
P
os
te
d
on

26
J
u
l
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
50
29
81
1.
v
1
—

T
h
is

is
a
p
re
p
ri
n
t.

V
er
si
on

of
R
ec
or
d
av
ai
la
b
le

at
h
tt
p
s:
//
d
oi
.o
rg
/1
0.
11
09
/T

N
S
M
.2
02
1.
31
30
2
90

Continuous Verification of Network Security Compliance

Claas Lorenz 1, Vera Clemens 2, Max Schrötter 2, and Bettina Schnor 2

1University of Potsdam
2Affiliation not available

October 30, 2023

Abstract

Continuous verification of network security compliance is an accepted need. Especially, the analysis of stateful packet filters

plays a central role for network security in practice. But the few existing tools which support the analysis of stateful packet

filters show runtimes in the order of minutes to hours making them unsuitable for continuous compliance verification.

In this work, we address these challenges and present a solution which is based on the application of formal methods. First, we

introduce the formal language FPL that enables a high-level human-understandable specification of the desired state of network

security. Second, we demonstrate the instantiation of a compliance process using a verification framework that analyzes the

configuration of complex networks and devices - including stateful firewalls - for compliance with FPL policies. Our evaluation

results show the scalability of the presented approach for the well known Internet2 and Stanford benchmarks as well as for large

firewall rule sets where it outscales state-of-the-art tools by a factor of over 41.
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Continuous Verification of Network Security Compliance

Claas Lorenz, Vera Clemens, Max Schrötter, and Bettina Schnor

Abstract—Continuous verification of network security com-
pliance is an accepted need. Especially, the analysis of stateful
packet filters plays a central role for network security in practice.
But the few existing tools which support the analysis of stateful
packet filters show runtimes in the order of minutes to hours
making them unsuitable for continuous compliance verification.

In this work, we address these challenges and present a
solution which is based on the application of formal methods.
First, we introduce the formal language FPL that enables a high-
level human-understandable specification of the desired state
of network security. Second, we demonstrate the instantiation
of a compliance process using a verification framework that
analyzes the configuration of complex networks and devices -
including stateful firewalls - for compliance with FPL policies.
Our evaluation results show the scalability of the presented
approach for the well known Internet2 and Stanford benchmarks
as well as for large firewall rule sets where it outscales state-of-
the-art tools by a factor of over 41.

Index Terms—Network, Security, Compliance, Formal Verifi-
cation

I. INTRODUCTION

ASSESSING the state of network security compliance is
a recurring, error-prone, and expensive task for many

organizations. Real world networks evolve over time and
technical configurations of network security policies like fire-
wall rule sets tend to become increasingly complex. This
makes it hard to reconstruct whether the actual network
configuration still fulfills the organization’s compliance rules.
Further, compliance rules are often not stated explicitely or
not in a form which makes an automatic verification possible.
Additionally, the ongoing transition towards state-of-the-art
networking with IPv6 poses a challenge for formal approaches.
The introduction of control protocols like neighbor discovery
or router advertisement and dynamic extension header chains
leads to an increase of the complexity of firewall rule sets and
consequently, the state space.

Since IPv6 traffic has been growing continuously over the
last years - currently, Google monitors a share of more than
35 %1 - it is getting more and more important to support IPv6.
This is also reflected in several research papers ([1], [2], [3],
etc.). Hence, we started the FaVe project with the motivation
to support IPv6 right away. We demonstrated how to reuse
the fast verification engine NetPlumber [4] to model IPv6
packets as well as the concept of firewalls [5]. But the support
for compliance checking was still lacking and the support of
stateful firewalls was rudementary. Our former approach for
FaVe was based on an online monitoring of state changes at

The authors are with the Department of Computer Science, University of
Potsdam, Germany, e-mails: {cllorenz, clemens}@uni-potsdam.de, {schroet-
ter, schnor}@cs.uni-potsdam.de

1https://www.google.com/intl/en/ipv6/statistics.html

runtime covering only snapshots instead of all possible states.
In this work, we replace this approach with a static analysis of
the firewall configuration to determine and model all possible
states efficiently.

Our approach leverages formal methods to automate compli-
ance verification and it offers accessible tooling for expressing
policies and modeling network topologies as well as complex
network devices like stateful packet filters or routers. For
this purpose, at first, security officials express compliance
rules in a high-level, semi-natural, and language compatible
to common Role Based Access Control (RBAC). Second,
the network configuration is formally modeled and checked
by our verification system FaVe against the security rules.
Finally, a human-understandable report is generated. Given a
sufficiently fast verification, this process can be repeated often
and hence, it reduces the obstacles refraining administrators
from changing security related configurations like firewall
rules.

As depicted in Figure 1 the compliance verification work-
flow consists of three major parts - the specification of the
security policy, the network modeling, and the compliance
verification. At first, the security official needs to specify the
security policy (1a) using abstract terms of the network, e.g.,
reachability of services or subnets.

The network administrator describes an inventory (1b)
which maps these abstract terms to their technical imple-
mentation in the network. The policy is used to generate
formal security invariants (step (2a)) that are instrumented
in a verification engine. Currently, FaVe reuses and extends
the verification engine NetPlumber [4]. In the second part, the
network topology and configurations of entities like routers,
firewalls, or switches need to be modeled using the original
device configurations as input, e.g., firewall rule sets or switch
configurations. This model covers the forwarding behaviour of
the network and is instrumented in the verification engine as
well.

Finally, after verifying the model against the security pol-
icy (3) the results are used to report the state of security
compliance to the security official (4). All steps except for
the policy and inventory definitions can be automated which
allows a continuous reverification of network security either
periodically or after configuration changes.

In this work, we make the following major contributions:

• FaVe Policy Language (FPL): A formal language featur-
ing hierarchical roles and services for expressing security
policies which are concise but remain understandable for
non-technical auditors and can be integrated into RBAC
frameworks. (see Section III)

• We extend FaVe with support for stateful packet filter

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.
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Fig. 1. Compliance verification workflow (yellow boxes) and its integration with existing management systems (blue boxes).

firewalls by a technique called state shell interweaving.
(see Section IV)

• An evaluation of FaVe’s prototype implementation with
the prominent Stanford and Internet2 benchmarks [4]
shows the scalability of the presented approach. Further,
results with the TUM benchmark [2], a large real world
stateful packet filter rule set, show that FaVe outperforms
other state-of-the-art tools more than 41-fold. (see Sec-
tion VI)

This work is structured as follows. After giving an overview
of the current state-of-the-art in Section II, we introduce the
FaVe Policy Language in Section III. Then, we provide a
formal modeling technique for stateful packet filters in Sec-
tion IV. This is followed by an overview over the verification
framework in Section V, and finally in Section VI, we evaluate
the prototypical implementation of FPL and FaVe concerning
their scalability and performance against the state-of-the-art.

II. OVERVIEW OF RELATED VERIFICATION TOOLS

There have been numerous approaches to apply formal
methods in the fields of networks and network security. On
the one hand, tools for firewall verification put an emphasis
on models for this feature rich device class which is central
for network security. On the other hand, tools for data plane
and control plane analysis focus on models for whole net-
works and typically they offer far greater performance results
than firewall verification tools. In the following, we give an
overview of these verification approaches, highlight notable
tools, and compare them to FaVe.

1) Firewall Verification Tools: Tools to analyze firewalls
follow a long tradition and leverage Finite Automata [6],
Binary Decision Diagrams (BDD) [7], Firewall Decision
Diagrams (FDD) [8], Boolean Satisfiability (SAT) [9], [1],
theorem prover [2], or Satifiability Modulo Theories (SMT)
[10], [11] as verification techniques to discover anomalies

and insecurities in packet filter rule sets and networks. Also,
support for IPv6 addresses [3] and extension header chains [1]
was shown. Later, analysis of mutable datapaths for stateful
firewalls and other middleboxes has been presented featuring
virtual state tags [2], state oracles and SMT solving [12],
predicate transformers [13], symbolic model checking [14],
and liveness verification [15].

Diekmann et altera [2] have presented an approach to verify
stateful iptables rule sets where their tool fffuu itself is
fully proven by the theorem prover Isabelle/HOL. The tool
calculates service matrices which partition the address space
concerning a pair of fixed source and destination ports. In
contrast, FaVe covers all possible port combinations in a single
run. While being more general FaVe offers a much better
performance than fffuu (cf. Section VI-C). Additionally,
the IPv6 version fffuu6 does not support extension header
chains. Instead, the tool handles unknown fields by an approx-
imation strategy leading to imprecise reachability analyses.

A recent approach to the verification of stateful network
functions is NetSMC [14]. The tool represents network device
models as state machines which are composed based on the
network’s topology. The state machines are encoded in terms
of a symbolic representation for a custom model checker
presented by the authors. For their evaluation, they use a model
for the pfSense firewall learned with their tool Alembic [16].
NetSMC supports an LTL dialect to specify policies. While
being powerful, LTL can hardly be considered suitable for
network administrators or security officials. FPL on the other
hand was designed to be understood by other people than
computer scientists (see Section III). Additionally, NetSMC
lacks support of IPv6.

These firewall verification tools have in common that they
run quite slow in the range of minutes to hours for larger
firewall rule sets as found in many corporate networks. Hence,
the ability to scale to large networks is rather limited for
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these model checking and theorem prover based approaches.
In addition, the support for IPv6 is often treated with low
priority.

In contrast to this work, none of these tools offer an
accessible compliance workflow. The only exception is given
by Microsoft’s SecGuru [10] which scales well and puts
some effort into verifying compliance to support Azure cloud
network engineers by offering Cloud Contracts in first order
logic. Yet, the approach is tightly tailored to the well structured
environment of cloud data centers. Both, the compliance
specification and the verification technique are not easily
generalizable to arbitrary networks.

2) Data Plane Verification Tools: These tools analyze
snapshots of the data plane leveraging smart, very fast, and
domain specialized data structures and algorithms including
Header Space Analysis (HSA) [17], [4], packet Equivalence
Classes [18], and Atomic Predicates [19], [20]. These ap-
proaches scale to networks with a couple of 100k forwarding
rules and some support incremental updates [4], [18] which
allow reverification times in the range of milliseconds. Further
improvements have been made by dividing snapshots into
smaller but closed portions [21], [22] which are easier to
analyze and allow massive parallelization [23]. Additional
improvements can be made by limiting on IP routed networks
instead of an arbitrary amount of header fields [24]. All in
all, some tools like Libra scale to complex networks that
contain some 100m forwarding rules [21]. Despite being
enormously fast and scalable, these data plane approaches
do not support verification of networks containing stateful
middleboxes like firewalls as stated in the conclusion of a
recent survey [25]. FaVe leverages the HSA based NetPlumber
engine [4] as verification backend and introduces capabilities
to model stateful packet filters (cf. Section IV). NetPlumber
offers simple reachability policy descriptions based on regular
expressions and is meant to be instrumented by FML [26] -
a Datalog like management language for packet flows. Both
seem to be more suitable for technical experts rather than
security officials. FPL and FaVe offer a more accessible way
to describe and verify security compliance which can be
integrated into standard RBAC workflows. AP Verifier [19]
has shown to be even faster than NetPlumber, but missed to
support incremental updates. This absent feature is added by
the approach of APKeep [20] which makes it a very promising
canidate, too, as it offers modular modeling, very fast runtimes,
and incremental updates.

A differing approach to verify network data planes is offered
by SymNet [27] which is based on symbolic execution. It
verifies equivalence between a network model consisting of
device models and an abstract policy model. The models of
packet processing devices are expressed with the imparative
Symbolic Execution Friendly Language (SEFL) [28] and the
authors ship a variety of prebuild models for different network
devices. However, unlike FPL, SymNet does not offer acces-
sible means to express security policies. Also, the tool does
not scale very well for large firewall rule sets as shown in the
evaluation in Section VI-C.

3) Tools for Control Plane Verification: Tools like Bat-
fish [29], Minesweeper [30], or Tiramisu [31] infer forwarding

behaviour from control plane configuration in routed networks.
By doing so they are able to analyze several data plane
incarnations at once instead of single snapshots. Depending
on the tool, routing protocols like BGP, OSPF, IGP, and others
may be considered. Since they do not support firewalls or other
complex devices, we do not consider these tools to be suitable
for network security verification.

III. THE FaVe Policy Language

The approaches to verify network security like NetPlumber
or AP Verifier focus on the efficiency and scaling of the
verification process while putting less effort into the definition
of accessible security policies. Yet, to achieve an auditable
security compliance both aspects are of equal importance.
Current approaches to describe policies fall short for practical
usage (see Section III-E). Therefore, in this section we present
the declarative FaVe Policy Language (FPL) that enables the
definition of essential yet auditable policies. It is based on
hierarchical roles and also allows the specification of stateful
reachability policies.

The main idea of FPL is to separate functional roles from
their technical implementation in the network and define
policy rules for these roles. The benefit of this approach is
similar to the benefit of RBAC for user access - moreover,
FPL may be integrated into RBAC frameworks that follow
NIST standardization [32] as discussed later in Section III-D.
A separation of roles and configuration details helps security
officials and administrators to focus on their strengths and
enables an independent evolution of compliance rules and their
actual implementation. I.e., on the one hand the security policy
does not require any changes when the network configuration
changes, e.g., when all web servers are migrated to another
address space or from IPv4 to IPv6. On the other hand, if
compliance mandates changes of the security policy, e.g., due
to risk management, the report shows whether any changes to
the network configuration are necessary to comply with the
new requirements.

A. Inventory Description

Before describing the security policy it is necessary to
define the network inventory which maps abstract names to
technical details. FPL’s approach for the inventory description
is inspired by network administration tools like Ansible [33]
and Puppet [34] which are widely used in practise. FPL
offers two language features to express and order terms of the
network - roles and services. Services describe transport layer
protocols and ports, e.g., HTTPS on TCP port 443 or DNS
on UDP port 53. Roles represent network entities like single
machines, groups of hosts, or even complete subnets. They
may offer services and can hold attributes like IP addresses
or domain names. Roles can be aggregated by abstract roles
called super roles which, in turn, behave like normal roles as
they can offer services or hold attributes themselves. When
describing policies one may refer to roles, super roles, and
optionally their offered services.

We define the relation between super roles and sub roles in
terms of an acyclic directed graph where a super role points to
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an arbitrary amount of sub roles. Loop-freeness allows us to
define an unambigious downstream resolution mechanism for
services and attributes. As a role may belong to multiple super
roles there might be several root nodes, i.e., nodes without
incoming edges. Attribute resolution is performed by starting
at the root nodes and by collecting all attributes and services
along a path until a leaf is reached. If an attribute supersedes
another, the more specific is propagated, e.g., when comparing
IP address ranges. Later, when verifying compliance, these
leaf roles will serve as communication endpoints and their
collected attributes will characterize traffic they emit.

Internet

Office

Web Server

Fig. 2. The example network comprising of a firewall, two switches and two
hosts.

Throughout this paper, we demonstrate several aspects of
the formal verification process by utilizing the example net-
work depicted in Figure 2. It comprises of two switched sub-
nets separated by a perimeter firewall from the Internet. One
subnet represents an internal network with office machines
whereas the other subnet offers a DMZ with a public web
server. The inventory for the example network is the following:
d e s c r i b e s e r v i c e HTTP

p r o t o c o l = ’ tcp ’
p o r t = 80

end

d e s c r i b e s e r v i c e SSH
p r o t o c o l = ’ tcp ’
p o r t = 22

end

d e s c r i b e r o l e O f f i c e
d e s c r i p t i o n = ’ Hos t s o f t h e o f f i c e ne twork . ’
i pv6 = ’2001 : db8 : : 2 0 0 / 1 2 0 ’

end

d e s c r i b e r o l e WebServer
d e s c r i p t i o n = ’ P u b l i c web s e r v e r s . ’
i pv6 = ’2001 : db8 : : 1 0 0 / 1 2 0 ’
o f f e r s HTTP
o f f e r s SSH

end

d e s c r i b e r o l e A l l C l i e n t s
d e s c r i p t i o n = ’ I n t e r n a l and e x t e r n a l c l i e n t s . ’
i n c l u d e s I n t e r n e t
i n c l u d e s O f f i c e

end

There are the two TCP based services defined - SSH and
HTTP - which listen on their default ports. Further, there
are two basic roles defined representing the Office machines
and the WebServer. Also, the web server offers HTTP and
SSH. Finally, there is a super role AllClients which contains
the Office role and the Internet. For comfort purposes FPL
includes the builtin role Internet which represents external
clients or machines that offer all sorts of services.

B. Policy Specification

In FPL, policies are described as lists of reachability rules
between roles. Policies may either follow an allow listing or
a deny listing approach but cannot mix them. This avoids
a major source of confusion and conflicts when auditing or
writing security policies in practice. All rules are of the form:

Subject Operator Object[.Service|.*]

where subject and object are roles and the operator may be
one of the following:

---> simple reachability
<--> bidirectional simple reachability
<->> stateful reachability

Simple reachability � ---> � means that traffic flows from
� to �. As purely unidirectional policies are seen rather
rarely in practice, e.g., when using data diodes, FPL offers
the bidirectional operator � <--> � for comfort purposes.
The same semantics can be achieved by stating two rules
� ---> � and � ---> �.

Finally, the stateful operator <->> allows the specifications
of policies where the traffic flows are subject to stateful com-
munication patterns. The initiator (left hand of the operator)
reaches the recipient (right hand) which in turn only sends traf-
fic reactively. The recipient must not initiate communication
on its own. This maps to protocols with stateful behaviour,
e.g., TCP based protocols, and may be seen in practice most
frequently.

Reachability policies may be expressed more precisely by
specifying a target service offered by the destination role
which is denoted by a dot, i.e., �.( where a role � offers a
service (. If multiple services should be reached, one needs to
specify a reachability rule for each target service. For comfort
purposes FPL allows to specify that all services offered by
a role can be reached: �.∗. During verification all traffic
flows must be covered by at least one explicit reachability
rule. Otherwise, compliance is not given and a violation will
be reported. Also, unreached targets that should be reached
according to a rule are reported as this indicates possible
disruptions of business continuity.

For the example from Figure 2, a security policy may look
like this:

d e s c r i b e p o l i c y ( d e f a u l t : deny )
A l l C l i e n t s <−>> WebServer . HTTP
O f f i c e <−>> WebServer . SSH
O f f i c e <−>> I n t e r n e t

end

The benefits of the grouping by super roles already appears
in this small example as there are only three policy rules
necessary. Without the AllClients super role, HTTP access
for the web server would require two separate rules - one
for the Internet and one for the Office role. The gain is even
more evident for larger examples like the policy for the UP
benchmark given in Appendix B with only 33 policy rules in
comparison to 1035 iptables rules. The policy rules are
much easier to understand and analyze. The UP benchmark
will be used in the evaluation section (cf. Section VI).
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C. Limitations

Currently, FPL does not support confidentiality policies,
e.g., VPN or TLS based data encryption between roles.
Conceptually, extending FPL’s policy specification and FaVe’s
verification is possible and it is subject to future work. Also,
NAT is considered a security feature in many real world
networks. We omitted NAT in FPL since a) its masquerading
resembles more a technical realization detail rather than a
matter of security policy, and b) IPv6 offers a tremendous
address space that obsoletes auxiliary functions like NAT in the
foreseeable future. Conceptually, it is possible to add support
to model NAT with FaVe by introducing rewriting rules into
the designated tables of the packet filter model.

D. Compatibility with Role Based Access Control

The role concept in FPL shows similarities to RBAC and,
indeed, FPL is compatible with NIST RBAC [32]. RBAC
regulates the relations between users and access permissions
through roles. User access to roles and session management
are beyond FPL’s scope and can be omitted in this dis-
cussion. Concerning RBAC’s notion of roles the Subject
Operator Object triples in FPL correspond to the permis-
sion assignment relation in Core RBAC enabling compatibility.
Super role relations in FPL are realized as a DAG and there-
fore, they can form general role hierarchies as specified by
Hierarchical RBAC. FPL’s resolution mechanism corresponds
to the heritage relation and the authorized permission function
in Hierarchical RBAC. Finally, Constrained RBAC only deals
with role access regulation and therefore, it is out of FPL’s
scope. Hence, FPL is fully compatible with NIST RBAC and
can be integrated into standard RBAC frameworks.

E. Related Policy Languages

The Flow Management Language (FML) [26] was designed
for specifying security policies for reactive controllers in
Software Defined Networks (SDN). FML offers a Datalog-
like flow-centric syntax and the order of rules does not
matter. In contrast, FPL offers abstractions to separate security
policy from technical details which improves readability as
well as maintainability. Also, FPL is designed to exclude the
specification of conflicting policies. In consequence, the order
of policy rules is not important at all which helps to avoid
subtle insecurities in practice. In comparison to FML which
relies on a conflict detection and resolving mechanism, FPL
avoids rule conflicts by design.

Another approach is given by ForestFirewall [35] which is
a tool set to generate firewall rule sets for SCADA systems.
They decouple policies from technical details by offering a
simplified zone-conduit model following the IEC 62443 stan-
dards to group assets and specify their allowed reachabilities.
Therefore, they propose an operator similar to FPL’s stateful
reachability operator, but they do not cover simple reachability.

Finally, Cisco’s TrustSec [36] offers a matrix to describe
reachability policies between fine grained segments for their
Software Defined Access products. While helping administra-
tors to keep an overview of their policies, TrustSec lacks the

ability to consisely describe policies for groups of segments.
FPL, on the other hand, provides hierarchies to group roles
which significantly reduces the policies’ sizes. Another ap-
proach is offered by the open source tool FirewallBuilder [37].
Reachability policies can be described based on a flexible
description system featuring named network objects which
encapsule technical details. Yet, the tool is limited to generate
rule sets only for a single central firewall and does not support
complex networks.

IV. MODELING STATEFUL BEHAVIOUR

As seen in Section II, most of the existing verfication tools
only support the modeling of stateless behaviour. Especially,
the fast data plane approaches like NetPlumber or AP-Verifier
are limited in their expressiveness concerning stateful policies.
On the other hand, previous efforts on firewall verification with
ad6 which is based on a model checking approach yielded
poor perfomance results ranging in the tens of minutes [1].

FaVe overcomes these shortcomings. The basic idea is to
model stateful behaviour by deriving a virtual rule set called
the state shell which only consists of stateless rules. These
rules are constructed according to a state behaviour function
and woven into the packet filter’s tables with respect to the
conservation of overall filter semantics.

This approach allows FaVe to re-use fast data plane engines
for verification while covering stateful behaviour as well.

Before going into detail of formalizing stateful packet filter
behaviour, we start with a description of the internals of
Linux iptables/netfilter [38]2. We chose iptables
for our formalization and prototype implementations for two
reasons. First, it is one of the most common packet fil-
ter implementations found in practice. And second, it is
possible to transcompile other firewall configurations, e.g.,
for OpenBSD’s pf or FreeBSD’s ipfw, to an iptables
configuration as shown in [11]. Therefore, our formalization
for iptables serves as a generic packet filter model suitable
for a large variety of real world scenarios.

A. Stateful Semantics of Linux iptables

Any packet, which enters the netfilter framework
within Linux’ network stack, traverses the conntrack table
first. Here, it is checked whether the packet is related to a
known connection. If so, the connection’s state is checked,
updated, and the packet is marked with the current state,
e.g., NEW, ESTABLISHED, in its meta data. Later, when
traversing filtering tables, e.g., FORWARD or INPUT, rules
may match the state data to make filtering decisions. If the
packet does not belong to a known connection, a shadow entry
in conntrack is created which is activated once the packet
leaves the netfilter framework, i.e., being accepted in the
INPUT or POSTROUTING chain.

The following example demonstrates that iptables offers
a great degree of freedom to administrators to implement their
policies.

2In the following, we refer to iptables/netfilter’s frontend as
iptables and to its in-kernel framework as netfilter.
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( 0 ) i p 6 t a b l e s −P FORWARD DROP
( 1 ) i p 6 t a b l e s −A FORWARD −p t c p −−d p o r t 22 \

− j ACCEPT
( 2 ) i p 6 t a b l e s −A FORWARD −s 2001 : db8 : : 2 − j DROP
( 3 ) i p 6 t a b l e s −A FORWARD −m c o n n t r a c k \

−− c s t a t e ESTABLISHED − j ACCEPT
( 4 ) i p 6 t a b l e s −A FORWARD −d 2001 : db8 : : 1 −p t c p \

−−d p o r t 80 − j ACCEPT

Initial SSH packets are handled by rule (1), and initial HTTP
packets by rule (4). Rule (3) guarantees that the backward
traffic of SSH and HTTP connections is accepted. While
subsequent HTTP packets belonging to this connection will
be handled by rule (3), the forward SSH traffic will still be
handled by rule (1) and the backward traffic by rule (3).
netfilter’s concept to tag packets with a state and check

it like a normal header field results in an arbitrary amount of
possible state checking rules in conntrack. In a sense, a new
virtual rule is introduced to the rule set for each established
connection. These virtual rules may appear at several points
in the rule set depending on the given state checking rules and
the inter-rule dependencies within the rule set.

A straightforward approach to model this behaviour would
introduce a copy with reversed directions right in front of
any state producing rule and mark it with a backward flag.
This approach falls short as it does not consider all depen-
dencies between state producing and state checking rules.
For instance, rule (2) from our example drops packets from
host 2001:db8::2. If we add a virtual rule with reversed
direction for rule (1) in front of rule (1), this rule would accept
SSH packets originating from that address whereas in reality
these packets would have been dropped before reaching the
state checking rule (3). Hence, a more sophisticated method
to model stateful behaviour of iptables is needed and it
must take into account all inter-rule dependencies.

B. Foundations of Formalization

After explaining the stateful semantics of iptables, we
turn towards its formalization. We do so by applying the
concept of Headerspaces [17] where tuples of packet header
fields are used to express flows and rule matches.

A header field tuple Cℎ consists of a header field ℎ ∈ H and
its respective value set Eℎ ⊆ Vℎ:

Cℎ = (ℎ, Eℎ)

For instance, the header field tuple (3?>AC, {80}) describes
the subset of packets with destination port 80.

To model stateful behaviour, we introduce new virtual
header fields: the backwards flag Vback (0 or 1), the state
Vstate (NEW or ESTABLISHED), as well as the ingress Viif
and egress interfaces Voif. These are no explicit protocol
header fields, but belong to the packet filter’s internal meta
data. Therefore, we call these header fields virtual.

Throughout the rest of this section we use the following rule
set for illustration which implements the FPL policy example
from Section III-B

( 0 ) i p 6 t a b l e s −P FORWARD DROP
( 1 ) i p 6 t a b l e s −A FORWARD −− in − i n t e r f a c e e t h 0 \

−s 2001 : db8 : : 0 / 3 2 − j DROP

( 2 ) i p 6 t a b l e s −A FORWARD −m c o n n t r a c k −− c t s t a t e \
ESTABLISHED − j ACCEPT

( 3 ) i p 6 t a b l e s −A FORWARD −−out− i n t e r f a c e e t h 0 \
−s 2001 : db8 : : 2 0 0 / 1 2 0 − j ACCEPT

( 4 ) i p 6 t a b l e s −A FORWARD −d 2001 : db8 : : 1 0 1 −p t c p \
−−d p o r t 80 − j ACCEPT

( 5 ) i p 6 t a b l e s −A FORWARD −s 2001 : db8 : : 2 0 0 / 1 2 0 \
−d 2001 : db8 : : 1 0 1 −p t c p −−d p o r t 22 − j ACCEPT

Rule (1) is a widely used sanity check against spoofing and
not derived from the policy directly.

The Headerspace for this example has the header fields
IPv6 source and destination address, protocol, source and
destination port, and the virtual fields backwards, state, and
ingress and egress interface. Therefore, the corresponding
Headerspace is given by (addresses in IPv6 short notation):

H = {ℎ1 = iif, ℎ2 = oif, ℎ3 = sip, ℎ4 = dip,
ℎ5 = proto, ℎ6 = sport, ℎ7 = dport,
ℎ8 = state, ℎ9 = back}

Viif = Voif = {eth0,eth1,eth2}
Vsip = Vdip = {0::0/0}
Vproto = {0, ...,255}
Vsport = Vdport = {0, ...,65535}
Vstate = {#�,, �()��!�(���}
Vback = {0, 1}
VH = {Viif,Voif,Vsip,Vdip,Vproto,Vsport,Vdport,

Vstate,Vback}
In order to improve readability we introduce the following

short notations for state values: E=4F = {#�,} and E4BC =

{�()��!�(���}.
For tuples of the same header field ℎ, the intersection is

defined as follows:

Cℎ1 ∩ C
ℎ
2 = (ℎ, EC1 ) ∩ (ℎ, EC2 ) = (ℎ, EC1 ∩ EC2 )

We define a rule A at index 8 to have a matching part <8 and
an action 08:

A8 : <8 → 08

In general, the match <8 consists of a set of header field-value
tuples

< = {(ℎ8 , Eℎ8 ) | ∀8 = 1...= : ℎ8 ∈ H, Eℎ8 ⊆ Vℎ8 }

with unique header field identifiers. Note, that for any match
all headers are initialized by default which conforms with
real world rule specifications. Those express specific matching
criteria for network packets leaving all unspecified header
fields as not relevant for that particular rule. Here, we adapt
this semantics by initializing those fields with the full set, i.e.,
Eℎ = Vℎ .

Using this formalization, rule (4) in the iptables exam-
ple is written as

A4 : { (iif,Viif), (oif,Voif), (state,Vstate)
(sip,Vsip), (dip, {2001:db8::101}),
(proto, {6}), (sport,Vsport), (dport, {80}),
(back, {0, 1})

} → 0224?C

To intersect matches, for each header field simply the
corresponding tuples are intersected:

<1 ∩<2 = {Cℎ81 ∩ C
ℎ8
2 | ∀8 = 1...= : ℎ8 ∈ H, Cℎ81 ∈ <1, C

ℎ8
2 ∈ <2}
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Since all headers are initialized either explicitly or implicitly
by definition this operation is complete.

Finally, a filtering rule set ' is defined as an ordered set of
rules:

' = {
A1 : <1 → 01,
A2 : <2 → 02,

· · ·
A= : <= → 0=

}

where the rule with the lowest index has the highest priority.

C. Modeling State using State Shell Interweaving

R

B1

s1

B2

s2

...

sn−1

Bn

I1

I2

In

Rs

B1

SR
1

B2

SR
2

...

SR
n−1

Bn

state shell
interweaving

Fig. 3. Principle of interweaving the state shell with the original rule set.

As seen before, iptables permits rule set configurations
with complex state introduction and checking dependencies.
The original rule set, as depicted in Figure 3, may have an
arbitrary mix of state checking rules B8 and blocks of state
introducing rules �8 . This complex pattern poses a central
challenge for formal verification and can be found in practice
as seen in 5 out of 39 real world rule sets from [39].

Our central idea to cope with this challenge is the following:
1) We derive a virtual rule set which covers all states that

could have been introduced by the original rule set - we
call this derivate the general reverse state shell ('.

2) Then, for any state checking rule in the original rule
set, we calculate a conditional reverse state shell ('

8

that incorporates only states relevant for that rule.
3) Finally, we interweave the conditional reverse state

shells into the rule set while preserving any dependen-
cies between state introducing and state checking rules.
The resulting rule set '( consists only of stateless rules,
but models the same header space as before.

Firstly, we convert our example iptables rule set to
a filtering rule set as defined in Section IV-B. Note that
in iptables the first rule (with an index of 0) defines
the default policy which applies if no other rule matches.

Therefore, it becomes the final rule A6 in the converted rule
set. Then, before deriving the general reverse state shell, we
collect the set of state checking rules ( ⊆ ' which will also
be used later for the conditional reverse state shells:

( = {A8 : <8 → 08 | (BC0C4, E4BC ) ∈ <8 , A8 : <8 → 08 ∈ '}

Concerning our example, rule (2) is the only state checking
rule. Hence ( = {A2 : {..., (state, E4BC ), ...} → 0224?C}.

1. General Reverse State Shell Derivation: We define the
tuple reverse function d as a helper function that swaps
fields which determine a packet’s source resp. destination
information:

d : H × VH → H × VH

d(Cℎ) =



(sip, Edip), if ℎ = dip

(dip, Esip), if ℎ = sip

(sport, Edport), if ℎ = dport

(dport, Esport), if ℎ = sport

(iif, Eoif), if ℎ = oif

(oif, Eiif), if ℎ = iif

Cℎ , else

Now, we can derive the general reverse state shell (' by
reversing the matches of all non-state-checking rules in '

and by marking them with the virtual back flag to point in
backward direction. Therefore, we introduce <12: which has
only the backwards flag set to 1.

(' = {
A8 : {d(Cℎ) | Cℎ ∈ <8} ∩ <12: → 08 | A8 : <8 → 08 ∈ '\(

}
The general reverse state shell keeps the relative order of the

rules that produce state as well as non-state-producing rules,
i.e., those with all directional fields set to their respective value
domain. Therefore, the dependencies of the original rule set
remain intact.

Concerning our example, rule (4) produces A4 in the general
reverse state shell:

A4 : { (iif,Viif), (oif,Voif), (state,Vstate)
(sip, {2001:db8::101}), (dip,Vdip)
(proto, {6}), (sport, {80}), (dport,Vdport),
(back, {1})

} → 0224?C

2. Conditional Reverse State Shell Calculations:
iptables allows multiple distinct state checking rules in
a rule set that match different sets of packets. We model
this behaviour by filtering the general reverse state shell to
contain only those rules matching packets that are relevant for
a particular state checking rule. Later, these conditional reverse
state shells replace the state checking rules in the original rule
set.

For this purpose, we calculate a set of numbered intervals �
that mark the boundaries of the rule blocks �8 as a helper by
saving the index before and after each block (as indicated by
the arrows in Figure 3). An interval (8, :, ;) represents the 8-th
block which includes the rules from index : −1 to index ; +1.
In our example, the rule set is split into two blocks by the
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state checking rule (2). Thus � = {(1, 0, 2), (2, 2, 7)}. These
boundaries are needed to determine the relative positions of
rules in the new rule set for both - the conditional reverse state
shells and the rule blocks.

The following function creates one conditional reverse state
shell for every state checking rule B; in (. The general reverse
state shell is specialized to fit the particular subset of packets
handled by this state checking rule, i.e., < 9 ∩ <; for every
A 9 : < 9 → 0 9 from ('. Only rules with non-empty matches
form the conditional reverse state shells ('

8
shown as green

boxes in Figure 3.

('
8
= { A (28+1) · |' |+ 9 : < 9 ∩ <; → <8=(0; , 0 9 ) |

A 9 : < 9 → 0 9 ∈ (',
∀(ℎ, Eℎ) ∈ < 9 ∩ <; : Eℎ ≠ ∅

}

Each state shell entry is specialized concerning the state
checking rules’ match by intersection. If any header field is
empty, there cannot exist any matching packet and the entry
can be omitted. E.g., if the state checking rule only applies
to TCP then UDP or ICMP states are not relevant for this
rule. In addition, it needs to be considered that state checking
rules may drop packets which applies to all packets in reverse
direction as well. For this purpose, we define a total order for
rule actions, i.e., 3A>? < 0224?C, and use a minimum function
to determine the right action for each rule in the conditional
reverse state shell.

Finally, the new rule’s index is set to a value that simplifies
interweaving later while preserving the relative order within
the conditional reverse state shell.

Since there is only one state checking rule in our example
rule set, we obtain only one conditional reverse state shell3:

('1 = {A (2·1+1) ·6+1=19 : <('1 ∩ <2 → 3A>?,

A (2·1+1) ·6+3=21 : <('3 ∩ <2 → 0224?C,

· · ·
}

3. State Shell Interweaving: Before we may weave the
conditional reverse state shells into the original rule set, we
need to reindex the rules within the blocks �8 to make space
for the new reverse rules.

Additionally to renumbering, the rules that apply explicitely
on unknown connections are set to act in forward direction
only. This is done by setting the backwards flag to 0. For this
purpose, we introduce < 5 F3 (analogously to <12: ) which has
only the backwards flag set to 0.

We define for each (8, :, ;) ∈ �:

�8 = { A28 · |' |+ 9 : < → 0 9 | A 9 : < 9 → 0 9 ∈ ',
: < 9 < ;,

< =

{
< 9 ∩ < 5 F3 , if (BC0C4, E=4F ) ∈ < 9
< 9 , else

}

3For the sake of brevity <('

8
denotes the match of the rule with the index

8 from the general reverse state shell (' .

The rule blocks for our example rule set are the following:

�1 = {A2·1·6+1=13 : <1 → 3A>?}
�2 = {A2·2·6+3=27 : <3 → 0224?C,

A28 : <4 → 0224?C,

A29 : <5 → 0224?C,

A30 : <6 → 3A>?}

Finally, we can interweave the conditional reverse state
shells with the rule blocks:

'( =
⋃

(8,:,;) ∈�
�8 ∪

⋃
1≤8≤ |( |

('8

As we already adapted all rules’ indices, we simply need
to collect all rules by union all blocks and conditional reverse
state shells. During these steps we also remove the virtual
state header field as state handling is projected onto the
state shells and the backwards flag.

For our example the interwoven state shell looks like this4:

'( = { A13 : <1\{(state, Estate)} → 3A>?,

A19 : (<('1 ∩ <2)\{(state, Estate)} → 3A>?,

A21 : (<('3 ∩ <2)\{(state, Estate)} → 0224?C,

· · ·
A27 : <3\{(state, Estate)} → 0224?C,

A28 : <4\{(state, Estate)} → 0224?C,

· · ·
}

The new rule set covers the stateful behaviour of
iptables and only consists of header space fields that can
be analyzed by a fast verification engine like NetPlumber.

Limitations: Our approach does not support connections
that are handled as RELATED by conntrack, e.g., FTP
or RTP data streams. Therefore, only their management or
control channels can be analyzed, e.g., SIP for RTP. In general,
complex extension modules as offered by iptables [40]
are not within the scope of this work, e.g., arbitrary pattern
matches, rate limiting, or eBPF programs.

Also, we assume that stateful traffic traverses the same inter-
faces of the firewall in both directions. While this assumption
should hold for many use cases it leaves out load balancing
scenarios that include firewall interfaces.

V. FAVE’S ARCHITECTURE

The fast verification system FaVe offers a framework to
model networks containing complex network devices and
verify packet flows against policy rules specified with FPL
(see Section III). The tool aims at supporting continuous com-
pliance verification by offering a large degree of automation
for model creation, model aggregation, and fast reverification.
FaVe is based on previous work where the concepts for
modeling of stateless firewalls and IPv6 support were added
to NetPlumber (see [5]). In this work, the system is extended
by a compliance checking component and the support to
model stateful firewalls (following the approach presented in
Section IV).
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Fig. 4. Overview of FaVe’s modeling pipeline.

The Model Aggregator

As depicted in Figure 4 FaVe consists of an incremental
modeling pipeline, configuration modeling engines, and a
verification backend. At first, the modeling engines parse net-
work device configurations and instantiate predefined model
templates. Currently, these templates include complex device
classes like routers, switches, packet filters, and hosts. Then,
these device models are aggregated and stored. Afterwards, the
model is sent to the verification backend where it is verified
against the security policy specifications. If the verification
backend supports incremental updates upon a change of a
device model, the aggregator calculates an increment and feeds
it into the verification engine. In case of NetPlumber, this is
the way how FaVe and NetPlumber interact.

Modeling devices and networks in FaVe

Modeling Engine

Config
Parser

Model
Generator

Model
Template

Config ModelAST

Fig. 5. Internals of a modeling engine.

For network administrators modeling network devices in
FaVe is easy. Both, stateless and stateful capabilities are
handled completely automatically by the modeling engines
and the model aggregator. Figure 5 shows the components of
a modeling engine. First, a device configuration is parsed and
the resulting abstract syntax tree is used to instantiate a model
template for that particular device type. Model templates
consist of an inner and an outer part, e.g., as shown in
Figure 6 for the packet filter model. The outer part offers
ports to interconnect device models with respect to the network
topology whereas the inner model consists of a branchable
pipeline of consecutive tables. Each table holds a list of
prioritized rules that operate on a match-action-semantics.
During the verification process the incoming packet flows are
distributed over the rule set based on the dependencies between
the match parts. Then, these sub flows are processed based

4For more details on the particular header fields refer to Appendix A.

on the respective set of actions, e.g., forwarded, rewritten, or
dropped.

Figure 6 shows how the example network from Figure 2
is modeled in FaVe. Each endpoint is represented by a host,
i.e., the Internet, the Office, and the WebServer. The DMZ and
Office networks each consist of a switch and the firewall is
realized as a packet filter model. The internal pipeline of the
packet filter comprises of six tables. At first, traffic is selected
based on whether it is destined for the packet filter itself
or to be forwarded. So, afterwards, packet flows are being
processed by an input or forwarding filter table. They hold
the respective rulesets specified in the firewall configuration as
well as the interwoven state shell as explained in Section IV.
For example, the INPUT and FORWARD chains from Linux’
iptables configurations directly map onto the input and
forward filter tables. Additionally, the model offers an output
filter table for traffic originating from the firewall. This enables
the verification of policy rules with roles that include the
firewall. After filtering forwarded and outgoing traffic a routing
table determines where to send flows. Finally, a post routing
table emits traffic through the firewalls outer ports based on
the routing decision. Also, this table ensures that egress traffic
is not passed throught its ingress port which prevents loops.

Stateful Compliance Checks with FaVe

Finally, we want to check for compliance with FPL policies.
For this purpose, it is necessary to simulate traffic propagation
for each FPL role and to analyze the resulting reachability
trees concerning their conformance with the FPL policy rules.

Each policy rule � >? � translates to a set of constraints
that need to hold for all paths between � and �:

---> At least one path from � to � must exist.
<->> At least one path from � to � must exist.

In addition, paths from � to � for backward
traffic must exist which is indicated by the
backwards flag set to 1. Also, no path
with initialization traffic in backwards direc-
tion is allowed. This traffic is marked by the
backwards flag set to 0.

default There must not exist any path from � to �

(default: deny).

If a service is consumed, i.e., �.(, or the operands hold
attributes, additional packet constraints are applied for a more
precise analysis.

Implementation of the Prototype

FaVe’s prototype is implemented in Python and reuses the
publicly available NetPlumber verification backend [41] which
is implemented in C/C++.5 We chose NetPlumber due to
its natural modeling of networks and packet flows, its high
pace, and its availability as open source code. Most recent
approaches from literature, like APKeep [20], seem promising,
too, and we are interested to compare them in the future.

5We added several bug fixes and code enhancements to NetPlumber which
will be made publicly available.
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Fig. 6. Building blocks of the example network’s model in FaVe with insights into the packet filter model.

The modeling engines are realized as small standalone tools
which communicate over UNIX domain sockets with the Ag-
gregator component and include models for routers with Cisco
ACLs, switches, and stateful ip6tables packet filters. The
Aggregator is implemented as a two-threaded daemon with a
frontend thread that accepts device models from the modeling
engines and a backend thread that aggregates the network
model, calculates increments, and instruments NetPlumber.

NetPlumber offers building blocks to model rule tables with
attached ports which can be interconnected by directed links.
Additionally, flow generators to inject packets and probes to
analyze traffic can be attached to ports as well. NetPlumber’s
tables automatically derive dependencies between rules and
traffic is propagated accordingly.

As seen in Figure 6, we can use these modeling blocks
to build more complex device models and networks, and to
calculate reachability trees needed for policy verification.

VI. EVALUATION

For the evaluation, we ran four benchmarks that show the
approach’s real-world usefulness and scalability, especially
in comparison with state-of-the-art tools.8 Table I provides
an overview of the benchmarks’ characteristics and Table II
shows the specification of the machine and software which we
used for our measurements.

First, the UP benchmark tests the applicability in IPv6
networks with stateful firewalls. It models a medium sized
yet complex campus network which can be hardly inspected
manually. Second, we show the scalability concerning large
networks by running the well known Internet2 and Stanford
workloads [41]. Third, we compare FaVe against the available
open source firewall verification tools fffuu [2] and SymNet
[27]. For the comparison, we use the TUM workload from [39]
which was already used by Diekmann et al. for the evaluation
of fffuu. The TUM benchmark is a real world stateful packet
filter rule set consisting of 3,795 rules.

6The original paper speaks of more than 757,000 forwarding and 1,500
ACL rules [4]. We reproduced their results which included a preprocessing
step that compressed these rules down to 8,792 in about 35 seconds. Without
compression the benchmark took 28,280 seconds. The scripted reproduction
can be found here: https://github.com/cllorenz/hassel-reproduction.

7Analogously to the Stanford rules a preprocessing step compresses the
original rule set of more than 126,000 rules down to 77,841.

8The benchmarks including policies and configurations will be shipped
along with our prototype upon acceptance of this work.

A. Compliance Verification of a Campus Network

The UP benchmark is a synthetic representation of an
university campus network with a large perimeter firewall
and several subnets containing different hosts and services9.
The firewall rule sets follow best practices and the network
topology resembles real-world setups. This benchmark shows
FaVe’s ability to verify compliance for complex networks.

As shown in Table I, the UP benchmark consists of a
central perimeter firewall and 23 switched subnets. These
include a DMZ with 8 hosts, a WIFI domain, and 21 generic
subnets with 6 hosts each. Each host comprises a small firewall
for incoming and outgoing traffic. Together with the main
firewall’s ruleset of 1,035 rules, all firewall rules sum up
to 3,396. This does not include the state shell yet as it is
calculated within FaVe at runtime and therefore, it is not part
of the configuration known to the administrator. The firewall
rule sets consist of a large variety of header fields as it includes
several rules that realize IPv6 specific requirements like for
example filtering ICMPv6 traffic [42]. Policy checks sum up
to 11,902 including 4,953 state checks.

In the experiment, we measure different phases of the
verification process. First, we measure the network model ini-
tialization and the calculation of reachabilities with FaVe and
NetPlumber respectively. Second, we evaluate the verification
of the compliance checks as specified by the FPL policy using
FaVe. Compliance checks go beyond NetPlumber’s abilities
and therefore, we can present only results for FaVe.

The initialization phase covers all steps FaVe conducts to
build the model. During this phase, FaVe aggregates and
transforms models, which includes the interweaving of the
state shell, calculates increments, and instruments NetPlumber
as its verification engine. After that, all steps to calculate
reachabilities are performed, i.e., for each role a source node is
connected to the network model and the propagation of packet
flows is calculated.

To determine the runtime overhead of FaVe compared
to NetPlumber we implemented a dumping function. Since
NetPlumber is not capable to deal with complex network
devices like firewalls, we use FaVe for the preprocessing
step which results in an aggregated model and we dump
the network in a form which is suitable for NetPlumber. For
the measurements with NetPlumber, we load the aggregated

9The policy specification of the UP benchmark is given in Appendix B.
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TABLE I
OVERVIEW OF THE BENCHMARKS.

Benchmark UP Stanford Internet2 TUM
Network 1 firewall, 23 switches, 130

hosts, 1 dummy
16 routers 9 routers 1 firewall

Rules 3,396 (1,035 in main firewall) 8,7926 77,8417 3,795
Routing IPv6 IPv4 IPv4 IPv4
Roles 71 16 9 -
Policy Checks 11,902 (w. 4,953 state checks) 256 81 -
Stateful Rules yes no no yes
Header Fields iif, oif, proto, sip6,

dip6, sport, dport,
limit, nxt_hdr, rtsegs,
rttype, icmp6type, back

vlan, sip, dip, proto,
dport, tcp flags

vlan, dip iif, oif, vlan, sip,
dip, proto, sport,
dport, back

TABLE II
SPECIFICATION OF THE MEASUREMENT ENVIRONMENT.

CPU 2x Intel Xeon E5-2650v4 à 12 Cores, 2.2 GHz
Platform x86_64 Memory 64 GB OS Debian Stretch,

Linux v4.9
Software Python v2.7, GCC v6.3.0, OpenJDK v1.8, Scala v2.11.7,

GHC v8.0.1

model directly into NetPlumber without involving FaVe. Also
compliance checking is not supported by NetPlumber but
performed by FaVe. Note that the actions done by NetPlumber
are also performed in conjunction with FaVe and therefore,
they are implicitly included in the runtime result of FaVe’s
measurements.
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Fig. 7. Average runtimes after ten repetitions of the UP benchmark (in ms).
The indices for FaVe indicate the number of backend instances as well as
the number of threads used to check for compliance. For each experiment the
coefficient of variation of the total run time is below 3 %.

As seen in Figure 7 the overall runtime (FaVe 1) is less
than a minute (36.15 seconds) and stable with a low standard
deviation of 1.18 seconds. For the medium sized UP network,
FaVe’s overhead including compliance checks is about 23%
which allows a periodic reverification. The number of roles
is important for the runtime behavior of the compliance
checks since this results in a quadratic amount of conformity
checks to be verified. Figure 7 shows that the runtime for
11,902 conformity checks (see the green part in the FaVe1
measurement) is about four seconds. Hence, FaVe performs
well even for a large amount of roles.

In addition, we demonstrate performance gains that can be
achieved by parallelization. For this purpose we introduce
multiple NetPlumber backend instances that are initialized
identically but calculate reachability trees for the different
source nodes. The workload is distributed in a round robin
manner with precalculated buckets. Also, we show that check-
ing for compliance benefits from parallelization as each reach-
ability tree can be checked independently. The measurements
with multiple backend instances show that FaVe benefits from
parallelization. Improvements for the reachability calculations
range from 18 % to 66 % for each doubling of the number of
instances. The overall gains sum up to a factor of 3.7 for FaVe
and further support periodic reverifications.

B. Scaling to large Networks
Next, we show FaVe’s scalability for large networks by

measuring the well known real world Stanford and Internet2
workloads [41]. As listed in Table I, these IPv4 routed net-
works consist of a set of routers with 8,792 resp. 77,841 rules.
The original paper speaks of more than 757,000 forwarding
and 1,500 ACL rules [4] for the Stanford workload. We
reproduced their results which included a preprocessing step
that compressed these rules down to 8,792 in about 35 seconds.
Without compression the benchmark took 28,280 seconds.
Analogously, the original Internet2 rule sets of more than
126,000 rules are compressed down to 77,84110.

We augmented the benchmarks by specifying an FPL policy
for the compliance verification. The policy checks pairwise
reachability, i.e., � <--> � for all roles � and �. Therefore,
we added an FPL role for each router to represent external
adjacent networks connected to that router.

Table III shows that for the Stanford benchmark, FaVe’s
overall runtime is below 2.3 seconds which is still very
fast. The low number of roles results in a low amount of
reachabilities to be calculated and only few compliance rules
to be checked. Therefore, the reachability phase is short for
FaVe and NetPlumber alike. FaVe’s overhead comes from the
initialization which includes modeling and instrumentation of
NetPlumber. A similar behaviour has been seen for the UP
benchmark before.

For the even larger Internet2 benchmark, FaVe’s runtime
is less than 2 minutes. Since there are only few policy

10The scripted reproductions can be found here: https://github.com/cllorenz/
hassel-reproduction.
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TABLE III
MEAN RUNTIMES AFTER TEN REPETITIONS FOR THE STANFORD AND

INTERNET2 BENCHMARKS (IN SECONDS). THE COEFFIENTS OF
VARIATION ARE BELOW 3.3 % RESP. 1 %.

Tool Init Reach Compl. Total
Stanford

FaVe 2.08 0.11 0.08 2.28
NetPlumber 0.50 0.11 - 0.61

Internet2
FaVe 47.85 65.00 0.55 113.39
NetPlumber 31.86 56.44 - 88,30

checks necessary, the compliance phase only takes about half a
second. Again, a major part of FaVe’s overhead happens during
initialization. The reason for the runtime difference for the
reachability phase is less obvious. Profiling revealed a better
caching behaviour for NetPlumber when loading an already
aggregated and dumped model instead of an instrumentation
through FaVe. We opted to keep FaVe’s more natural way of
modeling. E.g., FaVe mandates to define device models before
connecting their ports while NetPlumber does not impose such
restrictions.

We conclude that FaVe scales well to large networks in
accordance to NetPlumber as its underlying fast verification
engine while the overhead for compliance checking is insignif-
icant.

C. Comparison with State-of-the-Art

Finally, we compare FaVe against the public available tools
fffuu [2] and SymNet [27], since both tools are able to ver-
ify stateful packet filters (cf. Section II). For the evaluation of
fffuu, Diekmann et al. used the so-called TUM benchmark.
This is a real world firewall rule set from [39] with 3,795
IPv4 rules. Since fffuu only supports reachability analysis
for pairs of fixed source and destination ports, we limit the
generated traffic in FaVe and SymNet to the same pairs as
well.

TABLE IV
TUM BENCHMARK RESULTS AFTER TEN REPETITIONS (IN SECONDS).

Tool Mean Median StdDev.
FaVe 2.42 2.42 0.05
fffuu 100.48 100.49 0.08
SymNet oom oom oom

Following the methodology of Diekmann et al., first, we
instrumented fffuu to analyze the rule set concerning the
reachability from TCP port 10000 to port 80.

The measurement includes fffuu’s rule set transforma-
tions and a single calculation of a service reachability matrix
which serves a similar purpose as FaVe’s reachability trees.
FaVe is instrumented with a packet filter model and the same
rule set. The measurements for FaVe include the initialization
phase and the calculation of a reachability tree. As shown in
Table IV, FaVe outperforms fffuu by a factor of more than
41 (2.42 s versus 100.48 s).

Second, we compare FaVe against SymNet. Since its public
implementation could not load the workload directly due to

missing features like VLAN handling, multiport parsing, and
some header fields, we enhanced the code by implementing
these features11. SymNet ran out of 64 GB of memory after
about 15 minutes. Additionally, we conducted measurements
with the original code and a stripped down version of the
TUM rule set where we removed match fields that made our
modifications necessary in the first place. Again, SymNet ran
out of memory.

VII. CONCLUSION

This work shows that an automatic verification process
of security policies stated in a high-level and semi-natural
language is feasable and scalable.

The policy language FPL was introduced which describes
compliance rules in terms of an abstract inventory that is
understandable by non-technical and technical people alike. Its
main achievement lays in the separation of technical details
from the policy description which leads to small and easily
reviewable policies. Policy management with FPL is fully
compatible with standardized RBAC which enables a seamless
integration into common security management workflows.

For the fast verfication of stateful packet filters like
iptables, we introduced the state shell interweaving - a
modeling technique that transforms the stateful behaviour into
stateless rules which enables the re-use of fast data plane
approaches. Therefore, the prototype implementation of FaVe
leverages the HSA based NetPlumber engine as verification
backend.

The evaluation results confirm that network security verifi-
cation benefits from data plane analysis - even in the presence
of state, IPv6, and several header fields. For the UP benchmark
which represents a university campus with 3,396 firewall rules,
FaVe’s runtime is 36.15 seconds, including 11,902 policy
conformity checks. Further, we augmented the well known
Internet2 and Stanford benchmarks with an FPL policy for
compliance checking. Also for these large networks, FaVe
scales well in accordance to NetPlumber as its underlying
fast verification engine while the overhead for compliance
checking is insignificant. In comparison to approaches from
literature FaVe achieves a 41-fold speedup when verifying a
large stateful packet filter rule set.

In conclusion, FPL and FaVe offer a direct benefit for
security officials to continuously verify the status of the
security compliance - also for complex networks.
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APPENDIX A
EXAMPLE OF THE STATE SHELL INTERWEAVING

The following rule set implements the policy from the
introductory example in Section III (eth0 represents the
interface facing the Internet):

( 0 ) i p 6 t a b l e s −P FORWARD DROP
# s a n i t y check a g a i n s t s p o o f i n g
# ( n o t d e r i v e d from p o l i c y d i r e c t l y )

( 1 ) i p 6 t a b l e s −A FORWARD −− in − i n t e r f a c e e t h 0 \
−s 2001 : db8 : : 0 / 3 2 − j DROP

( 2 ) i p 6 t a b l e s −A FORWARD −m c o n n t r a c k −− c t s t a t e \
ESTABLISHED − j ACCEPT

( 3 ) i p 6 t a b l e s −A FORWARD −−out− i n t e r f a c e e t h 0 \
−s 2001 : db8 : : 2 0 0 / 1 2 0 − j ACCEPT

( 4 ) i p 6 t a b l e s −A FORWARD −d 2001 : db8 : : 1 0 1 −p t c p \
−−d p o r t 80 − j ACCEPT

( 5 ) i p 6 t a b l e s −A FORWARD −s 2001 : db8 : : 2 0 0 / 1 2 0 \
−d 2001 : db8 : : 1 0 1 −p t c p −−d p o r t 22 − j ACCEPT

A quick analysis of the rule set shows that the minimal set
of required header fields contains the inbound and outbound
interfaces, the IPv6 source and destination addresses, the
protocol field, source and destination ports, and conntrack’s
state field. Additionally, we add the virtual backwards flag:

H = {ℎ1 = iif, ℎ2 = oif, ℎ3 = sip, ℎ4 = dip,
ℎ5 = proto, ℎ6 = sport, ℎ7 = dport,
ℎ8 = state, ℎ9 = back}

Viif = Voif = {eth0,eth1,eth2}
Vsip = Vdip = {0::0/0}
Vproto = {0, ...,255}
Vsport = Vdport = {0, ...,65535}
Vstate = {NEW,ESTABLISHED}
Vback = {0, 1}
VH = {Viif, Voif, Vsip, Vdip, Vproto, Vsport, Vdport,

Vstate, Vback}
After parsing the rule set we obtain its formal representation
' with |' | = 6. Note that the rule written first in the rule set is
the default rule in iptables which applies if no other rule
matches. Therefore, it needs to be put in the end of our rule
list:

' =
{
A1 : {(iif, {eth0}) , (oif, Voif) ,

(sip, {2001:db8::0/32}) , (dip, Vdip) ,
(proto, Vproto) , (sport, Vsport) , (dport, Vdport) ,
(state, Vstate) , (back, Vback)
} → 3A>?,

A2 : {(iif, Viif) , (oif, Voif) , (sip, Vsip) , (dip, Vdip) ,
(proto, Vproto) , (sport, Vsport) , (dport, Vdport) ,
(state, {ESTABLISHED}) , (back, Vback)
} → 0224?C,

A3 : {(iif, Viif) , (oif, {eth0}) ,
(sip, {2001:db8::200/120}) , (dip, Vdip) ,
(proto, Vproto) , (sport, Vsport) , (dport, Vdport) ,
(state, Vstate) , (back, Vback)
} → 0224?C,

A4 : {(iif, Viif) , (oif, Voif) ,
(sip, Vsip) , (dip, {2001:db8::101}) ,
(proto, {6}) , (sport, Vsport) , (dport, {80}) ,
(state, Vstate) , (back, Vback)
} → 0224?C,

A5 : {(iif, Viif) , (oif, Voif) ,
(sip, {2001:db8::200/120}) ,
(dip, {2001:db8::101}) ,
(proto, {6}) , (sport, Vsport) , (dport, {22}) ,
(state, Vstate) , (back, Vback)
} → 0224?C,

A6 : {(iif, Viif) , (oif, Voif) , (sip, Vsip) , (dip, Vdip) ,
(proto, Vproto) , (sport, Vsport) , (dport, Vdport) ,
(state, Vstate) , (back, Vback)
} → 3A>?}

Next, we collect the state checking rules:

( =
{
A2 : {(iif, Viif) , (oif, Voif) , (sip, Vsip) , (dip, Vdip) ,

(proto, Vproto) , (sport, Vsport) , (dport, Vdport) ,
(state, {ESTABLISHED}) , (back, Vback)
} → 0224?C}

1. General Reverse State Shell Derivation: First, we have
to subtract the state checking rule (A2) from the initial rule set.
By reversing the directional fields and setting the backwards
flag we obtain the general reverse state shell:

(' =
{
A1 : {(iif, Voif) , (oif, {eth0}) ,

(sip, Vdip) , (dip, {2001:db8::0/32}) ,
(proto, Vproto) , (sport, Vsport) , (dport, Vdport) ,
(state, Vstate) , (back, {1})
} → 3A>?,

A3 : {(iif, {eth0}) , (oif, Viif) ,
(sip, Vdip) , (dip, {2001:db8::200/120}) ,
(proto, Vproto) , (sport, Vsport) , (dport, Vdport) ,
(state, Vstate) , (back, {1})
} → 0224?C,

A4 : {(iif, Viif) , (oif, Voif) ,
(sip, {2001:db8::101}) , (dip, Vsip) ,
(proto, {6}) , (sport, {80}) , (dport, Vsport) ,
(state, Vstate) , (back, {1})
} → 0224?C,

A5 : {(iif, Viif) , (oif, Voif) ,
(sip, {2001:db8::101}) ,
(dip, {2001:db8::200/120}) ,
(proto, {6}) , (sport, {22}) , (dport, Vsport) ,
(state, Vstate) , (back, {1})
} → 0224?C,

A6 : {(iif, Viif) , (oif, Voif) , (sip, Vsip) , (dip, Vdip) ,
(proto, Vproto) , (sport, Vsport) , (dport, Vdport) ,
(state, Vstate) , (back, {1})
} → 3A>?}

2. Conditional Reverse State Shell Calculations: Before
filtering (' for each state checking rule in ( we calculate the
block boundaries as intervals � = {(1, 0, 2), (2, 2, 7)}. Now, we
can calculate the conditional reverse state shells by intersecting
the general reverse state shell (' with the state checking rule
A2 from (:
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('1 =
{
A(2·1+1) ·6+1=19 :{(iif, Voif) , (oif, {eth0}) , (sip, Vdip) ,

(dip, {2001:db8::0/32}) , (proto, Vproto) ,
(sport, Vsport) , (dport, Vdport) ,
(state, {ESTABLISHED}) , (back, {1})
} → 3A>?,

A(2·1+1) ·6+3=21 :{(iif, {eth0}) , (oif, Viif) , (proto, Vproto) ,
(dip, {2001:db8::200/120}) , (sip, Vdip) ,
(sport, Vsport) , (dport, Vdport) ,
(state, {ESTABLISHED}) , (back, {1})
} → 0224?C,

A(2·1+1) ·6+4=22 :{(iif, Voif) , (oif, Viif) ,
(sip, {2001:db8::101}) , (dip, Vsip) ,
(proto, {6}) , (sport, {80}) , (dport, Vsport) ,
(state, {ESTABLISHED}) , (back, {1})
} → 0224?C,

A(2·1+1) ·6+5=23 :{(iif, Viif) , (oif, Voif) ,
(sip, {2001:db8::101}) ,
(dip, {2001:db8::200/120}) ,
(proto, {6}) , (sport, {22}) , (dport, Vsport) ,
(state, {ESTABLISHED}) , (back, {1})
} → 0224?C,

A(2·1+1) ·6+6=24 :{(iif, Viif) , (oif, Voif) , (sip, Vsip) ,
(dip, Vdip) , (proto, Vproto) , (sport, Vsport) ,
(dport, Vdport) , (state, {ESTABLISHED}) ,
(back, {1})
} → 3A>?}

As the state checking rule accepts all known connections the
original rules’ actions are used for the conditional reverse state
shell. The indices are projected between the first rule block
(i.e., 2 · 1 · 6+ 9 = 12+ 9) and the second rule block (i.e., 2 · 2 ·
6 + 9 = 24 + 9). Therefore, when interweaving the conditional
reverse state shells they will replace the original state checking
rule without disturbing the original filter semantics.

3. State Shell Interweaving: Before interweaving the con-
ditional reverse state shells we need to calculate the blocks of
state producing and stateless rules. The first interval (1, 0, 2)
consists of one rule and thus:

�1 =
{
A2·1·6+1=13 (iif, {eth0}) , (oif, Voif) ,

(sip, {2001:db8::0/32}) , (dip, Vdip) ,
(proto, Vproto) , (sport, Vsport) , (dport, Vdport) ,
(state, Vstate) , (back, Vback)
} → 3A>?}

The second interval (2, 2, 7) consists of four rules and thus:

�2 =
{
A2·2·6+3=27 :{(iif, Viif) , (oif, {eth0}) ,

(sip, {2001:db8::200/120}) , (dip, Vdip) ,
(proto, Vproto) , (sport, Vsport) , (dport, Vdport) ,
(state, Vstate) , (back, Vback)
} → 0224?C,

A2·2·6+4=28 :{(iif, Viif) , (oif, Voif) ,
(sip, Vsip) , (dip, {2001:db8::101}) ,
(proto, {6}) , (sport, Vsport) , (dport, {80}) ,
(state, Vstate) , (back, Vback)
} → 0224?C,

A2·2·6+5=29 :{(iif, Viif) , (oif, Voif) ,

(sip, {2001:db8::200/120}) ,
(dip, {2001:db8::101}) ,
(proto, {6}) , (sport, Vsport) , (dport, {22}) ,
(state, Vstate) , (back, Vback)
} → 0224?C,

A2·2·6+6=30 {(iif, Viif) , (oif, Voif) , (sip, Vsip) , (dip, Vdip) ,
(proto, Vproto) , (sport, Vsport) , (dport, Vdport) ,
(state, Vstate) , (back, Vback)
} → 3A>?}

As there is no explicit NEW rule the backwards flag remains
unset for all rules in these blocks.

Finally, by collecting all rules from the blocks �8 for each
(8, :, ;) ∈ � as well as all rules from the conditional reverse
state shells ('

8
with 1 ≤ 8 ≤ |( | and by removing the state

field from each rule match we obtain the new rule set:
'( =

{
A13 : {(iif, {eth0}) , (oif, Voif) ,

(sip, {2001:db8::0/32}) , (dip, Vdip) ,
(proto, Vproto) , (sport, Vsport) , (dport, Vdport) ,
(back, Vback)
} → 3A>?,

A19 : {(iif, Voif) , (oif, {eth0}) , (sip, Vdip) ,
(dip, {2001:db8::0/32}) , (proto, Vproto) ,
(sport, Vsport) , (dport, Vdport) ,
(back, {1})
} → 3A>?,

A21 : {(iif, {eth0}) , (oif, Viif) , (sip, Vdip) ,
(dip, {2001:db8::200/120}) ,
(proto, Vproto) , (sport, Vsport) , (dport, Vdport) ,
(back, {1})
} → 0224?C,

A22 : {(iif, Voif) , (oif, Viif) ,
(sip, {2001:db8::101}) , (dip, Vsip) ,
(proto, {6}) , (sport, {80}) , (dport, Vsport) ,
(back, {1})
} → 0224?C,

A23 : {(iif, Viif) , (oif, Voif) ,
(sip, {2001:db8::101}) ,
(dip, {2001:db8::200/120}) ,
(proto, {6}) , (sport, {22}) , (dport, Vsport) ,
(back, {1})
} → 0224?C,

A24 : {(iif, Viif) , (oif, Voif) , (sip, Vsip) , (dip, Vdip) ,
(proto, Vproto) , (sport, Vsport) , (dport, Vdport) ,
(back, {1})
} → 3A>?,

A27 : {(iif, Viif) , (oif, {eth0}) ,
(sip, {2001:db8::200/120}) , (dip, Vdip) ,
(proto, Vproto) , (sport, Vsport) , (dport, Vdport) ,
(back, Vback)
} → 0224?C,

A28 : {(iif, Viif) , (oif, Voif) ,
(sip, Vsip) , (dip, {2001:db8::101}) ,
(proto, {6}) , (sport, Vsport) , (dport, {80}) ,
(back, Vback)
} → 0224?C,

A29 : {(iif, Viif) , (oif, Voif) ,
(sip, {2001:db8::200/120}) ,
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(dip, {2001:db8::101}) ,
(proto, {6}) , (sport, Vsport) , (dport, {22}) ,
(back, Vback)
} → 0224?C,

A30 {(iif, Viif) , (oif, Voif) , (sip, Vsip) , (dip, Vdip) ,
(proto, Vproto) , (sport, Vsport) , (dport, Vdport) ,
(back, Vback)
} → 3A>?}

This rule set consists of simple rules that can be analyzed by
fast verification engines.

APPENDIX B
POLICY SPECIFICATION OF THE UP BENCHMARK

In the UP policy file appear 71 different roles. Most of them
represent sub-organizations, others stand for network typical
components like a DMZ or a Perimeter Gateway Firewall
(PGF). The corresponding iptables rule set consists of
1035 rules which is much harder to inspect manually.

1d e s c r i b e p o l i c i e s ( d e f a u l t : deny )
2A l l <−−> DMZDNSServer
3
4DMZAdminConsole <−>> PGF
5DMZAdminConsole <−>> DMZ
6DMZ <−−> DMZ
7
8I n t e r n e t <−−> DMZPubl icServers
9I n t e r n e t <−>> S u b n e t s P u b l i c S e r v e r s
10S u b n e t C l i e n t s <−>> I n t e r n e t
11S u b n e t C l i e n t s <−>> DMZ
12S u b n e t C l i e n t s <−>> S u b n e t s P u b l i c S e r v e r s
13
14Wif i <−>> I n t e r n e t
15Wif i <−>> DMZ
16Wif i <−>> S u b n e t s P u b l i c S e r v e r s
17Wif i <−−> Wif i
18
19A p i C l i e n t s <−>> A p i S e r v e r s
20A s t a C l i e n t s <−>> A s t a S e r v e r s
21B o t a n C l i e n t s <−>> B o t a n S e r v e r s
22ChemCl ien t s <−>> ChemServers
23C s C l i e n t s <−>> C s S e r v e r s
24G e o l C l i e n t s <−>> G e o l S e r v e r s
25G e o g C l i e n t s <−>> GeogServe r s
26H g p C l i e n t s <−>> HgpServers
27H p i C l i e n t s <−>> H p i S e r v e r s
28I n t e r n C l i e n t s <−>> I n t e r n S e r v e r s
29J u r a C l i e n t s <−>> J u r a S e r v e r s
30L i n g C l i e n t s <−>> L i n g S e r v e r s
31M a t h C l i e n t s <−>> MathSe rve r s
32MmzClients <−>> MmzServers
33P h y s i k C l i e n t s <−>> P h y s i k S e r v e r s
34P o g s C l i e n t s <−>> P o g s S e r v e r s
35P s y c h C l i e n t s <−>> P s y c h S e r v e r s
36S q C l i e n t s <−>> S q S e r v e r s
37U b C l i e n t s <−>> UbServe r s
38W e l c C l i e n t s <−>> WelcSe rve r s
39end


