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Abstract

The automatic detection, counting and tracking of individual and flocked chickens in the poultry industry is of paramount

to enhance farming productivity and animal welfare. Due to methodological difficulties, such as the complex background of

images, varying lighting conditions, and occlusions from e.g., feeding stations, water nipple stations and barriers in the chicken

rearing production floor, it is a challenging task to automatically recognize and track birds using computer software. Here,

a deep learning model based on You Only Look Once (Yolov5) is proposed for detecting domesticated chickens from videos

with varying complex backgrounds. A multiscale feature is being adapted to the Yolov5 network for mapping modules in the

counting and tracking of the trajectories of the chickens. The Yolov5 network was trained and tested on our dataset which

resulted in an enhanced tracking precision accuracy. Using Kalman Filter, the proposed model was able to track multiple

chickens simultaneously with the focus to associate individual chickens across the frames of the video for real time and online

applications. By being able to detect the chickens amid diverse background interference and counting them precisely along with

tracking the movement and measuring their travelled path and direction, the proposed model provides excellent performance for

on-farm applications. Artificial intelligence enabled automatic measurements of chicken behavior on-farm using cameras offers

continuous monitoring of the chicken’s ability to perch, walk, interact with other birds and the farm environment, as well as

the assessment of dustbathing, thigmotaxis, and foraging frequency, which are important indicators for their ability to express

natural behaviors. This study highlights the potential of automated monitoring of poultry through the usage of ChickTrack

model as a digital tool in enabling science-based animal husbandry practices and thereby promote positive welfare for chickens

in animal farming.
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Abstract  8 
 9 
The automatic detection, counting and tracking of individual and flocked chickens in the poultry 10 

industry is of paramount to enhance farming productivity and animal welfare. Due to 11 
methodological difficulties, such as the complex background of images, varying lighting 12 

conditions, and occlusions from e.g., feeding stations, water nipple stations and barriers in the 13 
chicken rearing production floor, it is a challenging task to automatically recognize and track birds 14 
using computer software. Here, a deep learning model based on You Only Look Once (Yolov5) is 15 
proposed for detecting domesticated chickens from videos with varying complex backgrounds. A 16 

multiscale feature is being adapted to the Yolov5 network for mapping modules in the counting 17 
and tracking of the trajectories of the chickens. The Yolov5 network was trained and tested on our 18 

dataset which resulted in an enhanced tracking precision accuracy. Using Kalman Filter, the 19 
proposed model was able to track multiple chickens simultaneously with the focus to associate 20 
individual chickens across the frames of the video for real time and online applications.  By being 21 

able to detect the chickens amid diverse background interference and counting them precisely 22 
along with tracking the movement and measuring their travelled path and direction, the proposed 23 

model provides excellent performance for on-farm applications. Artificial intelligence enabled 24 

automatic measurements of chicken behavior on-farm using cameras offers continuous monitoring 25 

of the chicken's ability to perch, walk, interact with other birds and the farm environment, as well 26 
as the assessment of dustbathing, thigmotaxis, and foraging frequency, which are important 27 
indicators for their ability to express natural behaviors.  This study highlights the potential of 28 

automated monitoring of poultry through the usage of ChickTrack model as a digital tool in 29 
enabling science-based animal husbandry practices and thereby promote positive welfare for 30 

chickens in animal farming.  31 
 32 
Keywords: Precision livestock farming; digital agriculture; Yolo; tracking; deep learning; chicken 33 

automated measurements; multi-target detection and tracking.  34 
 35 
Introduction    36 

 37 

The world's growing population is dependent on animal agriculture. Animal products provide 38 
nutritious meals that help feed and sustain communities globally. Recent data shows that the global 39 
poultry market is expected to grow by $422.97 billion by the year 2025 at a growth rate of 7% per 40 
annum [1]. Although debatable, it is perceived that poultry farming contributes less to climate 41 
change in comparison to cattle farming because of less methane emissions, relatively less resources 42 

needed, and higher feed conversion ratio [2].  As the global demand for animal products continues 43 
to grow, the agricultural industry must continue to advance its quality and efficiency of production 44 
[3], while simultaneously ensuring good poultry health and welfare. Good animal welfare requires 45 
not only good physical health, but also mental health through minimizing suffering and promoting 46 
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positive experiences for the animals [4]. However, such traits are challenging to objectively, 47 
efficiently, and timely record in a farm containing over thousands of individual animals.  48 

 49 
To support the increasing agricultural demand and ensure biosecurity adherence and operational 50 
efficiency for the animals, farm video surveillance systems are expected to grow to US $3.6 billion 51 
by 2027 [5].  Remote monitoring, physiological and behavioral phenotyping data collection 52 
through sensors, vast data storage and rapid data transfer have advanced precision livestock 53 

farming in the last 20 years [6,7,8]. However, the integration of smart sensing technologies, 54 
including the use of videos within the intelligent livestock surveillance systems, have to overcome 55 
technical challenges for large-scale phenotyping to be possible. The incorporation of Artificial 56 
Intelligence (AI) offers less stressful management options of poultry. Due to the ability of AI to 57 
monitor large number of welfare indicating parameters; continuous data collection and processing 58 

and real-time instant decision-making features; the industries are considering evaluation of AI 59 
based tools in the poultry value chain. 60 
 61 

Automatic Monitoring Surveillance  62 

 63 
To support the growing agricultural industry, automated measurement systems are emerging as 64 
useful tools to monitor and promote good animal welfare. There are currently significant animal 65 

welfare challenges facing the agricultural industry, especially the poultry industry.  Current poultry 66 
farming practices result in the chicken’s death before slaughter and rejection of billions of male 67 

chicks that are immediately killed after hatching in the egg industry, which is just the system’s 68 
design as they are “useless” regarding egg production, on an annual basis before they are processed 69 
for meat [3]. In the poultry meat industry, often chickens are rejected at the slaughterhouses due 70 

to the lack of sufficient meat quality and bruises, skin injuries, fractures, or other lesions on the 71 

chicken bodies. This loss of life is of a significant concern for animal welfare, agricultural 72 
efficiency, and economic impacts [3]. The positive, negative and neutral chicken welfare indicators 73 
based on video and image analysis can be derived from early-life stress due to separation of the 74 

mother-chick, very high density, bad air circulation, poor hygiene leading to respiratory issues, 75 
injuries on their feet due to ammonia building up on the ground, bad housing environment, no 76 

positive / rewarding stimuli (playful behavior), behavioral problems such as pecking or 77 
cannibalism, chronic stress, peak in stress before slaughter, suffering when the slaughtering 78 
method is not as efficient, unnatural lighting conditions and others. The link between poultry health 79 

and the poultry product quality emanates from the human risk of diseases if the animals have been 80 
infected before, [9] and the influence of stress hormones on meat qualities [10]. Few studies have 81 
demonstrated cameras integrated with instrumentation systems of Artificial Intelligence (AI) can 82 

assess flocks for health concerns, thus improving the survival rate and product quality of farmed 83 

poultry [3]. 84 

 85 
To improve the welfare of farm animals, the needs of both the individual animals and the needs of 86 
the group (herd and flock) must be considered. Advancements in sensors and instrumentation 87 
technology allow the capture of behavioral, physiological, and productivity measurements of 88 
individual animals [11,12]. The automated tracking systems can detect and predict behaviors that 89 

harm animals such as cannibalism and feather pecking; measuring feed consumption; enhancing 90 
production and welfare; light-based movement activity; and quantifying in separate areas to 91 
understand preferences of the birds within the pens [13,14]. Due to the surge in the sensor-enabled 92 
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technologies, now it is feasible to collect video and other physiological data more often 93 
consistently on an individual animal basis [15]. This is important because not all farm animal 94 

species can be measured the same way. Because of the size, shape and the relatively longer life 95 
period of cattle and pigs, individual monitoring is easier compared to poultry. Hence, with the aid 96 
of Artificial Intelligence, automated monitoring tools can offer the same quality of measurement 97 
for individual poultry birds.  98 
 99 

Different methods to monitor individual animal behavior exist, ranging from inserted chips that 100 
continuously recorded physiological measures, to wearable sensors and (thermal) imaging. Each 101 
method has its advantages and disadvantages and can be employed depending on the purpose of 102 
monitoring. Some researchers [16,17,18] have used wearable sensors attached to the birds’ legs to 103 
measure the activity and movement of birds, but for commercial settings, this is not feasible due 104 

to the technological limitations and high costs. Hence, optical flow-based video assessments would 105 
be ideal for monitoring of poultry behavior and physiology. Another form of automated tracking 106 
comes from video-based tracking.  107 

 108 

Video based tracking is superior to animal wearable sensors in terms of measuring biometric 109 
features such as activity, movement and predicting diseases. This is because of the practical 110 
scalability of the measurements. And, by eliminating the capturing and handling of the birds, this 111 

minimizes distress.  112 
 113 

To address the growing sector of precision livestock farming, the development of automatic 114 
monitoring and surveillance systems for animal behavior and phenotyping, as well as real-time 115 
assessments using video and image analysis are gaining momentum. Temperature of the chicken 116 

body parts from thermal imaging [19], inter-individual interactions of chicken, movement [20], 117 

automated weighing of the animals to keep track of productivity [21], machine vision-based egg-118 
counting systems are some ways by which phenotyping data can be automatically measured using  119 
monitoring systems. Automated monitoring, surveillance, and assessments are of immediate need 120 

for the poultry indicators such as individual tracking; genome wide association investigations for 121 
optimization of breeding; maintaining the individual animal identity; tracking the activity and 122 

space usage continuously; group level activity assessment; to be able to differentiate between 123 
individual animals; early detection of deviating patterns; social and behavioral problem detection 124 
in chickens; comparing the activities of current flock with past flocks;  detect and count laying 125 

hens; analyzing the preference of light intensity of individuals and groups of hens and poultry 126 
birds;  range use and fearfulness in free-range hens;  keel bone fracture assessment from activity 127 
using video monitoring. 128 

 129 

Challenges  130 

 131 
Different aspects of today’s livestock production have been shown to be stressful and challenging 132 
for animals, from early-life stages to the moments before slaughter. Larger flocks result in lower 133 
margins for farmers. As the industry strives to use fewer inputs for more sustainable production, 134 
it is inevitable that solutions for preventing disease have to be found, which would result in 135 

enhanced disease detection and positive poultry welfare.  136 
 137 



4 
 

In the poultry sector, machine vision focused research has developed tools in behavioral detection 138 
based on the quantification of the brightness patterns within a two-dimensional video [22]. 139 

However, there is a need for models and tools that allow multiple chickens to be detected and 140 
monitored.  141 
The best way to prevent the missing animals or the poultry bodily features due to occlusions and 142 
related losses in the visual based measurement is through the individualistic and/or group level 143 
evaluation of animals on a continuous basis [3]. On large-scale commercial farms, such attention 144 

to detail has been considered to be inaccurate and inefficient, but with the integration of Artificial 145 
Intelligence (AI) assisted technology, individualized and per-herd assessments of livestock are 146 
possible and accurate [3].  147 
 148 
Farmers need autonomous tools to be able to obtain insights on their animals that might reveal 149 

indication of their welfare. To promote good animal welfare, farmers need assistance with the 150 
automated surveillance of the animals. By continuously monitoring animals, farmers are able to 151 
reliably detect the animal’s needs. Telltale signs from visual video analysis alone can provide 152 

practical information on a daily basis by scoring injuries, lameness, feeding events, and measuring 153 

the animals’ behavioral records of activity, social interactions, and emotions. The precision of the 154 
system allows for animals to be continuously monitored. This monitoring helps farmers in return 155 
to improve the health and welfare of their animals and become more competitive within their 156 

industry. For real-time practical applications, it is necessary to design a model to ensure not only 157 
the accuracy of the detection but also to satisfy the complexity associated to lighting conditions 158 

and multiplexing additional features such as counting and tracking. 159 
 160 
 161 

Related Works   162 

 163 
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Table 1: Research on Chicken (Poultry) detection based on deep learning technology. 

 

Networks model (Algorithms) Applications Dataset 

volume 

Data collection 

location 

Measurement 

accuracy 

References 

Chicken sound convolutional 

neural network (No videos or 

images data) 

Avian influenza 

detection 

Audio files 

from 5 

chickens 

Controlled 

biosafety 

laboratory 

97.4% [23] 

Convolutional neural network Behavior assessment 12000 images 

from 3087 

chickens 

Chicken Coop 99.17% [24] 

You Only Look Once + 

Multilayer Residual Module 

(Yolo + MRM) 

Stunned state of 

broilers 

2319 images 

from 12 broiler 

chickens 

Animal care 

facility 

94.74% [25] 

Deeplabcut and pretrained 

ResNet-50 

Chicken pose 

estimation & behavior 

classification 

28 videos from 

only 4 broiler 

chickens 

Controlled 

laboratory 

facility 

0.7511 

(standing), 

0.5135 

(walking), 

0.6270 

(running), 

0.9361 (eating) 

accuracies 

[26] 

VGGNet-16 and ResNet-50 Chicken disease 

identification 

600 images 

from 5 

chickens  

Laboratory 

facility 

66.91% 

accuracy 

 [27] 

Single Shot MultiBox Detector 

(SSD) model, with InceptionV3 

as the backbone 

Chicken disease 

detection 

6601 photos of 

white broilers 

and 

4296 photos of 

jute broilers 

Commercial 

poultry house 

and outdoors 

99.7% mean 

average 

precision 

 [28] 

Convolutional neural networks Monitoring heat stress 

of chickens 

25,000 images 

from 10 broiler 

chickens 

Controlled 

environment 

chicken 

coop/cage (240 

95%  [29] 
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cm × 240 cm × 

210 m)  

Support Vector Machine (SVM- 

Machine Learning model) 

Detection and 

prediction of broiler 

chicken 

23,996 images 

from 2 groups 

of 20 broilers 

Isolated controlled 

environment 

chambers 

97.8%  [30] 

Fully Convolutional Networks 

(FCN) 

Density map 

estimation 

A total of 100 

images  

Chicken coop 16% [31] 

Yolov3 Behavior of laying 

hens 

10,230 images 

from 18 laying 

hens 

Wire cage with two 

pens, 

each of 120 cm X 

120 cm X 70 cm  

mate 

(94.72%), 

stand 

(94.57%), 

feed 

(93.10%), 

spread 

(92.02%), 

fight 

(88.67%) 

and drink 

(86.88%) 

 [32] 

164 
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Studies use deep learning technologies for applications such as disease detection or behavioral 165 
classification in avian species have only recently been growing (Table 1). However, no research 166 

has been published yet on the detection, counting and tracking of the chickens under occlusion 167 
conditions nor using the You Only Look Once software (Yolov5). Tracking of chicken movement 168 
is achieved through taking an initial set of the chicken shape and contour detections, creating a 169 
unique ID based on the coordinates in the image (frames from videos) for each of the initial 170 
detections, and then tracking as they move around frames in the video, continuing the ID assigned. 171 

Occlusion, background clutter and change in appearance are some of the challenges in the 172 
detection and tracking of chicken movement. Occlusion occurs when the chicken gets hidden by 173 
another object such as a feeder or another chicken. Between the frames of the video, there is a 174 
higher possibility that the chicken may disappear and reappear again. Feeders, water nipple 175 
providers or other objects in the chicken rearing floor may have similar colors or textures to the 176 

chicken feathers and it may become harder to track results with the cluttered background. Different 177 
viewpoints of the chicken based on the camera positioning and camera angle may capture videos 178 
that may acquire the chicken’s look very differently and without a context, this might lead to 179 

difficulties identifying the chicken.  180 

 181 
Furthermore, no research work has been reported to date on the recognition, detection, counting, 182 
tracking, and measuring the trajectory motion path of the activity of chickens. The datasets of the 183 

studied mentioned in Table 1 were relatively small, and although the accuracy was shown to be 184 
high, the performance accuracy would be insufficient in real-time outside of controlled conditions. 185 

Moreover, the integration of various activities by one model is required for complex movement-186 
based data collection concerning the chicken activity and detection.  187 
 188 

Therefore, a Deepsort Yolov5 based model was developed in the present study to ensure the 189 

accuracy of the detection as well as the requirements for real-time motion and activity monitoring 190 
using the domesticated chicken (Gallus gallus domesticus). Yolov5 is a relatively recently 191 
developed software created by Ultralytics in 2020 [33] and offers superior detection accuracy and 192 

real-time performance. The proposed model provides support for accurate, real-time detection of 193 
chicken activity individually and on the flock level. Locomotion, speed of walking, distance 194 

travelled or walked by the chicken, feeding interval based on the movement and related behavioral 195 
characterizations as well as where the chickens are located in the pen can be measured as part of 196 
the chicken activity. 197 

 198 
Identification and tracking of identical looking unmarked birds in large flocks is tough, demanding 199 
and time-consuming, but there is an immediate and definitive need for such automated 200 

measurement systems in farm animals including poultry. The overall goal of this study was to 201 

develop a model based on machine learning algorithms that will convert heterogeneous data that 202 

are collected via automated video recording systems for measuring the phenotypes of chickens. 203 
There is no classification involved in this study, as the goal is to detect the chicken, count and track 204 
the path of movement of the chicken.   205 
 206 
 207 

 208 
 209 
 210 
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Materials and Methods 211 
 212 

Dataset characteristics 213 
 214 
Our dataset is composed of a total of 72 chicken (White Leghorn breed, Plymouth Rock, Rhode 215 
Island Reds) videos were acquired during different times of the day and in varying background 216 
lighting conditions (Figure 1) recorded in two poultry farms in Ontario, Canada.  RGB cameras 217 

were deployed at varying heights and in varying lighting conditions inside the pens outside the 218 
coop, and outside in the free roaming zone. The videos were recorded with a resolution of 1280 X 219 
720 pixels (frame width X height) at 30 frames per second. The total length of all the videos for 220 
all the breeds together was over 8 hours. Frames were annotated using the opensource graphical 221 
annotation LabelImg software [34] and the contours were labeled by bounding box. Annotation 222 

classes of chickens were used and all the chickens in the frame were annotated.  223 
 224 

 225 
 226 
Figure 1: Typical examples of images from the video dataset of chickens obtained in the free 227 

range, commercial and open poultry farms. Chickens are housed in varying background conditions. 228 
(a) Chickens occluded by feeders and watering nipples (b) Free range chickens occluded by wire 229 
mesh barrier (c) Front light angle (d) Poor lighting condition (e) Sidelight angle (f) Backlight 230 

angle.   231 
 232 

ChickTrack Detector Model and Architecture  233 
 234 
To take advantage of the advancement of Convolutional Neural Networks (CNN) based detection, 235 
in this project Yolov5 and DeepSort were utilized. Yolo is a single stage detection technique 236 
without a distinct region proposal and treats the detection of the target as a single regression 237 

problem [35]. Object detection using Yolov5 has been demonstrated as a superior way in 238 
comparison to other target detection and recognition algorithms [36,37,38,39]. Yolov5 has the 239 
advantages of rapid processing time in the deep learning network; ability to handle larger datasets 240 
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and real-time continuous detection [40,41]. The proposed Yolov5 based ChickTrack detector 241 
model exploits the class probabilities in recognition of the chickens and the bounding box 242 

coordinates for enabling the measurement of trajectory paths between the frames of the video data. 243 
Figure 2 shows the schematic of the proposed ChickTrack Yolov5 detector model showing the 244 
backbone architecture and the last layers of the detector. For the training of the model and testing, 245 
a high-performance computer workstation was used, and the details concerning GPU and 246 
configurations are shown in Table 2. 247 

 248 
The proposed Yolov5 framework consists of 3 major multi-scale modules: feature extraction and 249 
thereby detection of chickens; counting of chickens; and the tracking motion path. The frames 250 
from videos were inputted into the Yolov5 model. By inputting videos into the frame network 251 
architecture, Yolov5 creates layers and extracts features such as the boundary of the chicken and 252 

the centroid of chicken body, followed by feature mapping the output object. The detector module 253 
of the ChickTrack uses the Yolov5 architecture in layering the deep neural network and produces 254 
detection at different scales kernels. This is then followed by the counting and tracking modules. 255 

 256 

 257 
 258 
Figure 2: Architecture of Yolov5 used in the development of ChickTrack model for multi-object 259 
detection, counting and tracking.  260 
 261 
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Table 2: The configuration of the workstation used in this study 262 
 263 

CPU Intel(R) Core(TM) i7-6700 CPU 

CPU basic frequency 3.4 GHz 

Core/thread number Four core / eight threads 

Memory capacity 24 GB 

Hard drive capacity 1 TB 

Graphics card chip Nvidia-1080 ti, 11 GB 

Cuda Cuda 10.1 with Cudnn 7.5.1 

Data Processing  Python 3.9.5, OpenCV 

Deep Learning Framework Pytorch 1.9.0 

Architecture  CSP backbone and PA-NET neck 

 264 
Experimental Analysis  265 
 266 

The training dataset was made of over 3800 annotated frames, where 80% of the frames were used 267 

for training, 10% for testing and 10% for validation. Towards the detection of the multiple chickens 268 
from the images, the model was trained using the dataset by adjusting the number of epochs. 269 
Training the model for 100 epochs took about 75 min. The performance metrics for the training 270 

and validation dataset is shown in Figure 3. 271 
 272 

 273 
 274 
Figure 3: Selected examples of detection results based on the proposed YoloV5 approach on the 275 
chicken video dataset. Detections are labeled with red rectangle bounding box and denoted with 276 
the associated confidence scores. 277 



11 
 

Box loss indicates how well the developed model can locate the individual chicken in the video 278 
frame and how well the predicted bounding box covers the chicken.  Objectness is the measure of 279 

the probability that the chicken exists in the proposed region of interest in the video frame. The 280 
higher the objectness, the more likely the image window contains the chicken in the process of 281 
detection.  Precision, mean precision and recall indices (Figure 3) show that the model improved 282 
before plateauing after around 25 epochs. Similarly, the objectness and box losses for validation 283 
data showed decline until around 25 to 30 epochs, indicating the early stopping for selection of the 284 

best weights in the training of the model. 285 
 286 
Results and Discussion 287 
 288 
Detecting and tracking poultry using optical flow and video based automatic assessment is a 289 

challenging task of which the outcome is to create a meaningful insight for intervention or 290 
decision-making processes for farmers. Real-time detection of activity of broilers or laying hens 291 
in poultry farms is tricky as the detection in the video involves verification of the presence of the 292 

chicken in the image sequences from the video data and precisely locating it for individual 293 

recognition and estimating of its coordinates. The tracking of the chicken’s temporal and spatial 294 
changes in the video sequence includes monitoring its presence, shape or the contour surrounding 295 
the chicken body. By matching the target region of the chicken in the successive frames of 296 

sequence of images, at closely spaced time intervals, the recognition and detection can be achieved.  297 
 298 

Optical flow has been demonstrated as a way to identify vehicles for driver assistance systems 299 
[42]; collision avoidance for multicopter Unmanned Aerial Vehicles [43]. In this study, we used 300 
optical flow as a means for establishing a framework in the detection, counting and the 301 

measurement of the movement trajectory of individual chickens. The results obtained based on the 302 

training of the proposed ChickTrack model is shown in Figure 5. In order to count individual 303 
chickens in the video frames, it is necessary to determine the relationship between the trajectory 304 
of the chicken and the counting line in the frame. In the proposed module, the direction of each 305 

chicken was calculated when the trajectory of the chicken and the counting line intersected. The 306 
chicken detection module involved the presence, the specific coordinates or the location of the 307 

chicken using the bounding box. The number of chickens in the video are also calculated by using 308 
the count of the bounding boxes. The training and validation loss curves based on the ChickTrack 309 
model performance is shown in Figure 5. The graph indicates that the loss value decreased after 310 

rapidly after 30 epochs of training and then stabilizes up to 70 epochs and further rapidly decreases 311 
after 70 epochs. Hence, the ChickTrack model output after 70 epochs was chosen as the target 312 
detection and recognition for chickens. The results from mean average precision and validation 313 

confirmed that the ChickTrack model was trained well without overfitting. 314 

 315 
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 316 
 317 

Figure 4: Sample results showing the detection and counting of chickens from the video data 318 
based on the proposed ChickTrack model.   319 
 320 

 321 
Figure 5. ChickTrack model network training results showing the training and validation losses 322 
from the poultry video datasets. 323 
 324 
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Chicken tracking 325 
 326 

Chicken tracking from the videos involves the process of measurement (Figure 6) of the 327 
coordinates across multiple series of frames. In the proposed model, all possible detections of the 328 
chicken in the frame were chosen and was given a centroid based ID based on the bounding box 329 
using Kalman filer.  This was carried out by calculating centroids for each of the bounding boxes 330 
in the frame 1.  In the subsequent frames, the same ID of that chicken was carried forward. As the 331 

frame changes, if a new chicken appears, then the old ID is dropped, and it is assigned a new ID. 332 
Hence, tracking the chicken becomes challenging due to the fact that the bird in the video may 333 
appear or disappear between the frames or there may be occlusions hiding the bird in later frames. 334 
By frame-to-frame centroid assessment, the distance from previous centroid being calculated, this 335 
challenge was overcome.  336 

 337 
The Kalman filter models the future position and the velocity using gaussians. By using 338 
probability, the Kalman filer assigns the measurement to its prediction and updates itself. The 339 

developed model performs the tracking not just based on the distance, but also by computing deep 340 

features (both appearance cues and geometry of chickens) for each individual bounding box and 341 
uses the similarity between the deep features by factoring into the tracking logic. The dim vector 342 
for each bounding box is extracted by the model from the images of chickens in each frame of the 343 

video and acquires the key features. Hence, the model is capable of overcoming occlusions. 344 
 345 

It should be emphasized that the efficiency of tracking and reduction of false positives is directly 346 
related to the quality of the detection module of the chickens. Hence, the performance of the 347 
tracking algorithm needs careful optimization through extensive training of the dataset. The false 348 

negative recognition and detection of chicken can be compensated through integrating visual 349 

tracking into the intersection over union. The quality of the chicken tracking module can be 350 
enhanced by reduction in the number of switches in the ID between the frames of the video data. 351 
 352 

 353 
Figure 6. Illustration of the ChickTrack model's tracking framework. Along with the input video 354 
module, a real-time tracking framework is established using Kalman filter as part of the 355 
ChickTrack model to learn the responses of chicken detection in representing the features of 356 
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tracklets and pre-processing the growth of tracklet in the video frames, and the output trajectory is 357 
being established as the result. 358 

 359 
Table 3 shows the overlap success rate at threshold of 0.5 for three videos analyzed 360 
(Supplementary files Video S4, Video S5, Video S6) of the proposed ChickTrack model. The 361 
trends clearly indicate that the developed model is accurate in tracking the movement of chicken 362 
between individual frames of the video. Verification results of the object trajectory is based on the 363 

direction of the chicken’s movement, and the graphs (Figure 7) show the accumulative direction 364 
output showing the proportion of the movement of overall chickens in the three videos. 365 
 366 
Table 3 Performance of the proposed chicken activity tracking framework with the Yolov5 367 

detector 368 

 369 
Data Time Ground Truth Highest tracking id Difference 

Video S4 

Chicken Coop 

0 min 10 sec 16 18 +2 

0 min 20 sec 17 24 +7 

0 min 30 sec 19 24 +5 

0 min 38 sec 28 23 -5 

Video S5 

Commercial 

Poultry Farm 

0 min 10 sec 48 42 -6 

0 min 40 sec 41 43 +2 

1 min 20 sec 48 44 -4 

2 min 0 sec 42 38 -4 

2 min 40 sec 35 43 +8 

Video S6 Free 

Range Farm 

Chicken 

0 min 10 sec 5 7 +2 

0 min 20 sec 4 3 -1 

0 min 30 sec 4 7 +3 

0 min 40 sec 3 7 +3 

Total Accuracy  310 323 +13 

 370 
 371 

 372 
 373 
 374 
 375 

 376 
 377 
 378 

 379 
 380 
 381 
 382 

 383 
 384 
Figure 7. Chicken migration evaluation by 2D video imaging and tracking analysis by the 385 
proposed ChickTrack model. Representative wind-rose plots show the distribution (Red – North, 386 
Blue – East, Green – South, Orange – West) of the trajectory of chickens in the presence and 387 
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absence of feeder and water nipping stations in (a) the chicken coop, (b) the commercial poultry 388 
farm and (c) the free-range open field farm. 389 

 390 
The difference in the magnitude of each direction as chosen by the chicken population can be seen 391 
as percentages in the graphs. Preferential directional persistence of chickens as measured by the 392 
ChickTrack module shows the ability of the proposed model to assess the migration pattern.  393 
Individual chicken's net displacement analysis shows that the birds migrated more often in the 394 

northern direction for the chickens observed in the coop in comparison to the chickens in the 395 
commercial poultry farm for the analyzed dataset. By understanding the individual chicken’s 396 
movement characteristics, the farmers could be able to assess the space allowance for the birds in 397 
the flooring area.  398 
 399 

Future studies 400 
 401 
The deep learning-based technique developed for chicken detection, counting and tracking was 402 

based on 2D video data obtained from a single camera. Currently, studies are underway to explore 403 

the enhancement of the YoloV5 model using 3D data and Kinect depth sensors from multiple 404 
cameras of the same chickens obtained from varying angles. In this study, the most common breeds 405 
namely White Leghorn chickens, Plymouth Rock, and Rhode Island Reds were used for 406 

experiments and data analysis. Additional studies with other chicken breeds would further 407 
strengthen the validation of the developed ChickTrack automated chicken movement platform. 408 

Social interactions or the social network analysis of chickens is an underexplored research area, 409 
and the proposed tool has the ability to offer new ways of investigating the intra and inter-410 
individual variations of the chickens based on the locomotion measurement. To the best of author's 411 

knowledge and based on web of science search, thigmotaxis of chickens in real-time with 412 

automated tracking has not been explored using experimental methods. Thigmotaxic responses of 413 
the chickens in responses to a stimulus or multiple stimuli or thermotaxis due to change in 414 
temperature conditions across the rearing floor of poultry industries can now be investigated using 415 

the proposed ChickTrack model. The recognition of early stage thigmotaxis will help to assess the 416 
chicken's spatial learning, cognitive performance, and memory. In the near future, new animal 417 

welfare indices can possibly be developed by relying only on the non-invasive way of automatic 418 
data collection and monitoring platforms for chickens. Tracking and the path trajectory 419 
measurement of chickens can be used as a proxy for anxiety based on the tendency of the birds to 420 

stay at the edges of the pen rather than staying in the center which is considered as bold. Further 421 
by using location and density to understand the dynamics of individual chicken birds, how they 422 
follow each other, exploring whether is there little to no movement for some individual birds then 423 

maybe that indicates illness or injury. Thigmotaxis are typically used as a measure of anxiety but 424 

not fear. The proposed tool can take advantage of the tracking module to determine thigmotaxis 425 

and thus anxiety of chickens can be estimated leading to an overall welfare estimate. Through 426 
digital phenotyping, correlations of these movement-based variations, the proposed model and 427 
associated automated monitoring sensor enabled technologies can aid in the productivity and 428 
welfare of poultry farming. Future research is warranted to investigate the proposed ChickTrack 429 
model and its contribution in the development of other animal welfare platforms. 430 

 431 
 432 
 433 
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Conclusions 434 
 435 

The height installation of the camera in the poultry barn, multiple viewpoints and angles in 436 
capturing the bird images will lead to specific characteristics of the chicken and its movement with 437 
varying scales, resolution and occlusions.  The heterogeneous distribution in individual size and 438 
flock density causes challenges in the detection, ability to count and track movement of the 439 
chickens. There are currently no standards available, or any specific existing algorithms optimized 440 

for the movement tracking of chickens. The proposed Yolov5 model consists of this CSP backbone 441 
network, and the object detection function refines the flock density features via the deployment of 442 
the convolutional networks in the facilitation of the generation of trajectory movements, counting 443 
and tracking. The recall and the precision values of the ChickTrack model confirms the superior 444 
performance in the detection of the chickens in congested scenes, among various occlusions, and 445 

distribution density. Based on several experiments and video-based data analysis, the results 446 
showed that the proposed model for chicken detection, counting and tracking is robust and has the 447 
potential to be implemented for farm applications. The result of this study enhances the capacity 448 

to monitor both the individual and flock of chickens through enabling digitization and automated 449 

data processing in the poultry industry.  The developed Yolov5 model has the potential to be used 450 
for other animals such as pigs, goats or cattle. 451 
 452 

Supplementary material 453 
 454 

Supplementary material namely sample videos S1 to S6 and the YoloV5 model are available for 455 
download. 456 
 457 
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