 9−1, A, G 9+1, . . . , G:), x8=B = (G1, . . . , G 9−1, A, G 9 , . . . , G:−1), or x34; = (G1, . . . , G 9−1, G 9+1, . . . , G: , A).

We refer to them collectively as x. Note that if a deletion happens, a symbol was appended at the end

11

of the sequence. Here we consider the case of the DNA-sLM code, if a deletion happens in the message,

the check 2 = �: (x) will be added to the end of it. The following lemmas consider the result returned

by the check and syndrome function as x changes to x.

Lemma 1. For any sequence xBD1 obtained via a single substitution from x, �: (xBD1) will not be equal

to �: (x).

Proof. Let 2 = �: (xBD1) and 2 = �: (x),

2 − 2 ≡
:∑
8=1

G8 −
©«
9−1∑
8=1

G8 + A +
:∑

8= 9+1
G8
ª®¬ (mod 4)

≡ G 9 − A (mod 4).

For G 9 ≠ A, 2 will never equal 2. �

Hence, when the length of the message segment is correct, if the message does not match the syndrome,

the check can help the decoder detect where the substitution error is. ***

Lemma 2. For any sequence x obtained from x, ��(H=(x) will not be equal to a.

Proof. We first discuss when there is an insertion in x. We have x8=B = (G1, . . . , G 9−1, A, G 9 , . . . , G:−1). We

calculate the syndrome 0 (0) and 0 (1) for x8=B:

9−1∑
8=1
8G
(0)
8
+ 9A (0) +

:−1∑
8= 9

(8 + 1)G (0)
8
≡ 0 (0) (mod 2:);

9−1∑
8=1
8G
(1)
8
+ 9A (1) +

:−1∑
8= 9

(8 + 1)G (1)
8
≡ 0 (1) (mod 2:).

We can see that

0 (B) − 0 (B) ≡
:∑
8=1
8G
(B)
8
−

(9−1∑
8=1
8G
(B)
8
+ 9A (B) +

:−1∑
8= 9+1
(8 + 1)G (B)

8

)
(mod 2:)

≡:G (B)
:
−
:−1∑
8= 9

G
(B)
8
− 9A (B) (mod 2:)

Therefore, for B = 0, 1, 0 (B) − 0 (B) ≡ 0 (mod 2:) if and only if (A (B) , G (B)
9
, . . . , G

(B)
:−1) are all zeros or ones.

These cases are equivalent to no symbol that has been changed in the sequence. The same could be proved

when there is one deletion or substitution error.

12

Because the received sequence is interleaved by two binary sequences, if one symbol changed in transit,

at least one of these two binary sequences will be changed. So for any received sequences x, as long as

x ≠ x, the syndrome sequence ��(H=(x) ≠ ��(H=(x). �

From lemma 2, we can see that even if we can not figure out the boundary of the message segment, we

won’t either receive the error transmitted codeword as the correct one. Therefore, as long as one of the

message part and the syndrome part transmit correctly, we can decode the received. Besides, because we

only consider one edit error situation, if there is one substitution error in message segment, from lemma

1, the check function will not be satisfied as well, so that the check can help the decoder to find whether

the error is in the message segment or syndrome segment.

We next consider the truncated code without the marker segment, which we denote as t-sLM(:). We

show its error correction capability in Lemma 3.

Lemma 3. The code t-sLM(k) can correct a single edit error without the information of the received block

length.

Proof. For any message x, denote its corresponding codeword y = (x, 2, B, B, B, a). We consider the case

that the end position of the received codeword is unknown. Let the single edit error domain of codeword

y be

D(y) :=
{
r : r is obtained from y by one edit error

}
∪

{
y
}
. (4)

Let r: denote the first : elements of r. Take c = �: (r:), and a = ��(H=(r:). We first define some

subsets of D(y) to represent the different error types and error locations.

• Let �: denote the event that the received sequence is in the following form:

�: :=
{
r : A:+1 = �: (r:)

}
. (5)

We can see that �: is the subset of D(y), and if the message and the check are correct in transmit,

the received r should belong to �: .

• Let (?−1, (?0 and (?+1 denote the events that the received is in following forms:

(?0 :=
{
r : A:+2 = A:+3 = A:+4

}
;

(?+1 :=
{
r : A:+3 = A:+4 = A:+5 ≠ A:+2

}
;

(?−1 :=
{
r : A:+1 = A:+2 = A:+3 ≠ A:+4

}
.

13

(?−1, (?0 and (?+1 are the subsets of D(y) as well. Suppose that the separator is correct, then if

there is no indel in the message and the check, r ∈ (?0; if there is one deletion in the message and

the check, r ∈ (?−1; and if there is one insertion in the message and the check, r ∈ (?+1. Besides,

due to the structure of the separator, (?−1, (?0 and (?+1 are mutually disjoint. If the separator is

not correct, the received will not belong to any sets above. Hence, we use (? = (?−1 ∪ (?0 ∪ (?+1

to represent the event that the separator segment is correct in transmit.

• Let (H=−1, (H=0 and (H=+1 denote the events that the received is in the following forms:

(H=8 =
{
r : (A:+5+8, A:+6+8, . . . , A:+4+C+8) = ��(H=(r:)

}
∩ ((?8 ∪ (?2) .

Here 8 ∈ {−1, 0, +1}. We use 8 = +1, −1, and 0 to indicate the changes of the syndrome position.

If the message and the syndrome are correct in transmit, r should belong to one of these sets. Let

(H= = (H=−1 ∪ (H=0 ∪ (H=+1 represent the event that the syndrome and the message are matched.

According to the above definitions, we make several observations:

• If the whole string is correct in transmit, r should belong to set �: ∩ (?0 ∩ (H=0;

• Because we only discuss about single edit error, we can see that if the message is correct in transmit,

r ∈
(
�: ∩ (H=

)
∪

(
�: ∩ (?0

)
∪8∈{−1,0,+1}

(
(?8 ∩ (H=8

)
. (6)

Based on our assumption, when the message is correct, only one function of the check, the separator,

and the syndrome has not matched the message. Hence when two of them are matched, we determine

that the message is correct. For example, r ∈ (?−1 indicates the event that the separator segment

was correct in transmit and was moved forward one symbol in transmit, which suggests that one

error occurred before the separator segment. In this situation, the syndrome was moved forward one

symbol as well. If not, it implies that the received sequence r occurred errors both in the separator

and the syndrome which contradicts the assumption of one edit error. Hence, if the message is correct,

then ��(H=(x) = (A:+4, A:+5, . . . , A:+3+C), r should belong to (H=−1. And this situation indicates that

the check occurred one deletion in transmit.

• According to lemma 2, if one substitution occurred in the message, ��(H=(r:) ≠ (A:+5, A:+6, . . . , A:+4+C),

so that r ∉ (H=0. And because the separator and the check is correct, according to lemma 1,

r ∈ �:2 ∩ (?0. Hence r ∈ �:2 ∩ (?0 ∩ (H=20. And the same relations can be proved that if one

insertion occurred in the message, r ∈ (?+1 ∩ (H=2+1, and if one deletion occurred in the message,

14

r ∈ (?−1 ∩ (H=2−1. Therefore, if the message is not correct,

r ∈
(
�:2 ∩ (?0 ∩ (H=20

)
∪8∈{−1,+1}

(
(?8 ∩ (H=28

)
. (7)

• Donate the above sets by

(1 = �: ∩ (?0 ∩ (H=0; (8)

(2 =
(
�: ∩ (H=

)
∪

(
�: ∩ (?0

)
∪8∈{−1,0,+1}

(
(?8 ∩ (H=8

)
; (9)

(3 =
(
�:2 ∩ (?0 ∩ (H=20

)
∪8∈{−1,+1}

(
(?8 ∩ (H=28

)
. (10)

We can figure out that (1 ⊂ (2, and (2 ∩ (3 = ∅, (2 ∪ (3 = D(y).

Suppose that there are two codewords y1, y2, and a received sequence r which simultaneously belongs

to D(y1) and D(y2). Assume that the message segments of codewords y1, y2 are x1, x2 respectively. So

x1 ≠ x2.

According to the above observations, if the received sequence r does not belong to set (2, we know

that the message is not correct. Hence, both the separator and the syndrome are correct. In this case, we

could locate the position of the syndrome by checking which event of (?0, (?−1, and (?+1 happens.

Then the syndrome is the first C symbols after the separator, and we denote it by â. Now we have two

message segments x1, x2, with the same syndrome ��(H=(x1) = ��(H=(x2) = â. Since the edit distance

and the Hamming distance between two VT codewords are at least 3, we must have 3438C (x1, x2) ≥ 3

and 3�0<<8=6 (x1, x2) ≥ 3. At least one of these distances between r and y1, y2 is greater than 1. This is

conflict to the assumption that there is only one edit in the received sequence r. So x1 = x2 and y1 = y2.

On the other hand, if r does not belong to the set (3, the message in r is correct. Again, we have x1 = x2,

and y1 = y2.

Above all, for any t-sLM(k) codewords y1 ≠ y2,

D(y1) ∩ D(y2) = ∅, (11)

so the code t-sLM(k) is a single edit error-correcting code. �

As a result, the error position could be uniquely determined by checking the received sequence belongs

to sets (2, (3. Once we know the error position, we could easily recover x from r. If the message is

correct, where r ∈ (2, we take the first : elements of r as the message. Otherwise, if r ∈ (3, we identify

15

the error type in x as follows:

1) r ∈ (?0 ⇔ x has one substitution;

2) r ∈ (?+1 ⇔ x has one insertion;

3) r ∈ (?−1 ⇔ x has one deletion.

Then we can locate the correct syndrome and use it to decode the message sequence.

From above, we can see that (B, B, B) altogether were designed to separate and locate the positions of

the message sequence and the syndrome sequence. They are similar to the Seller’s marker codes, which

play an important role in identifying where the indel happened. Then the check bit 2 was designed to

identify the error position if a substitution happens. Overall, Lemma 3 shows that if there is no error in

the marker the sLM(k) code, we can correct one edit error in the truncated codeword t-sLM(k). With this,

we show that sLM(k) is also a single-edit-correction code.

Lemma 4. If one edit occurred in the received sLM(k) codeword, wherever it is in the marker or other

segments, we can determine the correct message, and realize the re-synchronization after this block.

Proof. Suppose that the decoder received the sequence r, for consistency of the proof, let (A−1, A0) be

the first two element of r, which is presumably the marker position. If there is no error in the marker

code, we can see that A−1 = A0. While if an edit error occurred in the marker, because of the design of the

marker function, we have A−1 ≠ A0,. As a result, we could determine whether an edit error occurred in the

marker or not by checking the first two elements of the received. If A−1 = A0, there is no error occurred

in the marker. From lemma 3, we know that we can correct on edit error in the codeword t-sLM(k). If

A0 ≠ A1, there is one edit error in marker code. It remains to show that the same could be achieved in this

case.

Following previous notations, let �:< denote the sequence sets that the sequences match that �: (A1+<, A2+<, . . . , A:+<) =

A:+1+<. (?< and (H=< are defined as in lemma 3, where < = −1, 0, 1. Table I lists the sets that the received

sequence should belong to when different error types occur in the marker.

16

TABLE I

TABLE FOR ERROR TYPES IN THE RECEIVED SEQUENCE.

Error type Marker Check Separator Remainder

sub (G, <) or (<, G) �:0 (?0 (H=0

del < �:−1 (?−1 (H=−1

ins (G, <, <) or (<, G, <) �:+1 (?+1 (H=+1

Here, G can be an arbitrary symbol in Σ except for <. So that if A−1 ≠ A0, the decoder will detect that

there is one error in the maker code. In this case, we do not use the marker code to figure out the block

beginning. On the contrary, we use three equations to detect the error type of the marker code to ensure

synchronization.

Let the single edit error domain of codeword y be

D<0A:4A (y) :=
{
r : r is obtained from y by one edit error, A−1 ≠ A0

}
. (12)

Because the separator of any received sequence will be satisfied with only one form in the above table,

and the : +1 to 2 symbols before the separator form the message, we can not make a mistake in decoding

the message. And according to the marker function, the unique marker code can be picked up by the

last symbol of the previous block and the first two symbols in the current block. Therefore, the sets

D<0A:4A (y) for different y ∈ sLM(k) are disjoint. �

Lemma 5. If there is one edit error that occurred in the first block, we can re-synchronize the sequence

after decoding this block.

Proof. Firstly, consider the condition of no error in the syndrome a. We can find the boundary of the

syndrome, and the end of the syndrome is the beginning of the next block. Then we now discuss on

conditions of the incorrect syndrome. Because the separator is correct, for brevity, let the received sequence

which has been truncated after separator be r, and the correct syndrome a = ��(H=(x). Let

D1(m) =
{
(AC , AC+1, AC+2, AC+3) : AC = AC+1 ≠ 0C , AC+2 ≠ AC+1

}
,

D2(m) =
{
(AC , AC+1, AC+2, AC+3) : AC+1 = AC+2 ≠ 0C

}
,

D3(m) =
{
(AC , AC+1, AC+2, AC+3) : AC+2 = AC+3 ≠ 0C , AC+1 = 0C

}
,

17

denote the three error conditions of the syndrome. Note that the marker function should satisfies the rule:

< ∉ {0, 1, 2}, if we insert < between 0 and 1, 2. So that D1(m), D2(m) and D3(m) are pairwise disjoint

sets, and represent the conditions of the marker positions when the syndrome occurred a single deletion,

norm/substitution and insertion error separately and no error in the marker. If the received sequence is not

in any above sets, we can see that the marker code occurred one edit error. In this situation, the separator

of the next block will help the decoder to relocate the message and keep synchronization. We will cut off

the sequence after AC roughly and then decode the next block. Therefore, when one edit error occurred,

the received can re-synchronize itself after decoding the current block. �

Now, we can prove theorem 1. According to lemma 3 and lemma 4, we can see that every first block is

able to correct a single edit error whether the error occurred in the marker or the residue segments. And

according to lemma 4 and lemma 5, after decoding the first block, we can re-synchronize the received

sequence. Hence the beginning of the next block is clear, so that the blocks can be recovered in turn.

However, if there are more than one error in the block, the decoder will be unable to correct the errors,

and the framing of codewords will be lost, but this will be detected by the next marker and corrected

accordingly.

V. DECODING OF DNA LEVENSHTEIN-MARKER CODES

In this section, we describe a linear decoding algorithm of our DnA-LM code. Let r be a 4-ary sequence

on Σ translated from the DNA sequencing reads according to Equation (2). We decode the DNA-sLM blocks

iteratively from the left end of r. The decoding algorithm for the DNA-sLM code consists of three parts:

the error type and position detection, error correction, and re-synchronization, as shown schematically in

Fig. 5.

18

Fig. 5. The flowchart for decoding.

Step 1: Find the error type of the message. First check the first two symbols of r. If A1 = A2, the marker

segment is correct. We check which set (2, (3 the next (: + C + 5) symbols belong to. Then we figure

out the error type of the message following Algorithm 1. If A1 ≠ A2, the error is in the marker code. The

decoder will detect whether the received sequence can be matched to any of the sets in table I and locate

the message position, as shown in Algorithm 2. If the received sequence can not be matched to any sets

described in section III, it indicates that more than one error has occurred in the leftmost block of the

sequence. Thus decoding failure happens for the current block, and the corresponding position will be

labeled as erasure e in the outer code.

19

Algorithm 1 The Decoding Algorithm with Correct Marker
Input: a received sequence r = (A1, A2, . . .), with A1 = A2.
Output: the the error type of the message segment) ∈ {’ins’,’del’,’sub’,’correct’,’excess’}, the received

message segment x̄.
1: if A:+4 = A:+5 = A:+6 then
2: no indel error occurred before the separator. Set r: = (A3, A4, . . . , A:+2),

a = (A:+7, A:+8, . . . , A:+6+C), 2 = �: (r:), a = ��(H=(r:).
3: if 2 = A:+3 then
4: if a = a then
5: no error occurred in the first block.) = ’correct’, x̄ = (A3, A4, . . . , A:+2).
6: else
7: the syndrome occurred one error.) = ’correct’, x̄ = (A3, A4, . . . , A:+2).
8: else
9: if a = a then

10: the check occurred one error.) = ’correct’, x̄ = (A3, A4, . . . , A:+2).
11: else
12: the message occurred one substitution.) = ’sub’, x̄ = (A3, A4, . . . , A:+2).
13: else if A:+5 = A:+6 = A:+7 ≠ A:+4 then
14: one insertion error occurred before the separator. Set r: = (A3, A4, . . . , A:+2),

a = (A:+8, A:+9, . . . , A:+7+C), a = ��(H=(r:).
15: if a = a then
16: the check occurred one insertion.) = ’correct’, x̄ = (A3, A4, . . . , A:+2).
17: else
18: the message occurred one insertion.) = ’ins’, x̄ = (A3, A4, . . . , A:+2, A:+3).
19: else if A:+3 = A:+4 = A:+5 ≠ A:+6 then
20: one deletion error occurred before the separator. r: = (A3, A4, . . . , A:+2),

a = (A:+6, A:+7, . . . , A:+5+C), a = ��(H=(r:).
21: if a = a then
22: the check occurred one deletion.) = ’correct’, x̄ = (A3, A4, . . . , A:+2).
23: else
24: the message occurred one deletion.) = ’del’, x̄ = (A3, A4, . . . , A:+1).
25: else
26: the separator is incorrect. Set r: = (A3, A4, . . . , A:+2),
{a} = {(A:+7+8, A:+8+8, . . . , A:+6+C+8)}8=−1,0,+1, 2 = �: (r:), a = ��(H=(r:).

27: if 2 = A:+3 and 0 ∈ {a} then
28: the message is correct.) = ’correct’, x̄ = (A3, A4, . . . , A:+2).
29: else
30: more than one error in this block.) = ’excess’, x̄ = e.
31: return) and x̄.

20

Algorithm 2 The Decoding Algorithm with Incorrect Marker
Input: a long sequence r = (A1, A2, . . .), and A1 ≠ A2
Output: the message error type) ∈ {’correct’,’excess’}, the received message x̄..

1: if A:+4 = A:+5 = A:+6 ≠ A:+3, A:+3 = �: (A3, A4, . . . , A:+2) and (A:+7, A:+8, . . . , A:+6+C) =

��(H=(A3, A4, . . . , A:+2) then
2: the marker occurred one substitution, and the message is x̄ = (A3, A4, . . . , A:+2).) = ’correct’.
3: else if A:+3 = A:+4 = A:+5 ≠ A:+2, A:+2 = �: (A2, A3, . . . , A:+1) and (A:+6, A:+7, . . . , A:+5+C) =
��(H=(A2, A3, . . . , A:+1) then

4: the marker occurred one deletion, and the message is x̄ = (A2, A3, . . . , A:+1).) = ’correct’.
5: else if A:+5 = A:+6 = A:+7 ≠ A:+4, A:+4 = �: (A4, A5, . . . , A:+3) and (A:+8, A:+9, . . . , A:+7+C) =
��(H=(A4, A5, . . . , A:+3) then

6: the marker occurred one insertion, and the message is x̄ = (A4, A5, . . . , A:+3).) = ’correct’.
7: else
8: more than one error occurred in this block. x̄ = e,) = ’excess’.
9: return) and x̄

Step 2: Error correction. If there is no error in the message,) = ’correct’, the decoder will return

the correct message x = x̄. If an error occurred in the message,) ∈ {’ins’,’del’,’sub’}, the decoder will

use the syndrome to recover the received message sequence x̄ through the Levenshtein decoder on the

de-interleaved binary sequences. If more than one error occurred in the block,) = ’excess’, set x = x̄ = e.

Step 3: Re-synchronization.

A) If the current block occurred just one edit error or less, the decoder can synchronize the next block.

According to lemma 5, if the received can be matched to sets D1(m), D2(m) or D3(m), we can

figure out the end of the current block. Suppose that the last symbol of the current block is A?, the

decoder will cut off the sequence after A?. on the other hand, if we cannot find the block boundary,

directly cut off the sequence after A:+C+6;

B) If synchronization were not intact when more than one error occurred, the decoder will scan the

received sequentially until finding a subsequence which is the same as (a,m,m,b,c), here < =

": (0, 1, 2). And re-synchronize successfully by truncating sequence before the marker symbol <.

Step 4: Repeat steps 1-3 until the received sequence length is zero.

VI. CODE CAPABILITY

A. Algorithm complexity

The encoding algorithm consists of four main components: calculating the syndrome, the check, the

separator and the marker. These calculations can be accomplished in linear time. Hence the encoding

of one block can be performed in $ (:) time. The decoding algorithm of one block can be computed

21

in $ (:) time as well. Here : is the message block length. And the decoding of sequence proceeds

sequentially through blocks. Therefore, for the whole length message string, the encoder and decoder

can be performed in time $ ().

B. Code rate

Our code string is concatenated by a series of DNa-sLM codeword blocks. We save the two markers in

the first block to reduce redundancy without affecting the error correcting ability of the code. Let # and

= denote the lengths of the whole DNA-LM code string and one DNA-sLM codeword block with and

: message symbols respectively. Let ; be the number of codeword blocks in one codeword string. Note

that the input and output of the code are both quaternary strings. We have,

 =:;;

= =: + dlog :e + 7;

== − 2 + (; − 1)= = ; (: + dlog2 :e) + 7; − 2.

Thus, the code rate of the DNA-LM code which has ;-blocks with :-length is

' =
2;:

; (: + dlog2 :e) + 7; − 2
bits

symbol
. (13)

We compare the code rate of our DNA-LM code with the 4-ary TA-Marker code, the IBS-Marker code,

Cai-Marker code introduced in section III with varied message block length (Fig. 6(a)). We can see

that the IBS-Marker code achieved the highest code rate when the message block length is below 200.

Our DNA-LM code obtained a similar code rate as the 4-ary TA-Marker code, which is a bit lower than

the IBS-Marker codes. The difference between the code rate of the DNA-LM and the IBS-Marker code

gets smaller as the message block length increases. Cai-Marker code has the lowest code rate when the

message block length is below 200. This is because Cai-Marker code requires some constant redundant

symbols, although its code rate is order optimal asymptotically. We also calculated the code rate when

the block number varies with the total message length fixed (Fig. 6(b)). As expected, we observed a

lower code rate when we divide the message into more blocks. Overall, we could achieve a code rate

of at least 1.25 bits/symbol using no more than six blocks when encoding a quaternary message of 180

symbols. We will see that there is a trade-off between the code rate and the error rate when selecting the

number of blocks ;.

22

(a) Varied message block lengths

(b) Varied number of blocks (= 180)

Fig. 6. The code rates of four concatenated codes described in this paper. Fig. (a) shows the code rate versus the quaternary message block
length (in nucleotides). Here we plot the code rate of a single block containing one marker and one generalized Levenshtein structure. Fig.
(b) shows the code rate versus the number of blocks with fixed message sequence length = 180.

C. Success probability of decoding

Let ?8, ?3 and ?B denote the rates of insertion, deletion and substitution error, and ?2 = 1− ?8 − ?3 − ?B

denote normal transmission rate. Assume that positions on the DNA string are independent to each other

and that the blocks are independent to each other. The probability of having no more than one edit error

in each block is

%BDB1;>2: = ?
=−1
2

(
= − (= − 1)?2

)
. (14)

Our codeword string is the series connection of ; such blocks, so we can easily calculate the probability

of having no more than one edit error in each block of the whole codeword string. %BD224BB = %;BDB1;>2: is

the theoretical decoding success probability for our DNA-LM code. But in some rare situations, the decoder

may not recognize the actual position of the insertion event. For example, if the previous block’s last two

23

symbols are the same and the syndrome segment has one special insertion which causes the decoder

to recognize these two equal symbols as the marker. Therefore, the success probability of decoding the

received string is a little deviated from the theoretical value.

(a) Different DNA mutation error rates (= 180, : = 30, ; = 6)

(b) Different block numbers (= 180, ?A = 0.005)

Fig. 7. Performance of the decoding nucleotide error rate of four codes described before. Figure (a) shows the nucleotide error rate as the
function of DNA mutation error probability, where ?8 = ?B = ?3 = ?A increase from 0 to 0.01. Figure (b) shows the nucleotide error rate
as the function of block numbers with the DNA mutation error probability ?8 = ?B = ?3 = ?A = 0.005 and message length = 180. The
simulation times) = 10000.

We simulated errors on DNA strings and calculated the decoding nucleotide error rate for our DNA-

LM code and three single-error-correction codes combined with markers (Figure 7(a)). We set the error

probabilities ?8 = ?3 = ?B = ?A. We define the nucleotide error rate in decoding as the ratio of string

positions with the wrong nucleotide symbol. We could see that when the hyperparameters (:, ;, ?A) are the

same, our DNA-LM code achieved the lowest nucleotide error rate among the four codes. The 4-ary TA-

Marker code has the highest decoding nucleotide error rate, which is expected because this code can only

correct indels but not substitutions. The IBS-Marker code and Cai-Marker code achieved intermediate

24

nucleotide error rates. Their error rates are similar because both could correct one edit error in the

codeword block but not in the markers. We also compared the decoded nucleotide error rate when the

message sequence is encoded in just one block (dotted lines) versus when the message is segmented into

multiple blocks (solid lines). As expected, the error rate is lower when the number of blocks is more.

Figure 7(b) further illustrates this relationship between the number of blocks and the nucleotide error rate.

The nucleotide error rate drops as the number of blocks increases.

(a) ?A = 0.005

(b) ?A = 0.01

Fig. 8. The decoding nucleotide error rates at different positions in the message. The independent variables are the positions of message
symbols, and the dependent variables are percentage of the decoding error times divided by test times. The DNA mutation error probability
?8 = ?B = ?3 = ?A = 0.005 in Fig.(a), ?8 = ?B = ?3 = ?A = 0.01 in Fig.(b). The number of simulations # = 100000.

Figure 8(b) and 8(a) shows the decoded nucleotide error rate of different positions in the message

sequence, when ?A = 0.005, ?A = 0.01 and the message is six 30-length blocks. We can see that there is

a small increase in the error rate between two blocks, it is because that when the previous block occurred

more than one error, the next block frame will be corrupted, which means that errors will be inherited.

According to the simulation test results, compared with the other three codes, the curve of the DNA-LM

25

code is much smoother, which represents the impact of error succession on this code is minimum. Hence

the remainder error-correcting procedure which includes the remainder error and the erasure recovered by

outer code will be easier to process. Besides, Note that every block trend curve, especially the DNA-LM

code, can be fitted as the normal distribution. It is the result of the systemic and splicing code structure

and the distribution of indel error.

Fig. 9. The decoding nucleotide error rate of the DNA-LM code with different numbers of blocks ;. The message length = 180 and DNA
mutation error rate ?8 = ?3 = ?B = ?A . The number of simulation # = 10000.

Finally, we plot the decoding nucleotide error rate versus the DNA mutation error rate for our DNA-LM

code with varied number of blocks (Fig. 9). The decoding error rate increases with the mutation error rate

and decreases with the number of blocks. Recall that the code rate decreases with the number of blocks,

there is a trade-off between the code rate and the nucleotide error rate. Given the total message length

 , we could choose an appropriate number of blocks by considering the expected DNA mutation error

rate, the minimum required code rate and the desired decoding error rate.

VII. CONCLUSION

In this work, we designed a code capable of correcting multiple edit errors for DNA-based storage

systems. Our code, called DNA-LM, is concatenated by a series of single edit correcting code blocks

called DNA-sLM codes. Our DNA-sLM codes are distinctive in that it does not need the received sequence

length as the prerequisite information for decoding. Instead, it could identify the location of the endpoint

of the codeword when there is no more than one edit error in the received sequence. This property enables

26

us to decode the whole DNA strand with multiple blocks iteratively from its leftmost block. Besides, our

DNA-LM code could be encoded and decoded efficiently in linear time. Compared to other edit error

correction designs in DNA storage systems, our DNA-LM code achieved a much lower decoding error

rate with a high code rate of 1.44 bits/nucleotide when encoding a quaternary message of 180 symbols to a

250-nt DNA strand with six blocks. Our DNA-LM code provides a practical multiple edit error correction

schema of DNA strands, which could serve as the inner code for the DNA-based storage systems and

cooperate with the outer codes to achieve a desired overall information retrieval error rate.

ACKNOWLEDGMENT

We would like to thank our colleagues at the Center for Applied Mathematics, Tianjin University: Dr.

Alan J.X. Guo, Dr. Huaming Wu, and Guanjin Qu who helped us a lot. This work is supported by the

National Key R&D Program of China (grant No. 2020YFA0712102) and the National Natural Science

Foundation of China (grant no. 12001401).

REFERENCES

[1] G. Church, Y. Gao, and S. Kosuri, “Next-generation digital information storage in dna,” Science (New York, N.Y.), vol. 337, p. 1628,

08 2012.

[2] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. Leproust, B. Sipos, and E. Birney, “Towards practical, high-capacity, low-maintenance

information storage in synthesized dna,” Nature, vol. 494, 01 2013.

[3] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust chemical preservation of digital information on dna in silica

with error-correcting codes,” Angew Chem Int Ed Engl, vol. 54, no. 8, pp. 2552–2555, 2015.

[4] Y. Erlich and D. Zielinski, “Dna fountain enables a robust and efficient storage architecture,” Science, vol. 355, no. 6328, pp. págs.

950–954, 2017.

[5] L. Organick, S. D. Ang, Y. J. Chen, R. Lopez, S. Yekhanin, K. Makarychev, M. Z. Racz, G. Kamath, P. Gopalan, and B. Nguyen,

“Random access in large-scale dna data storage,” Nature Biotechnology, vol. 36, no. 3, 2018.

[6] I. Shomorony and R. Heckel, “Dna-based storage: Models and fundamental limits,” IEEE Transactions on Information Theory, vol. PP,

p. 1, 2 2021.

[7] S. Shin, R. Heckel, and I. Shomorony, “Capacity of the erasure shuffling channel,” in ICASSP 2020 - 2020 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020.

[8] T. Marie-Ka, B. C. Fidel, G. Nicolas, and N. Benoit, “Illumina library preparation for sequencing the gc-rich fraction of heterogeneous

genomic dna,” Genome Biology Evolution, no. 2, pp. 616–622, 2018.

[9] R. Heckel, G. Mikutis, and R. N. Grass, “A characterization of the dna data storage channel,” Scientific Reports, 2018.

[10] H. Mercier, V. K. Bhargava, and V. Tarokh, “A survey of error-correcting codes for channels with symbol synchronization errors,”

IEEE Communications Surveys and Tutorials, vol. 12, pp. 87–96, 2010.

[11] M. Mitzenmacher, “A survey of results for deletion channels and related synchronization channels,” Probability Surveys, vol. 6, pp.

1–33, 2009.

27

[12] S. B. Wicker and V. K. Bhargava, An Introduction to ReedSolomon Codes. An Introduction to Reed-Solomon Codes, 2009.

[13] S. Chandak, J. Neu, K. Tatwawadi, J. Mardia, and H. Ji, “Overcoming high nanopore basecaller error rates for dna storage via

basecaller-decoder integration and convolutional codes,” 2019.

[14] W. Press, J. Hawkins, S. Jones, J. Schaub, and I. Finkelstein, “Hedges error-correcting code for dna storage corrects indels and allows

sequence constraints,” Proceedings of the National Academy of Sciences, vol. 117, p. 202004821, 7 2020.

[15] J. L. Fan, “Array codes as low-density parity-check codes,” 2000.

[16] R. G. Gallager, Low-density parity-check codes /. Channel Coding Techniques for Wireless Communications, 2015.

[17] J. Chen, M. Mitzenmacher, C. Ng, and N. Varnica, “Concatenated codes for deletion channels,” in IEEE International Symposium on

Information Theory, 2003. Proceedings., 2003.

[18] M. Luby, “Lt-codes,” in Proceedings of the ACM Symposium on Foundations of Computer Science (FOCS), 2002. 08, 2002.

[19] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2551–2567, 2006.

[20] K. Cai, Y. M. Chee, R. Gabrys, H. M. Kiah, and T. T. Nguyen, “Correcting a single indel/edit for dna-based data storage: Linear-time

encoders and order-optimality,” IEEE Transactions on Information Theory, vol. 67, pp. 3438–3451, 6 2021.

[21] N. Sloane, “On single-deletion-correcting codes,” Mathematics, pp. 273–291, 2002.

[22] V. Levenshtein, “Binary codes capable of correcting insertions and reversals,” Sov. Phys. Dokl., vol. 10, 1 1966.

[23] A. Helberg, “Coding for the correction of synchronization errors,” 6 1993.

[24] G. Tenengolts, “Nonbinary codes, correcting single deletion or insertion (corresp.),” Information Theory, IEEE Transactions on, vol. 30,

pp. 766–769, 10 1984.

[25] M. Abroshan, R. Venkataramanan, and A. G. I. Fabregas, “Efficient systematic encoding of non-binary vt codes,” vol. 2018-June.

Institute of Electrical and Electronics Engineers Inc., 8 2018, pp. 91–95.

[26] T. A. Le and H. D. Nguyen, “New multiple insertion/deletion correcting codes for non-binary alphabets,” IEEE Transactions on

Information Theory, vol. 62, pp. 2682–2693, 5 2016.

[27] D. C. H. Tan, “Vt_codes,” https://github.com/shubhamchandak94/VT_codes/.

[28] D. Bar-Lev, T. Etzion, and E. Yaakobi, “On the size of levenshtein balls,” 03 2021.

[29] V. Guruswami and J. Hstad, “Explicit two-deletion codes with redundancy matching the existential bound,” 2020.

[30] S. Jin, R. Gabrys, and J. Bruck, “Optimal systematic t-deletion correcting codes,” in 2020 IEEE International Symposium on Information

Theory (ISIT), 2020.

[31] D. C. H. Tan, “Single edit correcting code,” https://github.com/dtch1997/single-edit-correcting-code.git.

[32] F. F. S. Jr., “Bit loss and gain correction code,” IRE Trans., vol. IT-8, pp. 35–38, 1962. [Online]. Available:

https://doi.org/10.1109/tit.1962.1057684

[33] R. R. Varšamov and G. M. T. c, “A code which corrects single asymmetric errors,” Avtomat. i Telemeh., vol. 26, pp. 288–292, 1965.

[34] K. Abdel-Ghaffar and H. Ferreira, “Systematic encoding of the varshamov-tenengol’ts codes and the constantin-rao codes,” Information

Theory, IEEE Transactions on, vol. 44, pp. 340 – 345, 02 1998.

[35] K. Saowapa, H. Kaneko, and E. Fujiwara, Systematic deletion/insertion error correcting codes with random error correction capability,

12 1999.

[36] H. Ferreira, W. Clarke, A. Helberg, K. Abdel-Ghaffar, and J. Vinck, “Insertion/deletion correction with spectral nulls,” IEEE Transactions

on Information Theory, vol. 43, p. 2, 03 1997.

