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Abstract

Surrogate-assisted multi-objective evolutionary algorithms have advanced the field of computationally expensive optimization,

but their progress is often restricted to low-dimensional problems. This manuscript presents a multiple classifiers-assisted

evolutionary algorithm based on decomposition, which is adapted for high-dimensional expensive problems in terms of the

following two insights. Compared to approximation-based surrogates, the accuracy of classification-based surrogates is robust for

few high-dimensional training samples. Further, multiple local classifiers can hedge the risk of over-fitting issues. Accordingly,

the proposed algorithm builds multiple classifiers with support vector machines on a decomposition-based multi-objective

algorithm, wherein each local classifier is trained for a corresponding scalarization function. Experimental results statistically

confirm that the proposed algorithm is competitive to the state-of-the-art algorithms and computationally efficient as well.
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High-Dimensional Multi-Objective Problems
Takumi Sonoda and Masaya Nakata, Member, IEEE

Abstract—Surrogate-assisted multi-objective evolutionary al-
gorithms have advanced the field of computationally expensive
optimization, but their progress is often restricted to low-
dimensional problems. This manuscript presents a multiple
classifiers-assisted evolutionary algorithm based on decomposi-
tion, which is adapted for high-dimensional expensive problems in
terms of the following two insights. Compared to approximation-
based surrogates, the accuracy of classification-based surrogates
is robust for few high-dimensional training samples. Further,
multiple local classifiers can hedge the risk of over-fitting issues.
Accordingly, the proposed algorithm builds multiple classifiers
with support vector machines on a decomposition-based multi-
objective algorithm, wherein each local classifier is trained for
a corresponding scalarization function. Experimental results
statistically confirm that the proposed algorithm is competitive
to the state-of-the-art algorithms and computationally efficient
as well.

Index Terms—Classification-based surrogate, high-dimensional
multi-objective optimization, surrogate-assisted evolutionary al-
gorithm.

I. INTRODUCTION

IN real-world optimization problems, for example, photonic
waveguide design [1], often expensive multi-objective op-

timization problems (EMOPs) are encountered, wherein the
evaluation of objective functions is computationally expensive
[2]. In recent years, the importance of EMOPs has increased
with the growth of the field of automated machine learning.
For instance, in the case of multi-objective neural architecture
search [3]–[6], the GPU-based evaluation can be computation-
ally and economically expensive. Multi-objective evolutionary
algorithms (MOEAs) are a powerful black box optimizer, but
are not suitable to solve EMOPs under the restriction on the
number of fitness evaluations (FEs) [7].

Surrogate-assisted evolutionary algorithms (SAEAs) [2], [8]
are a representative approach to solve EMOPs. A general
concept of SAEAs is to perform pre-screening to candidate
solutions. Specifically, SAEAs utilize outputs of surrogate
models to estimate high-quality solutions to be evaluated;
and machine learning (ML) techniques are often employed
to build the surrogate models. SAEAs have been proven their
effectiveness in significantly reducing the number of expensive
FEs both on single- and multi-objective optimization problems
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M. Nakata is with Faculty of Engineering, Yokohama National University,
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[2]. Hereinafter, multi-objective SAEAs are denoted as SAEAs
if not stated differently.

During the last decade, various SAEAs have made great
progress in solving complex EMOPs [9], [10]. One of the
main directions is to tackle expensive many-objective op-
timization problems (EMaOPs), wherein more than three
objectives are considered. For instance, K-RVEA [11] and
CSEA [12] have been adapted for EMaOPs beyond early trials
[13]–[15]. Another direction is to reduce the computational
time in building surrogate models [11]. However, a critical
problem difficulty of the number of decision variables has
been considered very recently. A fundamental approach to
high-dimensional EMOPs/EMaOPs is to integrate a dimension
reduction technique into an SAEA framework, aiming to
improve the model accuracy. This approach has been imple-
mented in SA-RVEA-PCA [16] and ADSAPSO [17]. Accord-
ing to [18], a challenge to adapt surrogate models for high-
dimensional EMOPs/EMaOPs was first considered in 2020.
Specifically, EDN-ARMOEA [18] utilizes a computationally
efficient neural network to approximate objective functions.
The effectiveness of EDN-ARMOEA has been confirmed
on EMOPs/EMaOPs with up to 100 decision variables and
20 objectives. With this recent insight as a start, further
explorations are needed to adapt surrogate models for high-
dimensional EMOPs/EMaOPs.

For surrogate models, SAEAs can be roughly classified as
either an approximation-based SAEA or a classification-based
SAEA, which are briefly summarized below (see Section II
for a detailed review).
• An approximation-based SAEA builds surrogate models

that approximate objective functions and/or defined met-
ric functions. For instance, EDN-ARMOEA, SA-RVEA-
PCA, and ADSAPSO belong to this category. Typically,
approximation-based SAEAs possess a rich pre-screening
capacity to estimate high-quality solutions because an
approximation model can rank any candidate solution
with real-valued outputs obtained from its model [19].
However, obtaining a sufficient model accuracy may
be hindered by a limited number of high-dimensional
training samples [16].

• A classification-based SAEA builds surrogate models that
predict a plausible class of a candidate solution. For
instance, CSEA predicts the dominance relationship be-
tween candidate solutions and reference solutions. A clas-
sification model may be robust for few high-dimensional
training samples [12]. However, its screening capacity
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is relatively poor as it returns less informative outputs
compared to approximation models [20].

While the above advantages and disadvantages should depend
on MLs and MOEAs employed, there is a possible tradeoff
between the approximation/classification-based SAEAs.

Thus, the choice of approximation/classification models
can be an important consideration when designing SAEAs
suitable for high-dimensional EMOPs/EMaOPs. This insight
has been partially supported by the observation in [12];
CSEA outperforms approximation-based SAEAs on middle-
scale EMaOPs with up to 30 decision variables. This ob-
servation demonstrates the potential of the classification-
based SAEAs. However, no classification-based SAEAs
have been adapted for high-dimensional EMOPs/EMaOPs,
as ADSAPSO, SA-RVEA-PCA, and EDN-ARMOEA are
approximation-based SAEAs. Moreover, there is no com-
parison of approximation/classification-based SAEAs on
high-dimensional EMOPs/EMaOPs. Consequently, the poten-
tial of the classification-based SAEA on high-dimensional
EMOPs/EMaOPs has remained unclear.

This manuscript presents a novel classification-based SAEA
adapted for high-dimensional EMOPs/EMaOPs. Our strategy
involves utilizing multiple local classifiers as surrogate models,
where each local classifier is trained for a corresponding sub-
problem defined in a decomposition-based MOEA. We employ
Support Vector Machine (SVM) [21] and MOEA/D [22] as a
surrogate model and base optimizer, respectively. Specifically,
our approach, called multiple classifiers-assisted MOEA/D or
MCEA/D, is designed with the following three insights. First,
SVM is robust for high-dimensional classification problems
even with few training samples [23]. Second, the utilization of
multiple local surrogates can be a reasonable strategy to hedge
the problematic over-fitting issue [19]. Third, we enhance the
pre-screening capacity of MCEA/D by ranking candidate solu-
tions with decision scores obtained from SVM-based models.
The contributions of this manuscript are summarized below.

• To the best of our knowledge, two novel attempts
are considered in MCEA/D: the first approach of the
classification-based SAEA adapted for high-dimensional
EMOPs/EMaOPs; and the first combination of multiple
local surrogate models and the classification-based SAEA
for EMOPs/EMaOPs;

• The first comparison of approximation/classification-
based SAEAs on high-dimensional EMOPs/EMaOPs is
conducted with up to 150 decision variables and 11
objectives. Experimental results reveal the potential of
classification-based SAEAs as well as the effectiveness
of MCEA/D.

Note that our preliminary work, that is, MOEA/D-S3 [24],
provided a preliminary insight for local surrogate modeling on
the classification-based SAEA. MOEA/D-S3 trains each local
classifier for a corresponding subproblem, but its pre-screening
capacity is poor as it does not rank offspring solutions. In
addition, it defines the top 50% of solutions in a population
as having a “good” category, making it difficult for a surrogate
model to specialize for a target sub-problem. Consequently, the
effectiveness of MOEA/D-S3 has been restricted on small-

scale problems with up to 17 decision variables and 30000
FEs. MCEA/D inherits the concept of MOEA/D-S3, but it has
been adapted for high-dimensional EMOPs/EMaOPs with up
to 150 decision variables and 300 FEs.

This manuscript is organized as follows. Section II provides
a review of related works, including recent works as an
update of the latest survey [10]. Section III explains the
frameworks of MOEA/D and SVM. Thereafter, the detailed
mechanism of MCEA/D is introduced in Section IV. In
Section V, we conduct experiments on benchmark problems
and present a comparison of MCEA/D with state-of-the-art
SAEAs, for example, EDN-ARMOEA. Section VI provides
analytical results to investigate the computational efficiency
and the sensitivity of MCEA/D to hyper-parameters. Finally,
Section VII summarizes this manuscript with future work.

II. RELATED WORK

This section summarizes related works in terms of the
approximation/classification-based models. Table I summa-
rizes representative SAEA variants with the configuration of
surrogate models and the experimental setting; M , D, FEmax

represent the numbers of objectives, of decision variables,
and of FEs, respectively. For instance, “MCEA/D” denotes
that it builds classification-based models to predict high-
quality solutions considering the scalarization functions; and
its performance is validated on problems with M = {3, 7, 11},
D = {50, 100, 150}, and FEmax = 300. We mainly list
recent works for the category “approximation-based SAEAs
approximating objective functions” because many existing
SAEAs belong to this category and they are summarized in
[2], [9], [10], [39]. In addition, we focus on SAEAs that
utilize surrogate models to predict the quality of solutions. In
addition, other approaches, for instance, dimension reduction
[40]–[42], objective extraction [43], [44], transfer learning
[45], and constraint handling [46]–[49] have been considered
as well.

A. Approximation-based SAEAs

As mentioned in Section I, the approximation-based SAEA
utilizes surrogate models that approximate objective functions
and/or defined metric functions. Efficient Global Optimization
(EGO) [50] has been frequently employed as a search method
with surrogate models.

A general approach in this category is to approximate all
the objective functions with multiple surrogate models. Certain
works demonstrate the effectiveness of the decomposition-
based SAEAs, for example, MOEA/D-EGO [26], where the
Expected Improvement (EI) criteria are frequently used to
select candidate solutions. MOEA/D-EGO builds Kriging
models to estimate values of scalarization functions defined on
the MOEA/D framework. The Expected Improvement Matrix
(EIM) is used in EIM-EGO [28], instead of the EI criteria,
aiming to reduce the computational cost. Further, K-RVEA
utilizes Kriging models on the RVEA framework [51] to boost
the convergence and the diversity of solutions.

Different from the above approach, a defined metric function
is also considered as a target function to be approximated. For
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TABLE I
CLASSIFICATION OF MULTI-OBJECTIVE SAEAS. “ML”, “APPROX./CLASS.”, AND “TARGET” DENOTE EMPLOYED ML TECHNIQUES, THE

APPROXIMATION/CLASSIFICATION-BASED MODELS, AND AN OBJECTIVE TO BE PREDICTED BY SURROGATE MODELS, RESPECTIVELY; M , D, FEmax

REPRESENT THE NUMBERS OF OBJECTIVES, OF DECISION VARIABLES, AND OF FITNESS EVALUATIONS, RESPECTIVELY.

Algorithm Surrogate model Experimental setting
ML Approx./Class. Target M D FEmax

SMS-EGO [15] Kriging Approx. Hypervolume {2, 3, 5} {3, 6} 130
ParEGO [25] Kriging Approx. Scalarization function {2, 3} {2, 3, 6, 8} 250

EDN-ARMOEA [18] ANN Approx. Objective functions {3, 5, 10, 20} {20, 40, 60, 100} 11D+119
MOEA/D-EGO [26] Kriging Approx. Objective functions {2, 3} {2, 6, 8} {200, 300}

K-RVEA [11] Kriging Approx. Objective functions {3, 4, 6, 8, 10} 10 300
AB-MOEA [27] Kriging Approx. Objective functions {2, 3} {7, 10, 12, 22} 300
EIM-EGO [28] Kriging Approx. Objective functions {2, 3, 4, 6} 6 {100, 200}

KTA2 [29] Kriging Approx. Objective functions {3, 4, 6, 8, 10} {9, 10, 11} 300
TIC-SMEA [30] Kriging, RBF Approx. Objective functions {2, 3} {8, 10, 20, 30} 300

SA-RVEA-PCA [16] Kriging, PCA Approx. Objective functions 2 {100, 130, 160} {1000, 1200, 4200}
HSMEA [31] Kriging, RSM, RBF Approx. Objective functions {3, 4, 6, 8, 10} {9, 10, 11} 300

MOEA/D-RBF [32] RBF Approx. Objective functions 2 {10, 30} 3000
ADSAPSO [17] RBF Approx. Objective functions {2, 3} {50, 100, 200} 1000

SAMOEA/SVM [33] SVM Approx. Objective functions 2 {8, 10, 12, 30} {200, 1000, 5000}
HeE-MOEA [34] SVM, RBF, PCA Approx. Objective functions 3 {10, 20, 40, 80} 11D+119

PARETO-SVM [35] SVM Class. Pareto dominance 2 {10, 30} 100000
CSEA [12] FNN Class. Pareto dominance {2–4, 6, 8–10} {9, 10, 11, 20, 30} {300, 600, 900}

CPS-MOEA [36] KNN Class. Pareto dominance {2, 3} 30 {2000, 40000, 100000}
MOEA/D-CPS [37] KNN Class. Pareto dominance {2, 3} 30 {150000, 297500}

MOEA/D-SVM [38] SVM Class. Scalarization function {2, 3} {10, 30} {100000, 300000}
MOEA/D-S3 [24] SVM Class. Scalarization function {4, 6, 8} {13, 15, 17} 30000

MCEA/D SVM Class. Scalarization function {3, 7, 11} {50, 100, 150} 300

instance, ParEGO [25] builds a Kriging model to approximate
a scalarization function converted from a set of objective
functions. It controls a weight vector of the scalarization
function dependent on the current search status to enhance
the diversity of solutions with the single surrogate model.
In SMS-EGO [15], a Kriging model is used to approximate
a hypervolume of when candidate solutions are added to a
population.

An ensemble framework of multiple surrogate models
can be an effective strategy to hedge the over-fitting issue.
MOEA/D-RBF [32] estimates the quality of solutions from
three Radial Basis Function (RBF) networks with different
kernels. Whereas, SAMOEA/SVM [33] is based on an en-
semble approach of SVM-based surrogate models, and it adap-
tively adjust those models with their hyper-parameter settings.
Further, HeE-MOEA [34] and HSMEA [31] utilize multiple
heterogeneous surrogates with different ML techniques. For
instance, in HSMEA, Kriging, Polynomial Response Surface
Method (RSM), and RBF are cooperated to effectively ap-
proximate objective functions. In recent years, certain modern
works have adapted infill criteria to select promising candidate
solutions for exact evaluations. AB-MOEA [27] tunes hyper-
parameters of Angle-Penalized Distance [51] (APD) and ac-
quisition functions, for example, Lower Confidence Bounds
(LCB) [52]. Whereas, KTA2 [29] introduces an adaptive infill
criterion to obtain a plausible strategy to sample solutions to be
evaluated. Similar to KTA2, TIC-SMEA [30] collaboratively
uses two infill criteria regard to convergence and diversity.

For high-dimensional problems, SA-RVEA-PCA [16] builds
a Gaussian process model with Principal Component Analysis
(PCA) to improve the model accuracy for each objective
function. SA-RVEA-PCA has proven its effectiveness on prob-
lems with up to 160 decision variables. Similar to SA-RVEA-
PCA, ADSAPSO [17] extracts important decision variables in
solving problems, performing as a dimension reduction tech-

nique. Further, ADSAPSO derives competitive performances
to the state-of-the-art approximation-based SAEAs, that is,
MOEA/D-EGO and K-RVEA, on problems with up to 200
decision variables. EDN-ARMOEA [18] employs a dropout
artificial neural network (ANN) model [53] to prevent the over-
fitting issue, and it significantly reduces the computational
time on EMOPs/EMaOPs with up to 100 decision variables.

B. Classification-based SAEAs

In multi-objective optimization, objective values may be less
important to be approximated if the dominance relationship is
known [8]. Thus, the dominance relationship is often set to a
target to be predicted by the surrogate models.

CPS-MOEA [36] utilizes a K-Nearest Neighbor (KNN)
model to filter candidate solutions. The KNN model builds
“good” clusters of non-dominated solutions, and offspring
solutions belonging to those clusters are evaluated. MOEA/D-
CPS [37] is based on a similar idea to CPS-MOEA, but
it has been extended to the MOEA/D framework. Further,
CSEA [12] utilizes a feed-forward neural network (FNN)
model to predict the dominance relationship between candi-
date solutions and reference solutions. PARETO-SVM [35]
predicts the dominance relationship through an abnormality
determination scheme. Specifically, it builds a one-class SVM
as a characteristic function that estimates a degree of non-
dominated solution; and then it optimizes the model outputs to
obtain the candidate solutions likely to being non-dominated.
In contrast, MOEA/D-SVM [38] defines classes according to
the value of the scalarization functions.

In decomposition-based SAEAs, a scalarization function
is also set to a target to be predicted by the surrogate
models. In MOEA/D-SVM, a positive class set is composed
of N current best solutions of scalarization functions while
a negative class set is composed of N sub-best solutions.
Subsequently, MOEA/D-SVM builds an SVM model that pre-
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dicts whether candidate solutions exist in a positive region of
the best solutions. Thus, MOEA/D-SVM intends to optimize
all the scalarization functions with a global surrogate model.
However, to the best of our knowledge, no work except for
our preliminary work (MOEA/D-S3) [24] intends to assign a
classification-based model to each sub-problem.

III. PRELIMINARIES

Although many variants of MOEA/D have been proposed
[54], [55], for example, MOEA/D-DRA [56], MOEA/D-ACO
[57], and MOEA/D-MO [58], we use MOEA/D-DE [59] as a
base optimizer of MCEA/D. In addition, we use a nonlinear
SVM, simply denoted as SVM in this manuscript. Accord-
ingly, this section describes the frameworks of MOEA/D-DE
and SVM.

A. MOEA/D-DE

MOEA/D-DE evolves a set of N solutions P = {xi}Ni=1

to approximate a Pareto optimal front on a multi-criteria
optimization problem [60], expressed as;

min F (x) = {f1(x), . . . , fM (x)}
s.t. x ∈ S, (1)

where x ∈ S denotes a decision vector x which belongs to
a feasible region S and F (x) is a set of M objective func-
tions fj and M ≥ 2. This manuscript considers real-valued
optimization problems with x ∈ RD, where D is the number
of decision variables. A fundamental idea of MOEA/D-DE
as well as MOEA/D is to divide a particular problem into
N sub-problems using scalarization functions; and then a
differential evolution algorithm is executed to produce an
offspring solution yi for i-th sub-problem. Specifically, we use
the Tchebycheff function as a scalarization function, where the
i-th scalarization function is expressed as;

g(x|λi, z) = max
1≤j≤M

{
λij |fj(x)− zj |

}
, (2)

where λi = {λi1, ..., λiM} is a weight vector such that λij ≥ 0

and
∑M
j=1 λ

i
j = 1 for all i = 1, . . . , N , and z = {z1, ..., zM}

is a set of reference points determined as the optimal value of
each objective function.

After the definition of N sub-problems, MOEA/D-DE de-
fines an index set of neighbor sub-problems for the i-th
one, denoted by B(i). In particular, B(i) contains T indices
i1, . . . , iT , where λi1 , . . . ,λiT are the T closest weight vectors
to λi. Subsequently, the N initial solutions are generated and
then evaluated. Next, to generate an offspring solution yi for
i-th sub-problem, MOEA/D-DE builds an index set of parent
candidates P , expressed as;

P :=

{
B(i) with probability δ,
{1, ..., N} otherwise, (3)

Thus, parent candidates are set to solutions assigned to
neighbor sub-problems indexed by B(i) with a probability
δ; otherwise, all the N solutions are considered as parent
candidates. Two indices r1 and r2 are randomly selected
from P ; and then two parents xr1 and xr2 are determined.

Algorithm 1 MOEA/D-DE
1: Input: N,T, {λ1, ...,λN}, F, CR, η, pm, nr, δ
2: Output: EP
3: Initialize EP as EP ← ∅;
4: Set B(i) to indices of the T closest weight vectors to λi ∀i ∈
{1, . . . , N};

5: Set P to initial solutions {x1, . . . ,xN};
6: Evaluate ∀x ∈ P;
7: Initialize zj as zj ← minx∈P fj(x) ∀j ∈ {1, . . . ,M};
8: while termination criteria are not met do
9: for i = 1 to N do

10: Set P with (3);
11: Generate yi with P ;
12: Evaluate yi;
13: Update zj ← min{zj , fj(yi)} ∀j ∈ {1, . . . ,M};
14: Randomly shuffle indices of P ;
15: count← 0;
16: for each j ∈ P do
17: if g(yi | λj ,z) ≤ g(xj | λj ,z) and count < nr then
18: xj ← yi;
19: count← count+ 1;
20: end if
21: end for
22: Remove from EP all the solutions dominated by yi;
23: Add yi to EP if yi is the Pareto solution in EP ;
24: end for
25: end while

Subsequently, the offspring solution yi is generated through
crossover and mutation operators. As a crossover operator, a
k-th decision variable of yi, that is, yik, is determined with xi,
xr1 , and xr2 as;

yik =

{
xik + F × (xr1k − x

r2
k ) with probability CR,

xik otherwise, (4)

where F and CR are scaling factor and crossover rate,
respectively. Next, yik is further updated with the polynomial
mutation as;

yik ←
{
yik + σk × (bk − ak) with probability pm,
yik otherwise, (5)

where pm is a mutation probability; ak and bk are the
lower/upper bounds of the k-th decision variable, that is,
yik ∈ [ak, bk]. σk is further expressed as;

σk =

{
(2r)1/(η+1) − 1 if r < 0.5,
1− (2− 2r)1/(η+1) otherwise,

(6)

where η is a distribution index of polynomial mutation and r ∈
[0, 1] is a uniformly-sampled random value. After completing
the calculation of yik for all k = 1, . . . , D, yi is evaluated with
the objective functions. Next, existing solutions xk ∀k ∈ P
may be replaced with yi if g(yi|λk, z) ≤ g(xk|λk, z). In
addition, the number of replacements of yi is restricted to nr;
if there are more than nr solutions worse than yi, nr ones are
randomly selected to be replaced with yi. These processes are
repeated for all the N sub-problems. Algorithm 1 describes the
procedures of MOEA/D-DE. Note that an external archive EP
is used to store Pareto solutions obtained.

B. SVM
For a particular binary classification problem, where an

input x ∈ RD is classified as a defined class c ∈ {+1,−1},
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SVM builds a classifier as a decision function c(x), expressed
as;

c(x) = sgn
(
wTφ(x) + w0

)
, (7)

where φ(x) is a mapping function from the input space X
to a high-dimensional feature space F , and the weight vector
w ∈ RD and bias w0 ∈ R are the parameters to be optimized.
Note that a sign function sgn(x) for x ∈ R returns +1, 0 and
−1 for x > 1, x = 0, and x < 1, respectively. For a particular
training dataset D consisting of |D| samples (xi, ci), SVM
solves the following optimization problem;

min
w,w0,ξ

1

2
||w||2 + C

|D|∑
i=1

ξi

s.t. ci(w
Tφ(x) + w0) ≥ 1− ξi, ξi ≥ 0,

(8)

where ξi is a slack variable; and a hyper-parameter C controls
the balance between the margin and empirical loss. Here, the
problem of (8) can be further simplified using the Lagrangian
and the KKT (Karush-Kuhn-Tucker) condition [61], expressed
as;

max

|D|∑
i=1

ai −
1

2

|D|∑
i,j=1

aiajcicjφ(xi)
Tφ(xj)

s.t.
|D|∑
i=1

aici = 0, 0 ≤ ai ≤ C,

(9)

where {ai}|D|i=1 is a set of the Lagrange multiplier. To
avoid an expensive calculation of the inner products in (9),
φ(xi)

Tφ(xj) is replaced with a kernel function K(xi,xj).
Then, (9) with K(xi,xj) can be optimized for {ai}|D|i=1 by for
example, the steepest descent method. Let {a∗i }

|D|
i=1 be a set

of solution of the problem (9). Then, (7), that is, the decision
function, can be written as;

c(x) = sgn

 |D|∑
i=1

a∗i ciK(xi,x) + w∗0

 , (10)

where w∗0 = ci+x
T
i w
∗ and w∗ =

∑|D|
i=1 a

∗
i cixi. In this study,

we use the Radial Basis Function (RBF) kernel, expressed as;

K(xi,x) = exp (−γ||xi − x||) (11)

where γ > 0 controls the complexity of the decision boundary.

IV. MCEA/D
This section begins by introducing a detailed characteristic

of MCEA/D, and subsequently its algorithm is described.

A. Characteristic

MCEA/D is motivated to obtain reliable models by build-
ing local SVM-based models and to boost its pre-screening
capacity while saving the computational time. Detailed char-
acteristics are summarized below.
• Hedge of the over-fitting issue. The following two strate-

gies are employed in MCEA/D to improve the model ac-
curacy on the high-dimensional EMOPs/EMaOPs. First,

a surrogate model is assigned to each sub-problem; and
each model is used to generate a solution yi for the i-
th sub-problem to prevent a propagation of the negative
impact of an over-fitted model to the whole working
of MCEA/D. Second, in building a dataset for the i-
th sub-problem, the current best solutions of neighbor
sub-problems are defined as having a positive class (i.e.,
a “good” category). This is to design “easy-to-learn”
correlations between samples having the positive class
under an assumption of MOEA/D that optimal solutions
of neighbor sub-problems exist in similar region.

• Boosting computational efficiency and pre-screening ca-
pacity. A straightforward approach to utilize the SVM
classifiers is to repeatedly generate a candidate solution
till it is predicted as having the positive class. However,
this loop increases the computational time. Thus, we
define the maximum repeat time to save the compu-
tational time. Further, as a backup strategy, we select
the candidate solution closest to a decision boundary by
ranking candidates with decision values obtained from the
SVM model if there is no candidate solution predicted
as the positive class. This backup strategy contributes
to improving the pre-screening capacity of MCEA/D, as
it can rank solutions such as the approximation-based
SAEAs.

B. Algorithm

To begin with, we use the following mathematical notations;

A an archive set consisting of all evaluated solutions x ∈
RD with their objective values {f1(x), . . . , fM (x)};

Di a dataset consisting of training samples (xij , c
i
j) de-

signed for i-th sub-problem;
Ci a set of current best solutions of sub-problems for the

i-th sub-problem;
Yi a set of candidate solutions of offspring yi for i-th

sub-problem;
c∗i (x) a decision function for i-th sub-problem, referred to

as an SVM classifier, where Lagrange multipliers
{ai∗j }

|Di|
j=1 have been optimized for Di;

d∗i (x) a decision score function determined with {ai∗j }
|Di|
j=1;

Rmax the maximum repeat time to control the number of
candidate solutions, that is, |Yi|.

Other notations used in this section are inherited from the
previous section.

MCEA/D performs in an almost similar manner as in
MOEA/D-DE except for the solution generation process. Al-
gorithm 2 describes the whole procedure of MCEA/D, where
new procedures are highlighted with underline. At line 8, N
initial solutions with their objective values are inserted to
the archive set A. For each sub-problem, MCEA/D builds
a decision function c∗i (x) and then it generates an offspring
solution yi by utilizing c∗i (x), which are denoted by Model-
construction at line 11 and Solution-generation at line 13, re-
spectively. Subsequently, yi is inserted to A. Three additional
hyper-parameters C, γ, and Rmax are required in MCEA/D.
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Algorithm 2 MCEA/D
1: Input: N,T, {λ1, ...,λN}, F, CR, η, pm, nr, δ, γ, C,Rmax

2: Output: EP
3: Initialize EP as EP ← ∅;
4: Set B(i) to indices of the T closest weight vectors to λi ∀i ∈
{1, . . . , N};

5: Set P to initial solutions {x1, . . . ,xN};
6: Evaluate ∀x ∈ P;
7: Initialize zj as zj ← minx∈P fj(x) ∀j ∈ {1, . . . ,M};
8: Initialize A as A ← P;
9: while termination criteria are not met do

10: for i = 1 to N do
11: Build surrogate as c∗i (x)← Model-Construction(A,λi)

12: Set P with (3);
13: Generate yi as yi ←Solution-generation(P,P , c∗i (x));

14: Evaluate yi;
15: Update zj ← min{zj , fj(yi)} ∀j ∈ {1, . . . ,M};
16: Randomly shuffle indices of P ;
17: count← 0;
18: for each j ∈ P do
19: if g(yi | λj ,z) ≤ g(xj | λj ,z) and count < nr then
20: xj ← yi;
21: count← count+ 1;
22: end if
23: end for
24: Update A as A ∪ {yi};
25: Remove from EP all the solutions dominated by yi;
26: Add yi to EP if yi is the Pareto solution in EP ;
27: end for
28: end while

Strictly formalizing the computational complexity of
MCEA/D is difficult due to the complexity of the SVM learn-
ing mechanism. Specifically, the computational complexity for
building an SVM model, denoted by OSVM, can be at least
O(|D|2) when C is small and O(|D|3) when C is large
[62], [63]. Thus, it is difficult to identify a strict value of
OSVM. However, because we set C = 1 as a small value
(see Section V), we can expect that OSVM is sufficiently
smaller than O(|D|3). Then, MCEA/D builds N SVM models
and thus, O(NOSVM) is required to build surrogate models.
Further, the computational complexity for building a Gaussian
process (GP) model is O(|D|3). Then, if N is usually smaller
than |D| and OSVM � O(|D|3), MCEA/D should perform
faster than GP-based SAEAs, for example, MOEA/D-EGO.
The computational time of MCEA/D is evaluated in Section
VI.

The rest of this section explains the detailed procedure of
Model-construction and Solution-generation.

1) Model construction: For i-th sub-problem, MCEA/D
builds a dataset Di. All the solutions contained in A are used
for training inputs, and thus Di = {(xij , cij)}

|A|
j=1; and the class

cij of xij is determined as;

cij =

{
+1 if xij ∈ Ci
−1 otherwise,

(12)

Algorithm 3 Model construction
1: Di, Ci ← ∅, ∅
2: for each k ∈ B(i) do
3: x∗k ← arg minx∈A∧x/∈Ci) g(x | λ

k,z)
4: Ci ← Ci ∪ {x∗k}
5: end for
6: for each x ∈ A do
7: if x ∈ Ci then
8: Di ← Di ∪ {(x,+1)}
9: else

10: Di ← Di ∪ {(x,−1)}
11: end if
12: end for
13: c∗i (x)← build the decision function trained with Di

14: return c∗i (x)

where Ci is a set of current best solutions of neighbor sub-
problems indexed by B(i), that is;

Ci =
{
x ∈ A | arg min

x∈A
g(x|λk, z),∀k ∈ B(i)

}
, (13)

Thus, T current best solutions xi∗k are contained because
|B(i)| = T , that is, Ci = {xi∗1 , . . . ,xi∗T }. Accordingly, Di is
designed such that c∗i (x) captures a good region, which may be
improving g(x|λi, z) together with its neighbor scalarization
functions. In addition, each c∗i (x) may be similar to but
still different from ones built for neighbor sub-problems.
Accordingly, each sub-problem is conservatively explored with
different surrogate models.

As an exceptional case, few of the neighbor sub-problems
may share the same solution. This results in decreasing the
number of positive samples (having c = +1), making it
difficult for SVM to improve the generalization capacity.
In this case, we add the sub-best solution to Ci to avoid
duplicative selection. Technically, we insert a selected solution
xi∗k to Ci sequentially with the order of k = 1, . . . , T , where
xi∗k /∈ Ci is selected from A for k > 1. With this exception
handling, it is guaranteed that Di always includes T positive
samples. Correspondingly, a ratio of the positive class involved
in Di is restricted to a small value T/|A|; the increase of
counter-examples, that is, negative samples (having c = −1)
is helpful to build a surrogate model specialized for a targeted
sub-problem.

Finally, given hyper-parameters C and γ, MCEA/D builds
a decision function c∗i (x) with {ai∗j }

|Di|
j=1 optimized for Di,

where the problem of (9) is solved by the Sequential Minimal
Optimization algorithm [64]. Algorithm 3 describes the com-
plete procedure of the model construction, where the exception
handling aforementioned is implemented at line 2-5.

2) Solution generation: Given c∗i (x), MCEA/D repeats to
generate a candidate solution ŷi, where the maximum repeat
time is bounded by Rmax. First, the set of candidate solutions
Yi is set to an empty set ∅. Thereafter, MCEA/D generates ŷi

via the same procedure as in the MOEA/D-DE framework. If
c∗i (ŷ

i) = +1, yi is immediately set to ŷi, and the solution
generation process is terminated; otherwise, ŷi is inserted to
Yi and ŷi is re-produced.

If there is no candidate solution predicted as having the
positive class, that is, |Yi| = Rmax, yi is set to the candidate
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Algorithm 4 Solution generation
1: Yi ← ∅
2: for r = 0 to Rmax do
3: ŷi ← generate a candidate as in MOEA/D-DE
4: if c∗i (ŷi) = +1 then
5: yi ← ŷi

6: return yi

7: else
8: Yi ← Yi ∪ {ŷi}
9: end if

10: end for
11: yi ← arg maxŷi∈Yi d

∗
i (ŷ

i)

12: return yi

solution closest to a decision boundary drawn by c∗i (x).
Specifically, the argument value of sgn()̇ of (10), denoted as
a decision score function d∗i (x), can be a metric to quantify
the distance between x and the decision boundary. From (10),
with {ai∗j }

|Di|
j=1 of c∗i (x) and Di, d∗i (x) can be defined as;

d∗i (x) =

|Di|∑
j=1

ai∗j c
i
jK(xij ,x) + w∗0 , (14)

where d∗i (x) > 0 for c = +1 and d∗i (x) < 0 for c = −1.
Under the condition of d∗i (ŷ

i) < 0 ∀ŷi ∈ Yi, we can identify
ŷi having the maximum value of d∗i (ŷ

i) as one closest to the
decision boundary, that is, a region of the positive class. Thus,
yi can be determined as;

yi = arg max
ŷi∈Yi

d∗i (ŷ
i) if |Yi| = Rmax. (15)

The condition |Yi| = Rmax is equal to d∗i (ŷ
i) < 0 ∀ŷi ∈ Yi.

This procedure plays a role to rank the candidate solutions.
Note that MCEA/D does not rank candidate solutions having
the positive class to save the computational time. Algorithm 4
summarizes the above procedures.

V. EXPERIMENT

This section evaluates the performance of MCEA/D on well-
known benchmark problems, i.e., the DTLZ problems [65] and
the WFG problems [66]. All experiments are conducted on the
Evolutionary multi-objective optimization platform (PlatEMO)
[67] with 3.0 GHz CPU and 16GB RAM.

A. Experimental setting

1) Problem settings: We employ seven DTLZ (DTLZ1–7)
and nine WFG (WFG1–9) problems, where the numbers of
objective functions and of decision variables are set to M =
{3, 7, 11} and D = {50, 100, 150}, respectively. Further, for
the WFG problems, the numbers of position variables and of
distance variables are set to k = M − 1 and l = D − k,
respectively [66].

2) Comparison algorithms: The following six algorithms
are compared: for approximation-based SAEAs, K-RVEA,
MOEA/D-EGO, and EDN-ARMOEA; for classification-based
SAEAs, CSEA, CPS-MOEA, and MCEA/D. Hyper-parameter
settings for each algorithm are summarized below.

• for K-RVEA, the penalty control parameter α = 2, the
frequency of reference vector adaptation fr = 0.1, |u| =
5, δ = 0.05N , and wmax = 5 for parameters to manage
Kriging models;

• for MOEA/D-EGO, the number of FEs at each generation
KE = 5, L1 = 80, L2 = 20 for parameters to manage
Kriging models, and T = d0.1Ne, δ = 0.9, and nr = 2
for parameters of MOEA/D-DE [26];

• for EDN-ARMOEA, a diversity threshold parameter δ =
0.08, the maximum number of generations for AR-
MOEA iter = 20, the number of FEs at each generation
k = 5; for ANN parameters, J = K = 40, wd = 10−5,
lr = 0.01, itertrain = 80000, itertest = 100, iterr =
8000, pI = 0.8, and pR = 0.5 [18];

• for CSEA, the number of hidden neurons of FNN H =
10, the number of reference solutions K = 6 [12], and
the number of iterations for each learning is 800 [31];

• for CPS-MOEA, the number of offspring is 5 [36];
• and for MCEA/D, Rmax = 10, γ = 1.0, C = 1.0, and

the parameter settings of MOEA/D-DE are the same as
in MOEA/D-EGO.

K-RVEA, EDN-ARMOEA, and CSEA use the simulated bi-
nary crossover, wherein the distribution index of crossover dc
and the crossover probability pc are set to 20 and 1.0, respec-
tively. Whereas, MOEA/D-EGO, CPS-MOEA, and MCEA/D
use the differential evolution as a crossover operator with
F = 0.5 and CR = 1.0. All the methods use the polynomial
mutation with η = 20 and pm = 1/D.

For the number of initial training samples, we slightly
modified a popular setting used in modern works. Specifi-
cally, modern SAEAs, for example, K-RVEA, MOEA/D-EGO,
EDN-ARMOEA, and CSEA, are designed to generate 11D−1
initial training samples. This strategy can be employed to
improve the initial accuracy of surrogate models if a suffi-
cient number of evaluated solutions is available in advance.
Otherwise, it consumes a non-negligible number of FEs on
high-dimensional EMOPs/EMaOPs. Moreover, as it is hard to
argue a universal setup guide for the number of initial training
inputs, SAEAs robustness for the initial model accuracy can
be useful in practice. Thus, in this manuscript, all the six
algorithms are designed to generate N initial training samples
corresponding to initial solutions. Further, we increase N to
100 although N = 50 is frequently used in modern works,
for example, [12], [18]. These settings with regard to the
initial training samples and N are also employed in [29].
Specifically, for EDN-ARMOEA, CSEA, and CPS-MOEA,
N = 100 is employed. Moreover, for decomposition-based
SAEAs, that is, K-RVEA, MOEA/D-EGO, and MCEA/D, we
determine N close to 100 with the two-layered approach [68]
to obtain uniformly-distributed weight vectors. Specifically, we
set N = {91, 91, 77} for M = {3, 7, 11} with (H1, H2) =
{(12, 0), (3, 1), (2, 1)}. For all the algorithms, initial solutions
are generated with the Latin hypercube sampling method [69].
Note that in Section VI-B we reconduct experiments with
N = 50 to analyze the sensitivity of MCEA/D.

3) Evaluation scheme: The Inverted Generational Distance
(IGD) [70] is employed as a performance metric. The max-
imum number of FEs is set to 300 including the N FEs



8

consumed at the initialization process. Specifically, all the
algorithms store all the evaluated solutions in an external
archive during the run; each algorithm is forcefully terminated
if the number of FEs reaches 300. For fair comparison,
the IGD value is calculated from a set of Pareto solutions
determined from all the 300 evaluated solutions in the external
archive.

The IGD values are reported as an average value of
21 trials with different random seeds. In accordance with
a manner of statistical comparison conducted in modern
works, the Wilcoxon rank-sum test is applied to each pair
of MCEA/D and a compared algorithm. This statistical test
confirms whether MCEA/D is significantly better, worse, or
competitive for the compared algorithms for each problem.
Moreover, we further apply a multiple test to statistically
confirm the effectiveness of the algorithms for overall results.
The Friedman test was applied to the overall IGD values. If
the significant probability was sufficiently small, we applied
the Holm test with the Wilcoxon signed-rank test as a post-
hoc method to calculate the significant probability for each
pair of the algorithms. We consider that there is a significant
difference if the significant probability is less than 0.05.

B. Results

Table II summarizes averaged IGD values on the DTLZ
problems with M = {3, 7, 11} and D = {50, 100, 150}. The
best IGD value is highlighted in color. In this table, statistical
results of the Wilcoxon rank-sum test are summarized with
symbols wherein “+”, “−”, and “≈” denote that the IGD
value of an alternative algorithm is significantly better, worse,
and competitive compared to that obtained by MCEA/D,
respectively. Note that MOEA/D-EGO failed to solve DTLZ4
with D = {100, 150} because Kriging models fail to handle
high-dimensional inputs. This observation is also reported in
[17]. Fig. 1 shows the average ranks obtained from IGD values
in Table II and the statistical results of the multiple test on the
DTLZ problems. In the figure, each line indicates a pair of
two algorithms confirmed as having the significant difference
via the multiple test. Further, for D = {100, 150}, the average
ranks are calculated from the IGD values except for ones on
DTLZ4.

As shown in Table II, MCEA/D derives the best IGD value
for all the experimental cases except for DTLZ7; MCEA/D
is ranked first (see Fig. 1). From results of the Wilcoxon
rank-sum test, the IGD values of MCEA/D are significantly
better than all the alternative algorithms on more than 13
experimental cases, as summarized in Table II. When we
consider the overall results for each D, MCEA/D can be
identified as the best algorithm that is significantly better than
all the five alternative algorithms.

Table III and Fig. 2 report averaged IGD values and statis-
tical results of the multiple test on the WFG problems, re-
spectively. For D = 50, while EDN-ARMOEA and MCEA/D
are respectively ranked first and second, there is no clear
difference in terms of “+/−/≈” and the multiple test result.
When D is further increased to 100 and 150, MCEA/D
is ranked first; the number of “−” slightly increases for

EDN-ARMOEA, and it clearly increases for the other four
algorithms. Although the effectiveness of MCEA/D is not
fully supported by the multiple test results, the performance
of MCEA/D tends to improve with the increase of the number
of decision variables D.

In addition, the classification-based SAEAs tend to derive
better performances than the approximation-based SAEAs
except for EDN-ARMOEA on high-dimensional problems.
Thus, classification-based surrogate models may be a reason-
able choice for improving the scalability of SAEAs against
the number of decision variables. Apart from this tendency,
EDN-ARMOEA successfully boosts the performance. Hence,
as motivated in EDN-ARMOEA, building computationally-
efficient approximation models is another reasonable strategy.

VI. ANALYSIS

This section further provides analytical results to investigate
the computational efficiency and the sensitivity of MCEA/D
for the hyper-parameters N and Rmax.

A. Computational time

We compare computational time of all the six algorithms,
which are obtained from the experimental results presented
in Tables II and III. Table IV presents the averaged com-
putational time [sec] consumed to complete one trial for
D = {50, 100, 150}. For D = {100, 150}, the averaged
computational time is calculated from all experimental results
shown in Tables II and III except for ones on DTLZ4. From
the table, it is evident that CPS-MOEA performs much faster,
as it builds a computationally efficient KNN model. MCEA/D
is ranked second, which consumes up to 4.882 seconds at
least one order of magnitude smaller than the other algorithms
except for CPS-MOEA. As a general trend, the approximation-
based SAEAs tend to consume the computational time more
than the classification-based SAEAs. The computational time
of CPS-MOEA and MCEA/D is less dependent on the increase
of D since the computational complexity of their surrogate
models mainly depend on the number of training samples.
Although MCEA/D builds N surrogate models, it performs
sufficiently faster.

B. Impact of Population size

As discussed in Section V, robustness of the SAEA per-
formance to the initial model accuracy can be an important
consideration when designing practical SAEAs. Accordingly,
we conducted additional experiments with N = 50, aiming
to analyze the sensitivity of MCEA/D to the initial model
accuracy. For EDN-ARMOEA, CSEA, and CPS-MOEA, N =
50 is employed. Whereas, for K-RVEA, MOEA/D-EGO, and
MCEA/D, we set N = {45, 56, 66} for M = {3, 7, 11} with
(H1, H2) = {(8, 0), (2, 2), (2, 0)}. Compared with N = 100,
N = 50 can increase the frequency of the evolutionary
propagation of solutions, which is expected to improve the
convergence of the solutions towards the Pareto optimal front;
however, this setting decreases initial training samples and thus
it may hinder boosting of the initial model accuracy.
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TABLE II
AVERAGE IGD VALUES ON DTLZ PROBLEMS. THE BEST IGD VALUE IS HIGHLIGHTED.

(a) D = 50

Prob. M EDN-ARMOEA K-RVEA MOEA/D-EGO CPS-MOEA CSEA MCEA/D
3 1.157e+03− 1.167e+03− 1.132e+03− 9.706e+02− 9.360e+02− 7.393e+02

DTLZ1 7 8.184e+02− 8.698e+02− 8.048e+02− 7.358e+02≈ 6.292e+02 + 6.963e+02
11 6.528e+02− 7.312e+02− 7.291e+02− 6.709e+02− 5.770e+02≈ 5.361e+02
3 2.918e+00− 2.573e+00− 2.448e+00− 2.029e+00− 1.954e+00− 6.789e-01

DTLZ2 7 2.881e+00− 2.767e+00− 2.758e+00− 2.281e+00− 2.133e+00− 1.224e+00
11 2.783e+00− 2.525e+00− 2.591e+00− 2.356e+00− 2.081e+00− 1.442e+00
3 3.847e+03− 3.546e+03− 3.094e+03− 3.070e+03− 2.886e+03− 1.738e+03

DTLZ3 7 3.438e+03− 3.243e+03− 2.126e+03− 2.711e+03− 2.687e+03− 1.540e+03
11 3.027e+03− 3.032e+03− 1.866e+03≈ 2.362e+03− 2.221e+03− 1.561e+03
3 2.899e+00− 3.294e+00− 2.826e+00− 2.396e+00− 1.892e+00− 1.075e+00

DTLZ4 7 3.268e+00− 3.339e+00− 2.772e+00− 2.563e+00− 2.028e+00− 1.297e+00
11 3.081e+00− 3.060e+00− 2.502e+00− 2.602e+00− 2.035e+00− 1.333e+00
3 2.770e+00− 2.490e+00− 2.266e+00− 1.924e+00− 1.845e+00− 5.485e-01

DTLZ5 7 2.561e+00− 2.517e+00− 2.255e+00− 1.898e+00− 1.842e+00− 6.087e-01
11 2.304e+00− 2.102e+00− 1.986e+00− 1.798e+00− 1.582e+00− 6.853e-01
3 4.050e+01− 4.041e+01− 2.750e+01≈ 3.364e+01− 4.073e+01− 2.505e+01

DTLZ6 7 3.730e+01− 3.714e+01− 2.332e+01≈ 3.119e+01− 3.792e+01− 2.407e+01
11 3.376e+01− 3.375e+01− 2.272e+01≈ 2.791e+01− 3.403e+01− 2.128e+01
3 4.842e+00 + 8.852e+00≈ 9.040e+00≈ 9.214e+00≈ 6.653e+00 + 9.017e+00

DTLZ7 7 1.093e+01 + 2.029e+01≈ 2.088e+01≈ 2.285e+01− 2.353e+01− 2.123e+01
11 1.772e+01 + 2.642e+01 + 3.404e+01≈ 3.596e+01− 3.812e+01− 3.199e+01

+/− / ≈ 3/18/0 1/18/2 0/14/7 0/19/2 2/18/1 -

(b) D = 100

Prob. M EDN-ARMOEA K-RVEA MOEA/D-EGO CPS-MOEA CSEA MCEA/D
3 2.598e+03− 2.748e+03− 2.775e+03− 2.235e+03− 2.263e+03− 1.705e+03

DTLZ1 7 1.881e+03− 2.069e+03− 2.028e+03− 1.733e+03− 1.751e+03− 1.577e+03
11 1.600e+03− 1.925e+03− 1.893e+03− 1.604e+03− 1.605e+03− 1.394e+03
3 6.496e+00− 6.422e+00− 6.406e+00− 4.194e+00− 5.094e+00− 1.095e+00

DTLZ2 7 6.430e+00− 6.537e+00− 6.518e+00− 4.467e+00− 5.446e+00− 1.912e+00
11 6.245e+00− 6.324e+00− 6.418e+00− 4.599e+00− 5.339e+00− 2.075e+00
3 8.405e+03− 8.779e+03− 8.185e+03− 6.912e+03− 7.065e+03− 3.790e+03

DTLZ3 7 8.145e+03− 8.338e+03− 7.303e+03− 6.581e+03− 7.176e+03− 3.910e+03
11 7.630e+03− 7.848e+03− 7.254e+03− 6.305e+03− 6.664e+03− 3.889e+03
3 6.602e+00− 6.863e+00− - 4.824e+00− 4.826e+00− 1.328e+00

DTLZ4 7 6.727e+00− 6.865e+00− - 4.968e+00− 5.063e+00− 1.517e+00
11 6.549e+00− 6.604e+00− - 4.680e+00− 4.833e+00− 1.470e+00
3 6.422e+00− 6.358e+00− 6.345e+00− 4.257e+00− 4.850e+00− 1.023e+00

DTLZ5 7 6.140e+00− 6.219e+00− 6.182e+00− 4.182e+00− 4.931e+00− 1.333e+00
11 5.869e+00− 5.868e+00− 5.900e+00− 4.144e+00− 4.681e+00− 1.529e+00
3 8.448e+01− 8.679e+01− 7.212e+01− 7.123e+01− 8.593e+01− 5.429e+01

DTLZ6 7 8.116e+01− 8.303e+01− 7.747e+01− 6.924e+01− 8.262e+01− 5.440e+01
11 7.784e+01− 7.961e+01− 6.908e+01− 6.537e+01− 7.907e+01− 5.093e+01
3 6.547e+00 + 1.066e+01− 1.051e+01− 9.933e+00≈ 7.525e+00 + 9.991e+00

DTLZ7 7 1.718e+01 + 2.566e+01− 2.578e+01− 2.533e+01− 2.562e+01− 2.374e+01
11 2.866e+01 + 4.196e+01− 4.020e+01− 4.029e+01− 4.197e+01− 3.844e+01

+/− / ≈ 3/18/0 0/21/0 0/18/0 0/20/1 1/20/0 -

(c) D = 150

Prob. M EDN-ARMOEA K-RVEA MOEA/D-EGO CPS-MOEA CSEA MCEA/D
3 4.130e+03− 4.302e+03− 4.343e+03− 3.527e+03− 3.618e+03− 2.636e+03

DTLZ1 7 2.911e+03− 3.231e+03− 3.198e+03− 2.711e+03− 2.915e+03− 2.376e+03
11 2.602e+03− 3.175e+03− 3.107e+03− 2.554e+03− 2.791e+03− 2.246e+03
3 1.026e+01− 1.026e+01− 1.031e+01− 6.504e+00− 8.276e+00− 1.489e+00

DTLZ2 7 1.017e+01− 1.031e+01− 1.022e+01− 7.265e+00− 8.898e+00− 2.647e+00
11 1.000e+01− 1.015e+01− 1.023e+01− 7.340e+00− 8.512e+00− 2.984e+00
3 1.348e+04− 1.382e+04− 1.304e+04− 1.078e+04− 1.172e+04− 6.303e+03

DTLZ3 7 1.289e+04− 1.336e+04− 1.244e+04− 1.049e+04− 1.175e+04− 6.114e+03
11 1.268e+04− 1.300e+04− 1.249e+04− 1.026e+04− 1.136e+04− 5.895e+03
3 1.024e+01− 1.064e+01− - 6.954e+00− 7.720e+00− 1.556e+00

DTLZ4 7 1.053e+01− 1.060e+01− - 6.922e+00− 8.352e+00− 1.751e+00
11 1.032e+01− 1.038e+01− - 7.419e+00− 7.987e+00− 1.637e+00
3 1.015e+01− 1.027e+01− 1.018e+01− 6.738e+00− 8.380e+00− 1.536e+00

DTLZ5 7 9.914e+00− 9.982e+00− 1.005e+01− 6.391e+00− 8.636e+00− 2.149e+00
11 9.615e+00− 9.610e+00− 9.602e+00− 6.140e+00− 8.398e+00− 2.441e+00
3 1.293e+02− 1.318e+02− 1.189e+02− 1.094e+02− 1.307e+02− 8.780e+01

DTLZ6 7 1.254e+02− 1.280e+02− 1.229e+02− 1.073e+02− 1.271e+02− 8.293e+01
11 1.221e+02− 1.244e+02− 1.179e+02− 1.047e+02− 1.238e+02− 8.175e+01
3 7.739e+00 + 1.089e+01− 1.077e+01− 1.058e+01≈ 8.342e+00 + 1.042e+01

DTLZ7 7 2.072e+01 + 2.649e+01− 2.632e+01− 2.598e+01− 2.665e+01− 2.531e+01
11 3.354e+01 + 4.300e+01− 4.215e+01− 4.154e+01− 4.264e+01− 3.994e+01

+/− / ≈ 3/18/0 0/21/0 0/18/0 0/20/1 1/20/0 -
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Fig. 1. Average ranks and the multiple
test results on DTLZ problems.
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TABLE III
AVERAGE IGD VALUES ON WFG PROBLEMS. THE BEST IGD VALUE IS HIGHLIGHTED.

(a) D = 50

Prob. M EDN-ARMOEA K-RVEA MOEA/D-EGO CPS-MOEA CSEA MCEA/D
3 2.118e+00 + 2.360e+00− 2.079e+00 + 2.290e+00≈ 1.752e+00 + 2.283e+00

WFG1 7 2.818e+00 + 2.981e+00≈ 2.868e+00 + 2.972e+00 + 2.768e+00 + 3.005e+00
11 3.506e+00 + 3.636e+00≈ 3.610e+00 + 3.634e+00≈ 3.572e+00 + 3.659e+00
3 8.535e-01− 1.011e+00− 8.761e-01− 8.716e-01− 6.801e-01 + 7.214e-01

WFG2 7 1.793e+00 + 3.005e+00− 2.563e+00− 2.039e+00≈ 2.152e+00≈ 2.181e+00
11 3.106e+00 + 4.819e+00≈ 4.655e+00≈ 3.645e+00 + 4.773e+00≈ 4.261e+00
3 7.971e-01− 7.772e-01− 7.766e-01− 7.985e-01− 7.511e-01− 5.811e-01

WFG3 7 1.421e+00− 1.400e+00− 1.443e+00− 1.402e+00− 1.323e+00− 1.062e+00
11 1.947e+00− 1.958e+00− 1.978e+00− 1.900e+00− 1.813e+00− 1.357e+00
3 5.688e-01− 5.653e-01≈ 6.318e-01− 6.089e-01− 5.353e-01≈ 5.434e-01

WFG4 7 3.354e+00≈ 2.950e+00 + 4.699e+00− 3.590e+00≈ 4.583e+00− 3.534e+00
11 8.869e+00≈ 7.892e+00 + 1.127e+01− 8.946e+00≈ 1.165e+01− 8.958e+00
3 7.332e-01− 7.446e-01− 7.467e-01− 6.848e-01− 7.372e-01− 6.184e-01

WFG5 7 3.097e+00 + 2.798e+00 + 3.910e+00− 3.455e+00− 3.635e+00− 3.322e+00
11 8.329e+00≈ 6.240e+00 + 9.580e+00− 8.724e+00− 9.160e+00− 8.317e+00
3 9.456e-01− 9.270e-01− 9.932e-01− 9.727e-01− 9.038e-01− 8.410e-01

WFG6 7 2.784e+00 + 3.120e+00 + 4.191e+00− 3.632e+00≈ 3.914e+00− 3.672e+00
11 6.551e+00 + 6.041e+00 + 9.803e+00− 8.874e+00≈ 9.425e+00≈ 9.160e+00
3 7.246e-01− 7.237e-01− 7.825e-01− 7.347e-01− 7.043e-01− 6.252e-01

WFG7 7 2.625e+00 + 2.831e+00 + 4.394e+00− 3.724e+00 + 3.907e+00≈ 4.030e+00
11 6.592e+00 + 6.430e+00 + 1.037e+01≈ 9.359e+00 + 9.885e+00≈ 1.026e+01
3 8.047e-01− 7.702e-01≈ 8.907e-01− 8.370e-01− 7.774e-01≈ 7.710e-01

WFG8 7 2.870e+00 + 3.092e+00 + 4.302e+00− 3.695e+00≈ 3.943e+00− 3.758e+00
11 6.785e+00 + 6.159e+00 + 1.005e+01− 8.939e+00≈ 9.766e+00− 9.318e+00
3 1.001e+00− 1.007e+00− 1.036e+00− 1.004e+00− 9.358e-01− 7.746e-01

WFG9 7 3.977e+00− 3.611e+00≈ 4.440e+00− 4.195e+00− 4.392e+00− 3.679e+00
11 9.374e+00≈ 8.515e+00 + 1.063e+01− 9.730e+00− 1.026e+01− 9.059e+00

+/− / ≈ 12/11/4 11/10/6 3/22/2 4/14/9 4/16/7 -

(b) D = 100

Prob. M EDN-ARMOEA K-RVEA MOEA/D-EGO CPS-MOEA CSEA MCEA/D
3 2.149e+00 + 2.398e+00− 2.044e+00 + 2.303e+00≈ 1.761e+00 + 2.284e+00

WFG1 7 2.848e+00 + 3.032e+00− 2.909e+00 + 2.977e+00≈ 2.797e+00 + 2.995e+00
11 3.542e+00 + 3.691e+00− 3.624e+00 + 3.639e+00 + 3.570e+00 + 3.664e+00
3 8.751e-01− 1.077e+00− 9.313e-01− 8.874e-01− 7.580e-01− 7.260e-01

WFG2 7 1.874e+00 + 3.141e+00− 2.672e+00− 1.989e+00 + 2.283e+00≈ 2.214e+00
11 3.177e+00 + 5.512e+00− 5.126e+00− 3.503e+00 + 4.298e+00≈ 4.109e+00
3 8.348e-01− 8.514e-01− 8.490e-01− 8.282e-01− 8.098e-01− 6.057e-01

WFG3 7 1.450e+00− 1.509e+00− 1.494e+00− 1.434e+00− 1.409e+00− 1.100e+00
11 1.980e+00− 2.086e+00− 2.077e+00− 1.950e+00− 1.908e+00− 1.429e+00
3 5.958e-01− 7.928e-01− 6.535e-01− 6.173e-01− 5.680e-01≈ 5.569e-01

WFG4 7 3.976e+00− 5.398e+00− 4.976e+00− 3.525e+00≈ 4.547e+00− 3.525e+00
11 1.015e+01− 1.230e+01− 1.190e+01− 8.841e+00≈ 1.200e+01− 9.140e+00
3 7.705e-01− 8.573e-01− 7.969e-01− 7.095e-01− 7.616e-01− 6.358e-01

WFG5 7 3.516e+00− 3.980e+00− 4.034e+00− 3.413e+00≈ 3.522e+00− 3.341e+00
11 9.009e+00− 9.457e+00− 1.014e+01− 8.664e+00≈ 8.897e+00− 8.488e+00
3 9.651e-01− 1.052e+00− 1.022e+00− 9.936e-01− 9.487e-01− 8.831e-01

WFG6 7 2.854e+00 + 4.466e+00− 4.375e+00− 3.673e+00≈ 3.836e+00≈ 3.720e+00
11 6.825e+00 + 1.027e+01− 1.035e+01− 8.930e+00 + 9.346e+00≈ 9.289e+00
3 7.334e-01− 8.545e-01− 8.114e-01− 7.533e-01− 7.312e-01− 6.439e-01

WFG7 7 2.698e+00 + 4.483e+00− 4.359e+00− 3.679e+00≈ 3.893e+00≈ 3.862e+00
11 6.831e+00 + 1.077e+01− 1.068e+01− 9.258e+00 + 9.466e+00 + 9.958e+00
3 7.971e-01− 9.087e-01− 8.936e-01− 8.315e-01− 7.904e-01− 7.584e-01

WFG8 7 2.881e+00 + 4.404e+00− 4.442e+00− 3.618e+00≈ 3.964e+00− 3.717e+00
11 7.058e+00 + 1.017e+01− 1.046e+01− 9.045e+00≈ 9.539e+00≈ 9.402e+00
3 1.054e+00− 1.147e+00− 1.097e+00− 1.057e+00− 9.996e-01− 8.109e-01

WFG9 7 4.028e+00− 4.627e+00− 4.635e+00− 4.112e+00− 4.255e+00− 3.623e+00
11 9.590e+00− 1.072e+01− 1.086e+01− 9.651e+00− 1.001e+01− 8.783e+00

+/− / ≈ 11/16/0 0/27/0 3/24/0 5/12/10 4/16/7 -

(c) D = 150

Prob. M EDN-ARMOEA K-RVEA MOEA/D-EGO CPS-MOEA CSEA MCEA/D
3 2.157e+00 + 2.423e+00− 2.022e+00 + 2.299e+00− 1.758e+00 + 2.269e+00

WFG1 7 2.872e+00 + 3.024e+00− 2.913e+00 + 2.979e+00≈ 2.773e+00 + 3.003e+00
11 3.551e+00 + 3.693e+00− 3.618e+00 + 3.641e+00≈ 3.566e+00 + 3.663e+00
3 8.738e-01− 1.085e+00− 9.331e-01− 8.897e-01− 7.864e-01− 7.528e-01

WFG2 7 1.891e+00 + 3.174e+00− 2.847e+00− 2.072e+00≈ 2.499e+00− 2.117e+00
11 3.455e+00≈ 5.607e+00− 4.783e+00− 3.582e+00≈ 4.289e+00≈ 3.961e+00
3 8.467e-01− 8.636e-01− 8.628e-01− 8.292e-01− 8.341e-01− 6.116e-01

WFG3 7 1.453e+00− 1.528e+00− 1.509e+00− 1.457e+00− 1.437e+00− 1.120e+00
11 1.988e+00− 2.089e+00− 2.091e+00− 1.958e+00− 1.937e+00− 1.436e+00
3 6.274e-01− 8.104e-01− 6.505e-01− 6.248e-01− 5.632e-01≈ 5.525e-01

WFG4 7 4.233e+00− 5.495e+00− 4.918e+00− 3.476e+00≈ 4.404e+00− 3.488e+00
11 1.068e+01− 1.276e+01− 1.199e+01− 8.867e+00≈ 1.172e+01− 9.123e+00
3 7.909e-01− 8.606e-01− 8.226e-01− 7.137e-01− 7.756e-01− 6.346e-01

WFG5 7 3.592e+00− 4.092e+00− 4.057e+00− 3.460e+00− 3.590e+00− 3.314e+00
11 8.959e+00− 9.974e+00− 1.012e+01− 8.715e+00− 9.016e+00− 8.444e+00
3 9.727e-01− 1.054e+00− 1.037e+00− 1.002e+00− 9.571e-01− 8.786e-01

WFG6 7 2.892e+00 + 4.493e+00− 4.500e+00− 3.595e+00≈ 3.815e+00≈ 3.761e+00
11 7.114e+00 + 1.062e+01− 1.073e+01− 8.874e+00 + 9.236e+00≈ 9.314e+00
3 7.380e-01− 8.548e-01− 8.171e-01− 7.551e-01− 7.379e-01− 6.507e-01

WFG7 7 2.760e+00 + 4.458e+00− 4.533e+00− 3.613e+00 + 3.826e+00≈ 3.830e+00
11 7.220e+00 + 1.064e+01− 1.077e+01− 9.229e+00 + 9.254e+00≈ 9.620e+00
3 7.964e-01− 9.122e-01− 8.989e-01− 8.289e-01− 7.985e-01− 7.503e-01

WFG8 7 2.898e+00 + 4.402e+00− 4.365e+00− 3.531e+00≈ 3.881e+00− 3.662e+00
11 7.130e+00 + 1.042e+01− 1.045e+01− 8.787e+00 + 9.540e+00≈ 9.222e+00
3 1.069e+00− 1.153e+00− 1.109e+00− 1.077e+00− 1.001e+00− 8.176e-01

WFG9 7 4.049e+00− 4.747e+00− 4.526e+00− 4.081e+00− 4.146e+00− 3.514e+00
11 9.605e+00− 1.068e+01− 1.061e+01− 9.616e+00− 9.855e+00− 8.683e+00

+/− / ≈ 10/16/1 0/27/0 3/24/0 4/15/8 3/17/7 -
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(c) D = 150

Fig. 2. Average ranks and the multiple
test results on WFG problems.
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TABLE IV
AVERAGE COMPUTATIONAL TIME [sec] OF ALL THE SIX ALGORITHMS.

D EDN-
ARMOEA

K-RVEA MOEA/D-
EGO

CPS-
MOEA

CSEA MCEA/D

50 2.435e+02 1.555e+02 1.053e+03 4.477e-02 4.211e+01 3.203e+00
100 3.580e+02 4.789e+02 3.235e+03 5.284e-02 4.709e+01 4.135e+00
150 5.348e+02 1.015e+03 7.206e+03 5.819e-02 8.004e+01 4.882e+00

TABLE V
THE STATISTICAL RESULTS OF THE WILCOXON RANK-SUM TEST WITH

N = 50, SUMMARIZED AS A SUMMATION OF “+/− / ≈”.

(a) DTLZ

D EDN-ARMOEA K-RVEA MOEA/D-EGO CPS-MOEA CSEA
50 3/18/0 2/18/1 0/16/5 0/17/4 1/18/2
100 3/18/0 0/19/2 0/17/1 0/17/4 1/20/0
150 3/18/0 0/19/2 0/17/1 0/18/3 1/20/0

(b) WFG

D EDN-ARMOEA K-RVEA MOEA/D-EGO CPS-MOEA CSEA
50 10/11/6 10/10/7 3/22/2 11/12/4 4/15/8
100 10/16/1 0/25/2 3/23/1 10/13/4 4/18/5
150 10/16/1 0/27/0 3/24/0 11/13/3 3/18/6

Table V summarizes the statistical results of the Wilcoxon
rank-sum test, summarized as “+/ − / ≈”. The complete
summary of averaged IGD values and the multiple test results
are reported in Section A of our supplementary material. Note
that for D = {100, 150}, MOEA/D-EGO failed to solve
DTLZ4. As shown in the table, different from the results with
N = 100, the performance of CPS-MOEA improves on the
WFG problems. The number of “+” clearly increases com-
pared with that of N = 100 (see Table III). Thus, CPS-MOEA
can withstand the decrease in the number of initial training
samples. However, the overall results support the effectiveness
of MCEA/D as it stably derives better performances than the
alternative algorithms.

C. Impact of Maximum repeat time

We analyze the impact of both the hyper-parameter Rmax

and our backup strategy, that is, selecting the candidate so-
lution closest to a decision boundary of an SVM model. We
set Rmax = {1, 10, 100, 1000}, where a large value of Rmax

increases a probability of generating offspring solutions with
the positive class. Tables VI and VII report the results of the
Wilcoxon rank-sum test and the averaged computational time
[sec], respectively, where the same experimental settings were
used as in Section V. In Table VI, “+”, “−”, and “≈” denote
that the IGD value of MCEA/D with Rmax = {1, 100, 1000}
is significantly better, worse, and competitive compared to that
of a default value Rmax = 10, respectively.

MCEA/D with Rmax = 1 is worse than that with Rmax =
10 because Rmax = 1 is equivalent to not utilizing the surro-
gate models. Rmax = 1000 slightly improves the performance
of MCEA/D with Rmax = 10 for D = 50. However, from
the overall results, Rmax = 10 can be identified as the best
setting in our experimental settings, as it derives competitive
performances both on the DTLZ and WFG problems while
reducing the computational time one order of magnitude
smaller than that of Rmax = {100, 1000}. This observation

suggests that our backup strategy has a sufficient capacity
to estimate high-quality solutions, as no significant impact of
Rmax is obtained for Rmax ≥ 10.

VII. CONCLUSION

In this paper, we have presented a novel classification-
based SAEA, called MCEA/D, adapted for high-dimensional
EMOPs/EMaOPs. The following three strategies are imple-
mented in MCEA/D. First, SVM-based classifiers are em-
ployed to build robust surrogate models for few samples of
high-dimensional training inputs. Second, multiple local clas-
sifiers are utilized to hedge the problematic over-fitting issue,
and thus a decomposition-based MOEA, that is, MOEA/D,
is employed to assign a local classifier to each sub-problem.
Finally, the pre-screening capacity of MCEA/D is boosted via
a backup strategy that selects the candidate solution closest to
the decision boundary.

MCEA/D was compared with the state-of-the-art algo-
rithms, such as, EDN-ARMOEA, MOEA/D-EGO, K-RVEA,
CPS-MOEA, and CSEA. The results show that MCEA/D is
powerful and even computationally efficient on DTLZ and
WFG problems with up to 150 decision variables and 11 objec-
tives. The computational time of MCEA/D is reduced at least
one order of magnitude smaller than the other algorithms ex-
cept for CPS-MOEA. Moreover, this effectiveness of MCEA/D
is achieved without any specialized experimental settings for
high-dimensional problems with regard to the number of initial
solutions and of fitness evaluations. For instance, modern
works tend to increase the number of training samples (e.g.,
11D − 1 [18]) and the maximum fitness evaluations (e.g.,
1000 [17]) on high-dimensional EMOPs/EMaOPs. This study
assumed N initial training samples with 300 FEs.

Our results have revealed the potential of classification-
based SAEAs on high-dimensional EMOPs/EMaOPs. CPS-
MOEA and CSEA were also found to be powerful and even
computationally efficient compared to modern SAEAs, that
is, K-RVEA and MOEA/D-EGO. Moreover, the effective-
ness of EDN-ARMOEA has been also confirmed compared
to the classification-based SAEAs. Note that this tendency
may be changed depending on experimental conditions. For
instance, the effectiveness of the approximation-based SAEAs
can be more enhanced with sufficient number of initial
training samples. Thus, we assume that the classification-
based SAEAs are suitable if the number of pre-evaluated
solutions is limited. It would be worth further comparing to
the approximation/classification-based SAEAs, but we leave it
as future work as it is out of our scope in this manuscript.

In future works, MCEA/D will be extended for constrained
EMOPs/EMaOPs, wherein classifiers can be further utilized
to estimate feasible solutions. In addition, it would be worth
investigating the effect of dimension reduction techniques on
the performance of classification-based SAEAs.
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This supplementary material supports the main manuscript
entitled “Multiple Classifiers-Assisted Evolutionary Algo-
rithm Based on Decomposition for High-Dimensional Multi-
Objective Problems”. Specifically, it shows the complete IGD
values for our sensitivity analysis of the population size N
and a hyper-parameter Rmax.

A. EXPERIMENTAL RESULTS WITH N

Tables I and II summarize the averaged IGD values on the
DTLZ and WFG problems, respectively. Figs. 1 and 2 show
the average ranks and the statistical results of the multiple
test performed on the DTLZ and WFG problems, respec-
tively. In addition, MOEA/D-EGO failed to solve DTLZ4 with
D = {100, 150} because Kriging models fail to handle high-
dimensional inputs.

B. EXPERIMENTAL RESULTS WITH Rmax

Tables III and IV summarize the averaged IGD values of
MCEA/D with Rmax = {1, 10, 100, 1000} on the DTLZ and
WFG problems, respectively. Rmax = 10 is used as a default
value. In the table, “+”, “−”, and “≈” denote that the IGD
value of MCEA/D with Rmax = {1, 100, 1000} is significantly
better, worse, and competitive to that obtained by MCEA/D
with Rmax = 10, respectively.
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TABLE I
AVERAGE IGD VALUES ON DTLZ PROBLEMS WITH N = 50. THE BEST IGD VALUE IS HIGHLIGHTED.

(a) D = 50

Prob. M EDN-ARMOEA K-RVEA MOEA/D-EGO CPS-MOEA CSEA MCEA/D
3 1.160e+03 − 1.122e+03 − 1.011e+03 − 8.967e+02 − 8.640e+02 − 5.772e+02

DTLZ1 7 8.318e+02 − 8.697e+02 − 7.549e+02 − 6.982e+02 − 6.006e+02 ≈ 5.235e+02
11 6.736e+02 − 7.401e+02 − 7.866e+02 − 5.962e+02 ≈ 5.177e+02 ≈ 5.337e+02
3 2.912e+00 − 2.587e+00 − 2.316e+00 − 1.675e+00 − 1.819e+00 − 6.050e-01

DTLZ2 7 2.841e+00 − 2.659e+00 − 2.394e+00 − 2.118e+00 − 2.080e+00 − 9.654e-01
11 2.745e+00 − 2.610e+00 − 2.796e+00 − 2.160e+00 − 2.107e+00 − 1.609e+00
3 3.788e+03 − 3.512e+03 − 2.542e+03 − 2.680e+03 − 2.559e+03 − 1.164e+03

DTLZ3 7 3.256e+03 − 3.198e+03 − 1.560e+03 ≈ 2.490e+03 − 2.353e+03 − 1.293e+03
11 2.986e+03 − 3.030e+03 − 2.537e+03 − 2.178e+03 − 1.995e+03 − 1.158e+03
3 2.998e+00 − 3.432e+00 − 2.488e+00 − 2.036e+00 − 1.701e+00 − 1.043e+00

DTLZ4 7 3.341e+00 − 3.286e+00 − 2.581e+00 − 2.450e+00 − 2.074e+00 − 1.262e+00
11 3.118e+00 − 3.171e+00 − 2.382e+00 − 2.426e+00 − 1.937e+00 − 1.317e+00
3 2.853e+00 − 2.372e+00 − 2.169e+00 − 1.625e+00 − 1.676e+00 − 4.312e-01

DTLZ5 7 2.545e+00 − 2.377e+00 − 2.008e+00 − 1.769e+00 − 1.741e+00 − 3.892e-01
11 2.262e+00 − 2.144e+00 − 2.213e+00 − 1.564e+00 − 1.581e+00 − 9.040e-01
3 4.063e+01 − 3.948e+01 − 2.189e+01 ≈ 3.054e+01 − 4.130e+01 − 2.229e+01

DTLZ6 7 3.749e+01 − 3.690e+01 − 2.258e+01 ≈ 2.895e+01 − 3.765e+01 − 2.137e+01
11 3.385e+01 − 3.369e+01 − 2.859e+01 − 2.632e+01 − 3.401e+01 − 2.032e+01
3 4.925e+00 + 8.279e+00 ≈ 9.049e+00 ≈ 9.112e+00 ≈ 6.072e+00 + 9.188e+00

DTLZ7 7 1.208e+01 + 1.797e+01 + 2.167e+01 ≈ 2.157e+01 ≈ 2.497e+01 − 2.130e+01
11 2.098e+01 + 2.493e+01 + 3.632e+01 − 3.385e+01 ≈ 3.862e+01 − 3.320e+01

+/ − / ≈ 3/18/0 2/18/1 0/16/5 0/17/4 1/18/2 -

(b) D = 100

Prob. M EDN-ARMOEA K-RVEA MOEA/D-EGO CPS-MOEA CSEA MCEA/D
3 2.633e+03 − 2.824e+03 − 2.715e+03 − 2.009e+03 − 2.181e+03 − 1.311e+03

DTLZ1 7 1.876e+03 − 2.139e+03 − 2.016e+03 − 1.606e+03 − 1.712e+03 − 1.316e+03
11 1.663e+03 − 1.898e+03 − 2.008e+03 − 1.423e+03 ≈ 1.549e+03 − 1.338e+03
3 6.603e+00 − 6.550e+00 − 5.839e+00 − 3.688e+00 − 4.802e+00 − 8.499e-01

DTLZ2 7 6.503e+00 − 6.490e+00 − 6.205e+00 − 4.023e+00 − 5.335e+00 − 1.159e+00
11 6.318e+00 − 6.443e+00 − 6.459e+00 − 4.130e+00 − 4.944e+00 − 2.519e+00
3 8.552e+03 − 8.935e+03 − 7.285e+03 − 5.795e+03 − 6.875e+03 − 3.013e+03

DTLZ3 7 8.096e+03 − 8.343e+03 − 5.383e+03 − 5.888e+03 − 6.817e+03 − 3.009e+03
11 7.802e+03 − 8.003e+03 − 7.883e+03 − 5.752e+03 − 6.293e+03 − 3.251e+03
3 6.704e+00 − 7.047e+00 − - 3.888e+00 − 4.317e+00 − 1.218e+00

DTLZ4 7 6.953e+00 − 7.030e+00 − - 4.214e+00 − 4.892e+00 − 1.386e+00
11 6.731e+00 − 6.767e+00 − - 4.373e+00 − 4.841e+00 − 1.420e+00
3 6.407e+00 − 6.395e+00 − 5.756e+00 − 3.410e+00 − 4.750e+00 − 7.138e-01

DTLZ5 7 6.112e+00 − 6.309e+00 − 6.193e+00 − 3.756e+00 − 4.996e+00 − 6.444e-01
11 5.774e+00 − 5.794e+00 − 5.984e+00 − 3.489e+00 − 4.452e+00 − 1.919e+00
3 8.506e+01 − 8.644e+01 − 6.296e+01 − 6.514e+01 − 8.579e+01 − 5.052e+01

DTLZ6 7 8.109e+01 − 8.310e+01 − 6.346e+01 − 6.550e+01 − 8.242e+01 − 5.151e+01
11 7.802e+01 − 7.968e+01 − 7.502e+01 − 6.301e+01 − 7.891e+01 − 4.739e+01
3 6.798e+00 + 1.097e+01 − 1.009e+01 ≈ 1.006e+01 ≈ 7.136e+00 + 1.017e+01

DTLZ7 7 1.844e+01 + 2.374e+01 ≈ 2.576e+01 − 2.424e+01 ≈ 2.653e+01 − 2.403e+01
11 3.061e+01 + 3.810e+01 ≈ 4.126e+01 − 3.936e+01 ≈ 4.207e+01 − 3.909e+01

+/ − / ≈ 3/18/0 0/19/2 0/17/1 0/17/4 1/20/0 -

(c) D = 150

Prob. M EDN-ARMOEA K-RVEA MOEA/D-EGO CPS-MOEA CSEA MCEA/D
3 4.135e+03 − 4.369e+03 − 4.279e+03 − 3.096e+03 − 3.468e+03 − 1.935e+03

DTLZ1 7 2.967e+03 − 3.402e+03 − 3.244e+03 − 2.510e+03 − 2.821e+03 − 1.987e+03
11 2.651e+03 − 3.113e+03 − 3.225e+03 − 2.293e+03 − 2.611e+03 − 2.114e+03
3 1.029e+01 − 1.037e+01 − 9.469e+00 − 5.122e+00 − 8.277e+00 − 1.067e+00

DTLZ2 7 1.021e+01 − 1.050e+01 − 1.003e+01 − 5.829e+00 − 8.680e+00 − 1.298e+00
11 9.906e+00 − 1.031e+01 − 1.022e+01 − 6.107e+00 − 8.594e+00 − 3.433e+00
3 1.340e+04 − 1.403e+04 − 1.206e+04 − 9.283e+03 − 1.146e+04 − 4.593e+03

DTLZ3 7 1.292e+04 − 1.354e+04 − 1.171e+04 − 9.430e+03 − 1.130e+04 − 4.438e+03
11 1.250e+04 − 1.283e+04 − 1.268e+04 − 9.294e+03 − 1.112e+04 − 5.290e+03
3 1.033e+01 − 1.074e+01 − - 5.031e+00 − 7.172e+00 − 1.408e+00

DTLZ4 7 1.061e+01 − 1.072e+01 − - 6.170e+00 − 8.195e+00 − 1.543e+00
11 1.037e+01 − 1.055e+01 − - 6.082e+00 − 7.942e+00 − 1.554e+00
3 1.013e+01 − 1.039e+01 − 9.328e+00 − 5.190e+00 − 8.078e+00 − 9.830e-01

DTLZ5 7 9.858e+00 − 1.019e+01 − 9.772e+00 − 5.885e+00 − 8.356e+00 − 8.457e-01
11 9.484e+00 − 9.787e+00 − 9.878e+00 − 5.525e+00 − 7.869e+00 − 2.749e+00
3 1.295e+02 − 1.321e+02 − 9.904e+01 − 1.008e+02 − 1.305e+02 − 7.710e+01

DTLZ6 7 1.259e+02 − 1.282e+02 − 1.208e+02 − 1.026e+02 − 1.272e+02 − 7.676e+01
11 1.224e+02 − 1.247e+02 − 1.191e+02 − 9.730e+01 − 1.233e+02 − 7.830e+01
3 8.425e+00 + 1.128e+01 − 1.082e+01 ≈ 1.042e+01 ≈ 7.910e+00 + 1.058e+01

DTLZ7 7 2.136e+01 + 2.557e+01 ≈ 2.682e+01 − 2.508e+01 ≈ 2.731e+01 − 2.537e+01
11 3.495e+01 + 4.071e+01 ≈ 4.255e+01 − 4.090e+01 ≈ 4.361e+01 − 3.985e+01

+/ − / ≈ 3/18/0 0/19/2 0/17/1 0/18/3 1/20/0 -
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(c) D = 150

Fig. 1. Average ranks and the multiple
test results on DTLZ problems with
N = 50.
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TABLE II
AVERAGE IGD VALUES ON WFG PROBLEMS WITH N = 50. THE BEST IGD VALUE IS HIGHLIGHTED.

(a) D = 50

Prob. M EDN-ARMOEA K-RVEA MOEA/D-EGO CPS-MOEA CSEA MCEA/D
3 2.129e+00 + 2.331e+00 − 2.034e+00 + 2.261e+00 ≈ 1.696e+00 + 2.227e+00

WFG1 7 2.839e+00 + 2.988e+00 ≈ 2.835e+00 + 2.983e+00 ≈ 2.786e+00 + 2.978e+00
11 3.533e+00 + 3.628e+00 + 3.620e+00 + 3.661e+00 + 3.613e+00 + 3.688e+00
3 8.670e-01 − 8.414e-01 − 8.939e-01 − 8.337e-01 − 6.972e-01 ≈ 6.968e-01

WFG2 7 1.865e+00 ≈ 2.478e+00 ≈ 2.372e+00 − 1.994e+00 ≈ 2.504e+00 ≈ 2.035e+00
11 3.312e+00 + 5.280e+00 − 4.845e+00 ≈ 3.316e+00 + 4.231e+00 ≈ 4.634e+00
3 8.073e-01 − 7.917e-01 − 7.755e-01 − 7.699e-01 − 7.613e-01 − 5.766e-01

WFG3 7 1.413e+00 − 1.464e+00 − 1.456e+00 − 1.368e+00 − 1.322e+00 − 1.045e+00
11 1.930e+00 − 1.997e+00 − 2.022e+00 − 1.837e+00 − 1.854e+00 − 1.360e+00
3 5.620e-01 ≈ 5.641e-01 ≈ 6.271e-01 − 6.004e-01 − 5.389e-01 + 5.608e-01

WFG4 7 3.626e+00 − 3.091e+00 ≈ 4.556e+00 − 2.994e+00 + 4.813e+00 − 3.180e+00
11 9.643e+00 ≈ 7.852e+00 + 1.217e+01 − 7.482e+00 + 1.207e+01 − 9.715e+00
3 7.434e-01 − 7.635e-01 − 7.133e-01 − 6.283e-01 − 7.183e-01 − 5.784e-01

WFG5 7 3.366e+00 − 2.833e+00 + 3.842e+00 − 3.272e+00 − 3.873e+00 − 3.140e+00
11 8.751e+00 ≈ 6.060e+00 + 9.718e+00 − 8.217e+00 + 9.501e+00 − 8.918e+00
3 9.406e-01 ≈ 9.220e-01 ≈ 1.015e+00 − 9.645e-01 − 9.022e-01 ≈ 8.933e-01

WFG6 7 2.858e+00 + 3.026e+00 + 4.269e+00 − 3.373e+00 + 4.135e+00 − 3.718e+00
11 7.237e+00 + 6.256e+00 + 1.093e+01 − 8.081e+00 + 1.005e+01 ≈ 9.762e+00
3 7.197e-01 − 7.223e-01 − 7.883e-01 − 7.228e-01 − 7.153e-01 − 6.374e-01

WFG7 7 2.709e+00 + 2.982e+00 + 4.297e+00 − 3.389e+00 + 4.281e+00 − 3.672e+00
11 7.461e+00 + 6.401e+00 + 1.106e+01 ≈ 8.838e+00 + 1.013e+01 ≈ 1.062e+01
3 7.908e-01 ≈ 7.981e-01 ≈ 9.246e-01 − 8.192e-01 − 7.940e-01 ≈ 7.840e-01

WFG8 7 2.965e+00 + 3.024e+00 + 4.470e+00 − 3.366e+00 + 4.177e+00 − 3.804e+00
11 7.445e+00 + 6.212e+00 + 1.065e+01 − 8.110e+00 + 1.015e+01 ≈ 9.871e+00
3 1.008e+00 − 1.018e+00 − 1.031e+00 − 9.168e-01 − 9.496e-01 − 7.571e-01

WFG9 7 4.011e+00 − 3.891e+00 − 4.539e+00 − 3.935e+00 − 4.412e+00 − 3.180e+00
11 9.613e+00 − 9.581e+00 ≈ 1.104e+01 − 9.061e+00 ≈ 1.031e+01 − 9.085e+00

+/ − / ≈ 10/11/6 10/10/7 3/22/2 11/12/4 4/15/8 -

(b) D = 100

Prob. M EDN-ARMOEA K-RVEA MOEA/D-EGO CPS-MOEA CSEA MCEA/D
3 2.136e+00 + 2.424e+00 − 1.948e+00 + 2.279e+00 − 1.731e+00 + 2.228e+00

WFG1 7 2.853e+00 + 3.029e+00 − 2.843e+00 + 2.985e+00 ≈ 2.749e+00 + 2.980e+00
11 3.553e+00 + 3.692e+00 ≈ 3.637e+00 + 3.667e+00 ≈ 3.605e+00 + 3.679e+00
3 8.624e-01 − 1.178e+00 − 9.270e-01 − 8.548e-01 − 7.417e-01 − 7.099e-01

WFG2 7 1.971e+00 ≈ 3.382e+00 − 2.603e+00 − 1.908e+00 ≈ 2.626e+00 − 1.890e+00
11 3.387e+00 + 5.646e+00 − 5.224e+00 ≈ 3.347e+00 + 4.778e+00 ≈ 4.684e+00
3 8.353e-01 − 8.740e-01 − 8.566e-01 − 8.054e-01 − 8.136e-01 − 5.820e-01

WFG3 7 1.443e+00 − 1.558e+00 − 1.519e+00 − 1.398e+00 − 1.445e+00 − 1.083e+00
11 1.969e+00 − 2.075e+00 − 2.087e+00 − 1.918e+00 − 1.977e+00 − 1.389e+00
3 5.999e-01 − 8.733e-01 − 6.479e-01 − 6.167e-01 − 5.505e-01 ≈ 5.541e-01

WFG4 7 4.239e+00 − 5.428e+00 − 4.953e+00 − 2.967e+00 + 4.660e+00 − 3.175e+00
11 1.074e+01 − 1.195e+01 − 1.202e+01 − 7.271e+00 + 1.233e+01 − 9.768e+00
3 7.789e-01 − 9.316e-01 − 7.641e-01 − 6.501e-01 − 7.647e-01 − 5.992e-01

WFG5 7 3.567e+00 − 4.219e+00 − 4.109e+00 − 3.262e+00 − 3.885e+00 − 3.128e+00
11 8.979e+00 − 1.008e+01 − 1.024e+01 − 8.278e+00 + 9.213e+00 − 8.632e+00
3 9.624e-01 − 1.090e+00 − 1.039e+00 − 9.858e-01 − 9.471e-01 − 8.907e-01

WFG6 7 2.963e+00 + 4.626e+00 − 4.601e+00 − 3.305e+00 + 4.048e+00 − 3.744e+00
11 7.579e+00 + 1.053e+01 − 1.069e+01 − 7.943e+00 + 9.688e+00 ≈ 9.954e+00
3 7.297e-01 − 9.233e-01 − 8.334e-01 − 7.435e-01 − 7.372e-01 − 6.353e-01

WFG7 7 2.865e+00 + 5.028e+00 − 4.792e+00 − 3.340e+00 + 3.962e+00 ≈ 3.725e+00
11 7.819e+00 + 1.092e+01 ≈ 1.131e+01 − 8.424e+00 + 1.004e+01 + 1.061e+01
3 7.942e-01 − 9.580e-01 − 9.444e-01 − 8.169e-01 − 8.091e-01 − 7.575e-01

WFG8 7 2.980e+00 + 4.726e+00 − 4.532e+00 − 3.279e+00 + 4.022e+00 − 3.770e+00
11 7.734e+00 + 1.045e+01 − 1.088e+01 − 7.951e+00 + 9.918e+00 ≈ 9.923e+00
3 1.050e+00 − 1.195e+00 − 1.087e+00 − 1.005e+00 − 1.002e+00 − 7.765e-01

WFG9 7 4.053e+00 − 5.047e+00 − 4.640e+00 − 3.880e+00 − 4.394e+00 − 3.173e+00
11 9.750e+00 − 1.096e+01 − 1.085e+01 − 9.042e+00 ≈ 1.039e+01 − 9.046e+00

+/ − / ≈ 10/16/1 0/25/2 3/23/1 10/13/4 4/18/5 -

(c) D = 150

Prob. M EDN-ARMOEA K-RVEA MOEA/D-EGO CPS-MOEA CSEA MCEA/D
3 2.187e+00 + 2.428e+00 − 1.977e+00 + 2.276e+00 − 1.688e+00 + 2.226e+00

WFG1 7 2.881e+00 + 3.032e+00 − 2.868e+00 + 2.985e+00 ≈ 2.811e+00 + 2.973e+00
11 3.571e+00 + 3.705e+00 − 3.640e+00 + 3.671e+00 + 3.622e+00 + 3.690e+00
3 8.763e-01 − 1.194e+00 − 9.683e-01 − 8.558e-01 − 7.792e-01 − 7.136e-01

WFG2 7 1.934e+00 ≈ 3.358e+00 − 2.729e+00 − 1.989e+00 ≈ 2.661e+00 − 1.864e+00
11 3.567e+00 + 5.655e+00 − 5.520e+00 − 3.450e+00 + 4.765e+00 ≈ 4.587e+00
3 8.440e-01 − 8.898e-01 − 8.728e-01 − 8.133e-01 − 8.371e-01 − 5.887e-01

WFG3 7 1.456e+00 − 1.561e+00 − 1.557e+00 − 1.406e+00 − 1.478e+00 − 1.099e+00
11 1.990e+00 − 2.098e+00 − 2.135e+00 − 1.913e+00 − 2.031e+00 − 1.428e+00
3 6.187e-01 − 9.257e-01 − 6.676e-01 − 6.194e-01 − 5.597e-01 ≈ 5.686e-01

WFG4 7 4.316e+00 − 5.645e+00 − 4.673e+00 − 2.982e+00 + 4.481e+00 − 3.187e+00
11 1.101e+01 − 1.217e+01 − 1.244e+01 − 7.323e+00 + 1.234e+01 − 9.825e+00
3 7.914e-01 − 9.416e-01 − 8.200e-01 − 6.564e-01 − 7.793e-01 − 6.289e-01

WFG5 7 3.550e+00 − 4.435e+00 − 4.241e+00 − 3.226e+00 − 3.905e+00 − 3.130e+00
11 9.018e+00 − 1.015e+01 − 1.047e+01 − 8.258e+00 + 9.433e+00 − 8.618e+00
3 9.747e-01 − 1.118e+00 − 1.062e+00 − 9.996e-01 − 9.710e-01 − 8.763e-01

WFG6 7 3.032e+00 + 4.846e+00 − 4.636e+00 − 3.251e+00 + 4.068e+00 − 3.657e+00
11 7.834e+00 + 1.051e+01 − 1.067e+01 − 8.055e+00 + 9.585e+00 ≈ 9.911e+00
3 7.326e-01 − 9.632e-01 − 8.379e-01 − 7.447e-01 − 7.483e-01 − 6.447e-01

WFG7 7 2.904e+00 + 5.004e+00 − 4.713e+00 − 3.317e+00 + 4.078e+00 ≈ 3.875e+00
11 7.995e+00 + 1.077e+01 − 1.124e+01 − 8.344e+00 + 9.784e+00 ≈ 1.022e+01
3 7.898e-01 − 1.006e+00 − 9.604e-01 − 8.093e-01 − 8.174e-01 − 7.624e-01

WFG8 7 2.986e+00 + 4.779e+00 − 4.640e+00 − 3.275e+00 + 4.082e+00 − 3.691e+00
11 7.727e+00 + 1.053e+01 − 1.074e+01 − 8.153e+00 + 9.962e+00 ≈ 9.629e+00
3 1.057e+00 − 1.247e+00 − 1.122e+00 − 1.024e+00 − 1.005e+00 − 7.431e-01

WFG9 7 4.047e+00 − 4.986e+00 − 4.654e+00 − 3.804e+00 − 4.393e+00 − 3.116e+00
11 9.487e+00 − 1.085e+01 − 1.112e+01 − 9.061e+00 ≈ 1.008e+01 − 8.773e+00

+/ − / ≈ 10/16/1 0/27/0 3/24/0 11/13/3 3/18/6 -
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(c) D = 150

Fig. 2. Average ranks and the multi-
ple test results on WFG problems with
N = 50.
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TABLE III
AVERAGE IGD VALUES ON DTLZ PROBLEMS WITH

Rmax = {1, 10, 100, 1000}. THE BEST IGD VALUE IS HIGHLIGHTED.

(a) D = 50

Prob. M Rmax = 1 Rmax = 100 Rmax = 1000 Rmax = 10
3 7.864e+02 ≈ 9.096e+02 − 9.962e+02 − 7.393e+02

DTLZ1 7 6.707e+02 ≈ 6.810e+02 ≈ 7.725e+02 − 6.963e+02
11 5.568e+02 ≈ 6.316e+02 − 6.406e+02 − 5.361e+02
3 1.225e+00 − 5.946e-01 + 5.928e-01 + 6.789e-01

DTLZ2 7 1.732e+00 − 1.015e+00 + 9.989e-01 + 1.224e+00
11 1.735e+00 − 1.260e+00 + 1.208e+00 + 1.442e+00
3 1.997e+03 − 1.973e+03 ≈ 1.962e+03 ≈ 1.738e+03

DTLZ3 7 1.902e+03 − 1.923e+03 − 1.950e+03 − 1.540e+03
11 1.635e+03 ≈ 1.752e+03 ≈ 1.767e+03 ≈ 1.561e+03
3 1.579e+00 − 1.059e+00 ≈ 1.036e+00 + 1.075e+00

DTLZ4 7 1.716e+00 − 1.257e+00 + 1.263e+00 + 1.297e+00
11 1.597e+00 − 1.311e+00 + 1.311e+00 + 1.333e+00
3 1.159e+00 − 4.222e-01 + 4.130e-01 + 5.485e-01

DTLZ5 7 1.184e+00 − 4.235e-01 + 4.015e-01 + 6.087e-01
11 1.183e+00 − 4.585e-01 + 4.200e-01 + 6.853e-01
3 2.528e+01 ≈ 2.591e+01 ≈ 2.519e+01 ≈ 2.505e+01

DTLZ6 7 2.526e+01 ≈ 2.540e+01 ≈ 2.534e+01 ≈ 2.407e+01
11 2.295e+01 − 2.429e+01 − 2.423e+01 − 2.128e+01
3 9.212e+00 ≈ 8.934e+00 ≈ 9.086e+00 ≈ 9.017e+00

DTLZ7 7 2.096e+01 ≈ 2.107e+01 ≈ 2.116e+01 ≈ 2.123e+01
11 3.500e+01 − 3.257e+01 ≈ 3.348e+01 ≈ 3.199e+01

+/ − / ≈ 0/13/8 8/4/9 9/5/7 -

(b) D = 100

Prob. M Rmax = 1 Rmax = 100 Rmax = 1000 Rmax = 10
3 1.693e+03 ≈ 2.067e+03 − 2.302e+03 − 1.705e+03

DTLZ1 7 1.578e+03 ≈ 1.683e+03 ≈ 1.734e+03 − 1.577e+03
11 1.425e+03 ≈ 1.572e+03 − 1.701e+03 − 1.394e+03
3 2.325e+00 − 8.943e-01 + 8.504e-01 + 1.095e+00

DTLZ2 7 2.953e+00 − 1.216e+00 + 1.199e+00 + 1.912e+00
11 2.889e+00 − 1.514e+00 + 1.429e+00 + 2.075e+00
3 4.138e+03 ≈ 5.431e+03 − 5.414e+03 − 3.790e+03

DTLZ3 7 4.410e+03 − 4.958e+03 − 4.924e+03 − 3.910e+03
11 3.940e+03 ≈ 4.568e+03 − 4.642e+03 − 3.889e+03
3 2.433e+00 − 1.239e+00 + 1.228e+00 + 1.328e+00

DTLZ4 7 2.384e+00 − 1.412e+00 + 1.427e+00 + 1.517e+00
11 2.167e+00 − 1.441e+00 + 1.438e+00 + 1.470e+00
3 2.293e+00 − 7.520e-01 + 7.359e-01 + 1.023e+00

DTLZ5 7 2.550e+00 − 7.334e-01 + 6.580e-01 + 1.333e+00
11 2.479e+00 − 7.414e-01 + 6.492e-01 + 1.529e+00
3 5.750e+01 − 6.161e+01 − 6.189e+01 − 5.429e+01

DTLZ6 7 5.695e+01 ≈ 5.935e+01 − 6.096e+01 − 5.440e+01
11 5.393e+01 − 5.667e+01 − 5.674e+01 − 5.093e+01
3 1.015e+01 ≈ 1.050e+01 − 1.024e+01 ≈ 9.991e+00

DTLZ7 7 2.469e+01 ≈ 2.415e+01 ≈ 2.392e+01 ≈ 2.374e+01
11 3.975e+01 ≈ 4.026e+01 − 3.932e+01 ≈ 3.844e+01

+/ − / ≈ 0/12/9 9/10/2 9/9/3 -

(c) D = 150

Prob. M Rmax = 1 Rmax = 100 Rmax = 1000 Rmax = 10
3 2.629e+03 ≈ 3.475e+03 − 3.388e+03 − 2.636e+03

DTLZ1 7 2.409e+03 ≈ 2.728e+03 − 2.816e+03 − 2.376e+03
11 2.243e+03 ≈ 2.509e+03 − 2.595e+03 − 2.246e+03
3 3.477e+00 − 1.172e+00 + 1.138e+00 + 1.489e+00

DTLZ2 7 3.990e+00 − 1.430e+00 + 1.333e+00 + 2.647e+00
11 4.258e+00 − 1.795e+00 + 1.593e+00 + 2.985e+00
3 6.477e+03 ≈ 8.343e+03 − 8.613e+03 − 6.303e+03

DTLZ3 7 6.596e+03 ≈ 7.903e+03 − 7.951e+03 − 6.114e+03
11 6.734e+03 − 7.310e+03 − 8.291e+03 − 5.895e+03
3 3.378e+00 − 1.466e+00 + 1.509e+00 ≈ 1.556e+00

DTLZ4 7 3.492e+00 − 1.589e+00 + 1.637e+00 + 1.751e+00
11 2.787e+00 − 1.598e+00 + 1.582e+00 + 1.637e+00
3 3.040e+00 − 1.025e+00 + 1.040e+00 + 1.536e+00

DTLZ5 7 3.902e+00 − 9.098e-01 + 8.587e-01 + 2.149e+00
11 3.517e+00 − 1.225e+00 + 8.659e-01 + 2.441e+00
3 8.692e+01 ≈ 9.638e+01 − 9.731e+01 − 8.780e+01

DTLZ6 7 8.860e+01 − 9.065e+01 − 9.774e+01 − 8.293e+01
11 8.361e+01 ≈ 8.651e+01 − 9.017e+01 − 8.175e+01
3 1.028e+01 ≈ 1.066e+01 ≈ 1.060e+01 ≈ 1.042e+01

DTLZ7 7 2.507e+01 ≈ 2.516e+01 ≈ 2.549e+01 ≈ 2.531e+01
11 4.098e+01 ≈ 4.115e+01 − 4.097e+01 − 3.994e+01

+/ − / ≈ 0/11/10 9/10/2 8/10/3 -

TABLE IV
AVERAGE IGD VALUES ON WFG PROBLEMS WITH

Rmax = {1, 10, 100, 1000}. THE BEST IGD VALUE IS HIGHLIGHTED.

(a) D = 50

Prob. M Rmax = 1 Rmax = 100 Rmax = 1000 Rmax = 10
3 2.309e+00 ≈ 2.248e+00 ≈ 2.195e+00 + 2.283e+00

WFG1 7 3.006e+00 ≈ 3.008e+00 ≈ 2.997e+00 ≈ 3.005e+00
11 3.651e+00 ≈ 3.669e+00 ≈ 3.671e+00 ≈ 3.659e+00
3 7.863e-01 − 7.024e-01 ≈ 7.191e-01 ≈ 7.214e-01

WFG2 7 2.153e+00 ≈ 2.470e+00 ≈ 2.421e+00 ≈ 2.181e+00
11 3.873e+00 ≈ 4.699e+00 ≈ 4.787e+00 ≈ 4.261e+00
3 7.005e-01 − 5.353e-01 + 5.219e-01 + 5.811e-01

WFG3 7 1.223e+00 − 9.632e-01 + 9.507e-01 + 1.062e+00
11 1.691e+00 − 1.267e+00 + 1.253e+00 + 1.357e+00
3 5.897e-01 − 5.223e-01 ≈ 5.057e-01 + 5.434e-01

WFG4 7 3.309e+00 ≈ 4.092e+00 − 4.063e+00 − 3.534e+00
11 7.887e+00 + 1.044e+01 − 1.097e+01 − 8.958e+00
3 5.927e-01 + 6.575e-01 − 6.454e-01 − 6.184e-01

WFG5 7 3.477e+00 − 3.281e+00 ≈ 3.283e+00 ≈ 3.322e+00
11 8.637e+00 − 8.227e+00 ≈ 8.004e+00 + 8.317e+00
3 8.890e-01 − 8.051e-01 + 8.080e-01 + 8.410e-01

WFG6 7 3.686e+00 ≈ 3.895e+00 − 3.980e+00 − 3.672e+00
11 8.653e+00 + 9.767e+00 − 9.851e+00 − 9.160e+00
3 6.836e-01 − 6.113e-01 ≈ 5.891e-01 + 6.252e-01

WFG7 7 3.881e+00 ≈ 4.117e+00 ≈ 4.129e+00 ≈ 4.030e+00
11 9.277e+00 + 1.063e+01 ≈ 1.076e+01 − 1.026e+01
3 8.228e-01 − 7.680e-01 ≈ 7.530e-01 ≈ 7.710e-01

WFG8 7 3.790e+00 ≈ 4.017e+00 − 3.994e+00 − 3.758e+00
11 8.622e+00 + 1.011e+01 − 1.007e+01 − 9.318e+00
3 8.689e-01 − 6.996e-01 + 6.974e-01 + 7.746e-01

WFG9 7 3.983e+00 − 3.390e+00 + 3.293e+00 + 3.679e+00
11 9.681e+00 − 8.159e+00 + 7.992e+00 + 9.059e+00

+/ − / ≈ 5/13/9 7/7/13 11/8/8 -

(b) D = 100

Prob. M Rmax = 1 Rmax = 100 Rmax = 1000 Rmax = 10
3 2.315e+00 ≈ 2.231e+00 ≈ 2.223e+00 + 2.284e+00

WFG1 7 2.998e+00 ≈ 2.999e+00 ≈ 3.003e+00 ≈ 2.995e+00
11 3.650e+00 ≈ 3.675e+00 ≈ 3.678e+00 ≈ 3.664e+00
3 7.980e-01 − 7.617e-01 ≈ 7.398e-01 ≈ 7.260e-01

WFG2 7 2.138e+00 ≈ 2.241e+00 ≈ 2.404e+00 ≈ 2.214e+00
11 3.674e+00 ≈ 4.864e+00 − 4.791e+00 ≈ 4.109e+00
3 6.941e-01 − 5.491e-01 + 5.462e-01 + 6.057e-01

WFG3 7 1.258e+00 − 9.891e-01 + 9.750e-01 + 1.100e+00
11 1.675e+00 − 1.290e+00 + 1.270e+00 + 1.429e+00
3 6.035e-01 − 5.307e-01 + 5.323e-01 + 5.569e-01

WFG4 7 3.294e+00 + 4.189e+00 − 4.377e+00 − 3.525e+00
11 7.855e+00 + 1.071e+01 − 1.136e+01 − 9.140e+00
3 6.133e-01 + 6.971e-01 − 7.239e-01 − 6.358e-01

WFG5 7 3.470e+00 − 3.270e+00 ≈ 3.259e+00 ≈ 3.341e+00
11 8.864e+00 − 8.149e+00 + 7.800e+00 + 8.488e+00
3 9.218e-01 − 8.441e-01 + 8.409e-01 + 8.831e-01

WFG6 7 3.675e+00 ≈ 3.919e+00 ≈ 4.039e+00 − 3.720e+00
11 9.071e+00 ≈ 9.756e+00 − 9.955e+00 − 9.289e+00
3 6.916e-01 − 6.367e-01 ≈ 6.319e-01 ≈ 6.439e-01

WFG7 7 3.801e+00 ≈ 4.223e+00 − 4.168e+00 − 3.862e+00
11 9.351e+00 + 1.059e+01 − 1.068e+01 − 9.958e+00
3 8.032e-01 − 7.613e-01 ≈ 7.657e-01 ≈ 7.584e-01

WFG8 7 3.744e+00 ≈ 3.964e+00 − 4.019e+00 − 3.717e+00
11 9.082e+00 ≈ 9.819e+00 − 9.960e+00 − 9.402e+00
3 9.084e-01 − 7.407e-01 + 7.404e-01 + 8.109e-01

WFG9 7 3.959e+00 − 3.254e+00 + 3.166e+00 + 3.623e+00
11 9.468e+00 − 7.849e+00 + 7.562e+00 + 8.783e+00

+/ − / ≈ 4/13/10 9/9/9 10/9/8 -

(c) D = 150

Prob. M Rmax = 1 Rmax = 100 Rmax = 1000 Rmax = 10
3 2.301e+00 ≈ 2.172e+00 + 2.219e+00 ≈ 2.269e+00

WFG1 7 2.996e+00 ≈ 3.011e+00 ≈ 2.998e+00 ≈ 3.003e+00
11 3.656e+00 ≈ 3.673e+00 ≈ 3.671e+00 ≈ 3.663e+00
3 7.880e-01 − 7.278e-01 ≈ 7.498e-01 ≈ 7.528e-01

WFG2 7 2.130e+00 ≈ 2.315e+00 ≈ 2.674e+00 − 2.117e+00
11 3.846e+00 ≈ 4.526e+00 − 4.729e+00 − 3.961e+00
3 7.057e-01 − 5.643e-01 + 5.542e-01 + 6.116e-01

WFG3 7 1.298e+00 − 9.813e-01 + 9.661e-01 + 1.120e+00
11 1.708e+00 − 1.284e+00 + 1.288e+00 + 1.436e+00
3 6.010e-01 − 5.295e-01 + 5.417e-01 ≈ 5.525e-01

WFG4 7 3.369e+00 ≈ 4.452e+00 − 4.328e+00 − 3.488e+00
11 8.069e+00 + 1.079e+01 − 1.103e+01 − 9.123e+00
3 6.225e-01 ≈ 7.200e-01 − 7.324e-01 − 6.346e-01

WFG5 7 3.452e+00 − 3.296e+00 ≈ 3.243e+00 ≈ 3.314e+00
11 8.837e+00 − 8.078e+00 + 8.160e+00 + 8.444e+00
3 9.178e-01 − 8.599e-01 ≈ 8.647e-01 ≈ 8.786e-01

WFG6 7 3.773e+00 ≈ 3.955e+00 ≈ 3.981e+00 − 3.761e+00
11 9.198e+00 ≈ 9.641e+00 ≈ 9.924e+00 − 9.314e+00
3 6.959e-01 − 6.431e-01 ≈ 6.456e-01 ≈ 6.507e-01

WFG7 7 3.753e+00 ≈ 4.092e+00 − 4.177e+00 − 3.830e+00
11 9.583e+00 ≈ 1.039e+01 − 1.025e+01 − 9.620e+00
3 7.803e-01 − 7.419e-01 ≈ 7.500e-01 ≈ 7.503e-01

WFG8 7 3.616e+00 ≈ 3.881e+00 − 3.914e+00 − 3.662e+00
11 8.889e+00 ≈ 9.594e+00 ≈ 9.976e+00 − 9.222e+00
3 9.161e-01 − 7.858e-01 + 7.750e-01 + 8.176e-01

WFG9 7 3.916e+00 − 3.244e+00 + 3.115e+00 + 3.514e+00
11 9.451e+00 − 7.833e+00 + 7.572e+00 + 8.683e+00

+/ − / ≈ 1/13/13 9/7/11 7/11/9 -


