
P
os
te
d
on

26
J
u
l
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
50
32
05
2.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Fractional Super-Resolution of Voxelized Point Clouds

Ricardo de Queiroz 1, DIOGO GARCIA 2, and Tomas Borges 2

1Universidade de Brasilia
2Affiliation not available

October 30, 2023

Abstract

We present a method to super-resolve voxelized point clouds down-sampled by a fractional factor, using look-up-tables (LUT)

constructed from self-similarities from its own down-sampled neighborhoods. Given a down-sampled point cloud geometry Vd,

and its corresponding fractional down-sampling factor s, the proposed method determines the set of positions that may have

generated Vd, and estimates which of these positions were indeed occupied (super-resolution). Assuming that the geometry of

a point cloud is approximately self-similar at different scales, LUTs relating down-sampled neighborhood configurations with

children occupancy configurations can be estimated by further down-sampling the input point cloud to Vd2 , and by taking

into account the irregular children distribution derived from fractional down-sampling. For completeness, we also interpolate

texture by averaging colors from adjacent neighbors. We present extensive test results over different point clouds, showing the

effectiveness of the proposed method against baseline methods.

1



PREPRINT OF SUBMISSION TO IEEE TRANS. ON IMAGE PROCESSING 1

Fractional Super-Resolution of Voxelized
Point Clouds

Tomás M. Borges, Diogo C. Garcia, Senior Member, IEEE, and Ricardo L. de Queiroz, Fellow, IEEE

Abstract—We present a method to super-resolve voxelized
point clouds downsampled by a fractional factor, using lookup-
tables (LUT) constructed from self-similarities from its own
downsampled neighborhoods. Given a downsampled point cloud
geometry Vd, and its corresponding fractional downsampling
factor s, the proposed method determines the set of positions
that may have generated Vd, and estimates which of these
positions were indeed occupied (super-resolution). Assuming that
the geometry of a point cloud is approximately self-similar
at different scales, LUTs relating downsampled neighborhood
configurations with children occupancy configurations can be
estimated by further downsampling the input point cloud to Vd2 ,
and by taking into account the irregular children distribution
derived from fractional downsampling. For completeness, we also
interpolate texture by averaging colors from adjacent neighbors.
We present extensive test results over different point clouds,
showing the effectiveness of the proposed method against baseline
methods.

Index Terms—Point clouds, super-resolution, resampling.

I. INTRODUCTION

RECENT technology evolution has enabled the capture
and rendering of 3D structures, enhancing several im-

mersive applications like tele-presence, 3D sensing for smart
cities, and autonomous driving. Amongst the several alter-
natives of content representation in extended reality, point
cloud (PC) imaging gained popularity due to its relatively low-
complexity and high-efficiency in capturing, encoding, and
rendering of 3D models.

A PC is a list of points in the 3D space, each with
spatial coordinates (x, y, z) and attributes like colors, normals,
reflectances, etc. For a single-color (RGB) attribute, a PC is
defined by its geometry V and its color C sets:

V = {v(k)}, with v(k) = (xk, yk, zk), and

C = {c(k)}, with c(k) = (Rk, Gk, Bk).

The Moving Picture Expert Group (MPEG) has an effort
into standardizing the representation and compression of PCs
[1], [2]. Two codecs have been developed to this end: the
Video-based Point Cloud Compression (V-PCC) [3] and the
Geometry-based Point Cloud Compression (G-PCC) [4]. The
former leverages existing video encoders to compress PCs

Work partially supported by CNPq under grants 88887.600000/2021-00 and
301647/2018-6.

T. M. Borges is with the Electrical Engineering Department at Universidade
de Brasilia, Brasilia, Brazil, e-mail: tomas@divp.org.

D. C. Garcia, is with the Gama Engineering College, Universidade de
Brasilia, Brasilia, Brazil, e-mail: diogogarcia@unb.br.

R. L. de Queiroz is with the Computer Science Department at Universidade
de Brasilia, Brasilia, Brazil, e-mail: queiroz@ieee.org.

by mapping 3D structures into 2D depth maps and texture
“atlases”, while the latter uses the 3D geometry properties for
compression. In G-PCC, geometry and attributes are treated
separately. The geometry is represented using the octree
structure [5], then it is entropy encoded. Lossy geometry is
obtained by performing an octree pruning. Additionally, a
surface reconstruction approximation can be added to the lossy
geometry bitstream using a series of triangles in a mesh-like
structure, called trisoup. Attributes are transferred to the newly
reconstructed geometry (recoloring). They are subband decom-
posed, using one of the available wavelet-like transforms—
the region-adaptive hierarchical transform (RAHT) [6], or the
predicting and lifting (predlift) [4] transform, quantized, and
finally entropy encoded [1].

In order to use the octree representation for the geometry
in G-PCC, the input PC needs to go through a voxelization
pre-processing step, where the coordinates are quantized. Input
coordinates are transformed such that all points lie within a
bounding cube [0, 2d)3, for some non-negative integer param-
eter d. Voxels represent the center of any of the unit cubes
[i−0.5, i+0.5)×[j−0.5, j+0.5)×[k−0.5, k+0.5), for i, j, k
integers between 0 and 2d−1 [4]. All points from the original
set that lie within a voxel’s boundary are mapped to that
voxel. This mapping step may result in multiple points with
the same position—duplicate points. Usually, duplicate points
are consolidated into one, and their attributes are averaged.
Modern acquisition processes of real-world PCs usually imply
in discrete volumetric samples being captured on a regular
grid, which can be seen in many datasets [7]–[10].

The downsampling of PCs can be approached in two
ways. The first is to decimate points of the original set
without changing the voxel resolution. We refer to this as set
downsampling. The second approach is to (re-)voxelize the PC
using bigger voxels, i.e., with a lower volumetric resolution,
referred to as grid downsampling. In this paper, we propose a
super-resolution (SR) method that takes a grid-downsampled
low-resolution (LR) voxelized PC as input, and combines the
restrictions imposed by the voxel grid, its density, and self-
similarities, to output a super-resolved version of that input,
i.e., with smaller voxels allowing for finer representation.

PC SR is the problem of creating a high-resolution (HR)
PC from a LR version. Although many approaches exist, often
they cannot be directly compared, either because of different
number of inputs, different LR versions, or even the use of
extra information.

In optimization-based PC SR, a cost function is defined,
then new points are added seeking to minimize this function.
Alexa et al. [11] proposed constructing a Voronoi diagram



PREPRINT OF SUBMISSION TO IEEE TRANS. ON IMAGE PROCESSING 2

on the 3D surface, then, inserting points in the vertices to
minimize a moving least squares (MLS) cost function. Other
works were also developed using the MLS cost function [12],
[13], but all of those tend to over-smooth the geometry. An
edge-aware solution was introduced by Huang et al. [14] to
mitigate the over-smoothness of prior methods, relying on
the accuracy of normals and on a thorough parameter tuning.
Hamdi-Cherif et al. [15] combined local descriptors by their
similarities for PC SR, however this approach required several
PCs, normals calculations, and assumed surface smoothness.
Dinesh et al. [16], [17] used Delaunay triangulation in the
LR PC and optimize an L1-norm graph-total-variation (GTV)
cost function for neighborhood surface normals. It promotes
piecewise smoothness in reconstructed 2D surfaces, under the
constraint that the LR coordinates are preserved.

Deep learning was used for PC SR with the introduction of
PU-NET by Yu et al. [18], which learns multi-scale features
by downsampling the input and expands the point set via
multi-branch multilayer perceptrons (MLP). Yu et al. also
proposed EC-NET [19] an edge-aware network for point
consolidation, alas, it requires a very expensive edge-notation
for training. A progressive network, 3PU, was proposed by
Wang et al. [20], to suppress noise and to preserve details
in the upsampling geometry. It is computationally expensive,
though, and requires a lot of data for training. PU-GAN [21]
was designed to obtain more uniformly distributed SR results,
with its major contribution and performance gains coming
from the discriminator part. Graph convolutional networks
(GCN) were used for PC SR by Wu et al. [22], and by
Qian et al. [23]. PUGeo-Net [24] proposes to perform the
upsampling by learning the first and second fundamental forms
to represent the local geometry, although normals are required.
Nonetheless, all these networks require retraining when differ-
ent upsampling scales are required, making them cumbersome
for dynamic applications. Recently, an independent work by
Ye et al. [25] proposes Meta-PU, a network that supports
upsamplings for arbitrary scales without the need of retraining,
using meta-learning to predict the weights of the network and
dynamically change behavior for each scale factor.

The voxelization process needed for G-PCC can severely
affect some SR methods, by changing the requirements of
input and output PCs. Octree-based PC SR, on the other
hand, already cope with the G-PCC requirements. Garcia et
al. developed two PC SR methods based on statistics gathered
in previous frames of the sequence: SR by example and SR by
neighborhood inheritance [26]. The first explores similarities
between time-adjacent frames to predict voxels at higher levels
of the octree [27]. The LR frame is super-resolved using
the similarities from the previous frame at full-resolution.
The second creates a dictionary of child nodes based on
the neighborhood configuration from previous full-resolution
frames. Then, the neighborhood from each occupied voxel is
used to estimate its child nodes.

We propose to expand the neighborhood inheritance method
to the intra-frame case and to generalize it for fractional
scale factors, allowing for SR of arbitrary octree pruning. We
also consider color interpolation together with the geometry
upsampling for a complete PC SR approach.

857,966 points
2.99 bpov

64,176 points
16.01 bpov

62.130 points
2.67 bpov

Fig. 1: Downsampling approaches. Original PC, set (Poisson
disk sampling), and grid downsampling.

II. POINT CLOUD RESAMPLING

A. Downsampling

In set downsampling, points are usually decimated using
some distance-based criterion, like Poisson disk sampling [28].
This kind of approach does not seek to lower the the PC
resolution (bit depth) but its density. The advantage is that
all the points in the LR version are also present in the original
PC, which is desirable for interpolation. However, this kind of
downsampling decreases the PC’s spatial correlation, making
its octree representation less efficient, and, consequently,
rendering it less efficient for G-PCC.

In grid downsampling, points are decimated through vox-
elization. In this approach, the resolution is lowered but the
density increases, when compared to the original PC. The
remaining points in the LR PC cannot be rescaled to its
original resolution without error. Yet, since the point’s spatial
correlation is larger, this LR PC can be more efficiently repre-
sented with an octree. Figure 1 showcases the downsampling
of a PC using both approaches to arrive at approximately the
same number of points. We calculated the rate, in bits per
occupied voxel (bpov), necessary for the octree representation
for each PC to illustrate the difference in spatial correlation
among points in both cases.

Since we are more interested in LR representations that
can be efficiently encoded, for example, with G-PCC, we
only focused on grid downsampling. This downsampling is
achieved by dividing the geometry V by a scale factor s > 1,
and rounding the results to maintain the integer grid. Duplicate
points are merged, and their texture is averaged. Thus, we
achieve a downsampled geometry Vd using:

Vd = unique

(
round

(
V

s

))
, (1)

where unique(X) is the function that returns only the unique
vectors in the set X , and round(·) is the function that
rounds the components of a vector to the nearest integer. The
consolidation of duplicate position information is similar to
the voxelization process.
Vd and V form a hierarchical tree structure, such that the

former represents parent nodes, and the latter represents child
nodes. This is illustrated in 1D in Fig. 2, where we can see
that when s is an integer, the number of child nodes is equal
for all positions in x. This downsampling process is regular
as all parent nodes have the same number of children. When



PREPRINT OF SUBMISSION TO IEEE TRANS. ON IMAGE PROCESSING 3

s is not an integer, however, the number of child nodes varies
depending on each parent node’s position. For 1 < s < 2,
there are parent positions with only one child (uniparous), and
others with two children (multiparous).

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5

(a) s = 2

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8

(b) s = 1.25

Fig. 2: Illustration of the downsampling process over a fully-
occupied single-axis x. It is also possible to see a hierarchical
tree configuration with xd as parent nodes of x.

In 3D, regular downsampling (integer values of s) translates
to every group of voxels in a s×s×s cube in V being reduced
to just one voxel in Vd, as depicted in Fig. 3(a). For this case,
parent nodes in Vd have s3 children. This represents a pruning
of the original octree structure. When s = 2n, n = 1, 2, 3, . . . ,
the pruning occurs exactly1 at level d − n. When s ∈ Q,
parent nodes in Vd have up to s3 children. For example, when
1 < s ≤ 2 parent nodes may have 1, 2, 4 or 8 children,
depending on each parent node’s coordinate value, as depicted
in Fig. 3(b). If a parent node has a multiparous coordinate
value in x, and uniparous coordinates in y and z, it, thus, has
2 · 1 · 1 = 2 child nodes, and we know that at least one of
them must have been occupied in V . The number of possible
children for a given parent can be generalized as

imax = (dse − 1)udsem, (2)

where u is the number of uniparous coordinates, m the number
of multiparous coordinates (here we extend the meaning
of uniparous to indicate parents with fewer children then
the multiparous ones), and d e means the ceiling operator.
Although a non-integer value of s produces an irregular voxel
grid, there is a pattern on such grid when s is rational in the
form p/q, for p > q. We call fractional resampling the use of
a non-integer value of s to perform down- or upsampling.

(a) s = 2 (b) s = 1.25

Fig. 3: Downsampling in the voxel grid. For a fractional value
of s in (b) the different parenthood relationships are manifest.

B. Upsampling

We define PC upsampling as the inverse of the just-defined
downsampling process. The space of the bounding cube
containing the voxelized PC is again re-quantized, this time

1The term exactly is somewhat relaxed here, because of the use of round.
To get the strictly exact pruning equivalence, Eq. (1) should be defined using
the floor function instead.

with the purpose of increasing the number of voxels inside the
bounding cube. It can be done by the simple expansion of the
downsampled geometry,

Ve = round (Vd · s) . (3)

However, it yields a very sparse PC. In order to maintain
the density of the LR version in the upsampled version, we
need to interpolate the missing points. The baseline technique
for completing the missing points is the nearest-neighbor
interpolation (NNI), which only sets as occupied all children
from the parent nodes in Vd. The texture upsampling for the
NNI usually follows the same idea used for the geometry:
the colors from parent nodes are just replicated to their
correspondent children. Figure 4 illustrates what happens to
a geometry after being downsampled, expanded, and, finally,
upsampled using NNI.

(a) V (b) Vd (c) Ve (d) Vu

Fig. 4: Child and parent node representation for s = 2. (a)
Child nodes (V ) surrounded by its parent nodes. (b) Parent
nodes (Vd). (c) Expanded geometry. (d) NNI upsampling.

To express the NNI, we have that all child nodes from a
parent voxel vd(k) satisfy,

round(vu(i)/s) = vd(k), (4)

for every i = 1, 2, . . . , imax. Inversely,

vu(i) = round(s · vd(k)) + ε(i), (5)

where ε(i) is the rounding error. Let E(k) = {ε(i)} be the set
containing all the imax error samples for the parent node vd(k).
Thus, the set containing all possible children from vd(k) is

Vu(k) = round(s · vd(k)) + E(k). (6)

Therefore, the geometry from the NNI upsampling is

Vu = unique

(
K⋃

k=1

Vu(k)

)
. (7)

The colors for Vu(k) are Cu(k) = {cu(i)}, i = 1, 2, . . . , imax,
such that, cu(i) = cd(k), and

Cu =

K⋃
k=1

Cu(k). (8)

In order to improve quality of the upsampled geometry Vu,
further processing can be applied to smooth both its geometry
and its texture. Laplacian smoothing [29], for example, is used
to smooth meshes and can be adapted to work on PCs, in order
to improve NNI results by reducing the aliasing caused by this
coarse interpolation. In the Laplacian smoothing, the position
of each occupied voxel is updated by averaging the positions
of occupied neighbors in a 3× 3× 3 neighborhood.



PREPRINT OF SUBMISSION TO IEEE TRANS. ON IMAGE PROCESSING 4

III. INTRA-FRAME SUPER-RESOLUTION OF VOXELIZED
POINT CLOUDS

A. Proposed method

We took the idea of using a dictionary of child nodes from
Garcia et al. [26], which was devised for the inter-frame case
for SR of LR frames downsampled by a scale factor of s = 2n.
We, then, extrapolated it to the intra-frame case for LR PCs
downsampled by fractional values of s. The dictionary creation
process is similar to the one proposed by Garcia et al. [26].
However, it is done using the very same PC we want to super-
resolve, and an additional step for parenthood stratification
was introduced to cope with irregularities of the fractional
downsampling, which makes for the creation of one dictionary
for each parenthood condition. This ensures that the parent-
child relation is preserved in the upsampling scheme.

Let ϕM (v(k)) be a (M3− 1)-binary number indicating the
occupancy of neighbor voxels inside an M ×M ×M cube,
defined as the neighborhood of the voxel v(k). The smallest
neighborhood, when M = 3, leads to 33 − 1 = 26 neighbors
(adjacent voxels). Similarly, let the child occupancy configu-
ration of parent voxel vd(k) be defined as σ(vd(k)), a dse3-
binary number indicating which of the possible children of
vd(k), i.e., Vu(k) in our notation, are indeed occupied. We take
the input geometry Vd and perform yet another downsampling
using the same scale factor s to generate its parent geometry
Vd2 . In this way, we can find the child occupancy configuration
for each parent voxel σ(vd2(k)) and couple this information
with its neighborhood configuration ϕM (vd2(k)). In order to
create the m-th entry of the dictionary, or look-up-table (LUT),
we estimate the most likely child occupancy for each ϕM (m),

σ̄(m) = E{σ(vd2(k)) | ϕM (m)}, (9)

i.e., the expected value (bitwise mean) of all child occupancies
sharing the same neighborhood configuration. Neighborhood
configurations not present in the input data are associated with
fully occupied child states. Table I illustrates such a LUT.

Using the scale factor s, we can stratify each parent voxel
vd2(k) depending on the position and number of its possible
children. Figure 5 illustrates the eight possible conditions for
the parenthood stratification for a scale factor 1 < s ≤ 2.
Note that in such case, there is no need to create a dictionary
when all parent coordinates are uniparous, since the children
under this condition can be upsampled without error. One
LUT is, thus, created for each condition, depending on the
parent coordinates. The steps required for the construction of
the LUTs are shown on the left-hand side of Fig. 6.

From Vd and Vd2 we can “learn on-the-fly” how to super-
resolve the geometry using the neighborhood configuration of

TABLE I: Illustration of the created LUT.

m ϕM σ̄

0 0000000 . . .0000 11111111
1 0000000 . . .0001 00001100
2 0000000 . . .0010 01101001
...

...
...

2M
3−1 − 1 1111111 . . .1111 11111111

xyz multiparous

xy uniparous
z multiparous

x uniparous
yz multiparous

xz uniparous
y multiparous

y uniparous
xz multiparous

yz uniparous
x multiparous

z uniparous
xy multiparous

xyz uniparous

y

z x

Fig. 5: The 8 types of parenthood stratification for 1 < s ≤ 2.

get_children

build_lut

get_neighbours

stratify

parenthood

SR_fractional

get_neighbours

stratify

parenthood

downsampling

Fig. 6: The architecture of the proposed method. The steps
required for the LUTs’ construction are shown on the left side.
On the right, we show how those LUTs are used to super-
resolve the input LR geometry Vd.

each voxel. Then, we use this knowledge to super-resolve from
Vd back to its original resolution Vsr. As depicted on the right-
hand side of Fig. 6, it suffices to get the neighborhood for each
voxel in Vd, stratify those voxels according to s, and finally,
using the previously acquired LUTs, estimate child occupancy.
Thus, the set of super-resolved children from vd(k) is

Vsr(k) = Vu(k | σ(vd,j(k))), (10)

where σ(vd,j(k)) = LUTj (ϕM (vd,j(k))) indicates that a
given neighborhood configuration determines which of the
possible children of vd(k) must be set as occupied, and
0 ≤ j ≤ 7 indicates the parenthood stratification (Fig. 5).
The super-resolved geometry is the union of all Vsr(k),

Vsr =

K⋃
k=1

Vsr(k). (11)



PREPRINT OF SUBMISSION TO IEEE TRANS. ON IMAGE PROCESSING 5

B. Implementation Issues

In the current implemented version, some constraints had
to be defined and additional steps were introduced to improve
the super-resolved PC.

For a symmetric neighborhood around a voxel, the neigh-
borhood size, M , must be an odd number. As M increases
by a single step, from 3 to 5, the possible neighborhood
configurations go from 226 to 2124. This makes impractical
to use large values of M , not only because it takes more
computational effort to find a bigger neighborhood, but also
because building an effective dictionary with so many entries
from a single PC is not possible. The entries become overly
specific and the output geometry would be approximately
equal to the NNI upsampling. For this reason, we decided
to fix M = 3, such that whenever ϕ(k) is mentioned it is
implicit that a neighborhood size 3, ϕ3(k), is considered.

Memory size limitations constrain the dictionary size and
the scale factor s. Moreover, as s increases, the number of
meaningful entries in the dictionary decreases, since there is
not much information in the lower levels of the geometry. In
other words, the preservation of self-similarities is diminished
with the increase of s. Thus, we decided to constrain the
values of s, {s ∈ Q | 1 < s ≤ 2}. Inside this interval, we
can profit from partial downsampling and super-resolve a full
octree level. If s > 2 is required, the proposed SR method can
still be used, by performing t = dlog2(s)e nested SRs with
a new scale factor s′ ≈ t

√
s, where the approximation sign is

needed since s′ must be a fractional number.
As a means of data augmentation, we applied incremental

translations to the input frame to increase the population
of the LUT. Since 1 < s ≤ 2, coordinate shifts of ±1
to each are sufficient to change the result of Eq. (1), and
the parenthood stratification. Other transformations, such as
rotation or scaling, were left to future work.

C. Color interpolation

In order to find the texture for the upsampled geometry, the
usual approach is to first put both LR and SR geometries in the
same scale, then interpolate the colors for the SR voxels using
a distance-based weighted average of the LR voxels colors. In
the case where no direct correspondence is found between the
SR and the LR voxels, the average, weighted by the inverse
of the distances δ−1, is taken over a 3× 3× 3 neighborhood.

A slight improvement to the previous interpolation method
can be achieved borrowing the color prediction used in G-
PCC in a new function within the present SR context. In
the transform domain prediction of RAHT [30], the estimated
color for each occupied child node is the average of the
parent node’s color, with the colors of the uncle nodes that
share an edge with that child node, as illustrated in Fig.
7. The average is weighted by the inverse distance between
each parent node and the current child node being estimated.
We refer to this method as the weighted average of adjacent
neighbors (WAAN). A variable weight, ζ dependent of s, was
introduced in the WAAN to take into account that the parent
color should be more important as the scale factor decreases.

(b)(a)

Fig. 7: Illustration of the neighbors used in the WAAN
calculation. (a) For the highlighted child node, only uncle
nodes sharing a face with it are considered. (b) The distances
δ`, from the child node to its uncles.

Thus, Csr(k) = {csr(i)} is the set containing the respective
colors of Vsr(k) of a given parent vd(k), such that:

csr(i) =

cd(k) + ζ
∑̀
δ−1` cd(`)

1 + ζ
∑̀
δ−1`

, (12)

where ` is the index of the occupied neighbors sharing a face
with vsr(i) (Fig. 7(b)). ζ was empirically found as ζ = δ1s/8.
The super-resolved colors are, then,

Csr =

K⋃
k=1

Csr(k). (13)

IV. PERFORMANCE ASSESSMENT AND ANALYSIS

A. Datasets and test conditions

We focused on PCs of static objects and scenes from the
MPEG’s G-PCC common test conditions (CTC) [10] and set a
point cap of 4 million voxels, due to the current implementa-
tion’s memory restrictions. Those PCs are originally voxelized,
avoiding biases introduced in the voxelization process. In
order to reduce the number of comparisons and to obtain a
more representative result, we clustered PCs sharing the same
source, voxel depth, and density into groups from (a) to (l),
whenever possible. Table II summarizes information about the
chosen contents, where “Vox.” indicates if the PC required a
pre-processing voxelization step, and ρϕ is a density measure
taken by the average neighborhood occupancy-rate of adjacent
voxels to an occupied voxel. Figure 8 depicts representatives
viewpoints from the PCs.

Some PCs representing objects were voxelized from
meshes. PCs with more than 4 million occupied voxels were
downsampled to meet the point cap. Other PCs were extremely
sparse, and downsampling them with s = 2 would decimate
less than 1% of the original points, making SR unjustified. In
these cases, we reduced the bit depth to increase density.

The density measure ρϕ is used as a predictor of the
proposed method’s performance, since we rely on similarities
at different scales. Those are somewhat maintained for dense
PCs, but not so much for sparse ones. We empirically found
out that when ρϕ is beyond 0.3 or so, the PC have watertight
projections, i.e., there is a one-to-one relationship between
rendered pixels and voxels without holes. We consider PCs
with watertight projections to be somewhat dense. If, however,



PREPRINT OF SUBMISSION TO IEEE TRANS. ON IMAGE PROCESSING 6

(a) longdress (b) boxer (c) thaidancer

(k) facade_09

(d) basketball_player (e) queen (f) ricardo9

(g) head (h) statue_klimt (i) biplane (j) arco_valentino (l) house

Fig. 8: Representative viewpoints of some of the human figures from (a) to (f), and of the objects from (g) to (l).

TABLE II: Summary of tested PCs.

Point clouds Vox. Depth # voxels ρϕ

(a) Group: 8i vox10 [7]
longdress vox10 1300 7 10-bit 857,966 0.429
loot vox10 1200 7 10-bit 805,285 0.428
redandblack vox10 1550 7 10-bit 757,691 0.433
soldier vox10 0690 7 10-bit 1,089,091 0.432

(b) Group: 8i vox12 [8]
boxer viewdep vox12 7 12-bit 3,493,085 0.031
longdress viewdep vox12 7 12-bit 3,096,122 0.027
loot viewdep vox12 7 12-bit 3,017,285 0.029
redandblack viewdep vox12 7 12-bit 2,770,567 0.025

(c) Thaidancer viewdep vox12 [8] 7 12-bit 3,130,215 0.332
(d) Group: owlii [31]

basketball player vox11 00000200 7 11-bit 2,925,514 0.452
dancer vox11 00000001 7 11-bit 2,592,758 0.445

(e) queen frame 0200† 7 10-bit 1,000,993 0.524
(f) Group: MVUB [9]

andrew9 0000 7 9-bit 279,664 0.547
david9 0000 7 9-bit 330,797 0.542
phil9 0000 7 9-bit 370,798 0.543
ricardo9 0000 7 9-bit 214,656 0.550
sarah9 0000 7 9-bit 302,437 0.538

(g) Head 00039 vox12† 3 9-bit 938,112 0.532
(h) 1x1 Biplane Combined 000‡ 3 10-bit 1,181,016 0.567
(i) Statue Klimt vox12† 3 10-bit 483,068 0.209
(j) Arco Valentino Dense vox12† 7 12-bit 1,481,746 0.025
(k) Facade 00009 vox20† 3 11-bit 1,560,786 0.165
(l) House without roof 00057 vox12† 3 11-bit 3,638,139 0.247
† https://mpegfs.int-evry.fr/mpegcontent/
‡ https://jpeg.org/plenodb/

ρϕ is below 0.3, we considered the PC to be sparser, as there
will likely be holes in its projections. If ρϕ = 0 for a given
neighborhood size M , but ρϕ > 0 for a neighborhood size
M ′ > M , then it is possible to reduce an initially assumed
sparse PC into a dense one at a lower resolution.

B. Self-similarities at different scales

The proposed SR method assumes that the geometry of
a PC is approximately self-similar at different scales. The

under-complete dictionaries are constructed using a coarser
geometry and applied to recreate a finer geometry. One way
to verify the preservation of similarities at different scales
is to create a dictionary using the original HR PC and
compare it with the one created from the LR version. Using
redandblack vox10 1550 and s = 1.5, we found out that on
average 48% of the neighborhood configurations present at
both dictionaries are identical, and 86% differ at most by 1
position. When comparing the outputs of identical neighbor-
hood entries, there is a 63% of identical children occupancy,
and 82% of the children also differ at most by 1 position. From
these numbers, we can see that the assumed self-similarities
are approximately preserved at different scales.

C. Evaluation framework

Ten LR versions of each input PC were created by varying
the scale factor s in the interval 1.1 ≤ s ≤ 2. To assess
the quality of the proposed method (LUT), we applied the
NNI upsampling to each LR version to serve as the baseline.
Additionally, in order to mitigate the aliasing effects from
the NNI approach, we also considered smoothing it using
the Laplacian smoothing technique (labeled as NNI+LS).
Comparisons with other methods were not carried out because
they were developed with set downsampling in mind and
would require adaptations to work with grid downsampling LR
PCs. Also, most of the deep learning methods would require
a lot of retraining to cope with the different scale factors and
with the real-world voxelized PCs of our test set. The other
methods from Garcia et al. [26] also cannot be used because
they do not allow for fractional scale factors.

Three point-based and three projection-based metrics were
chosen for the assessment. For the point-based metrics we
used: point-to-point (D1), point-to-plane (D2) and luma end-
to-end. Point-based metrics are computed symmetrically, first
using the original PC as reference, then using the distorted
version as reference. The final value is the maximum error

https://mpegfs.int-evry.fr/mpegcontent/
https://jpeg.org/plenodb/


PREPRINT OF SUBMISSION TO IEEE TRANS. ON IMAGE PROCESSING 7

observed between the two measurements. The D1 metric [32]
is calculated as the average squared distance between each
point in the first PC and its nearest neighbor in the second
one. The D2 metric [33] is similar to the D1 metric, except
that the distances are projected to the normal direction before
being averaged, imposing larger penalties on errors that move
further away from the local plane surface. D1 and D2 MSE
are converted to PSNR using the length of the diagonal of the
bounding cube containing the PC as the normalization factor.
For the texture assessment, the colors of each point in the first
PC are compared to the ones from their nearest neighbors in
the second PC. RGB colors are converted to YUV709 for the
Y-PSNR calculation. These metrics were selected as they are
widely used in MPEG’s core experiment evaluations.

For the projection-based metrics [34], [35] we used PSNR,
SSIM [36] and VIFp [37]. They are referred with a preceding
“P”, as in projected PSNR (PPSNR). To get the projections,
voxels were rendered as cubes and point size was set equal
to 1. Although this choice of rendering may generate holes in
sparse PCs, different choices could add rendering distortions
to SR intrinsic artifacts. Six projection views were used (the
six faces of the cube containing the PC). In this way, each
visible voxel side is projected into a single pixel, so that in a
depth-10 PC there are six 1024 × 1024 pixel projections. In
order to decrease the effect of the background in the metrics,
its color was set to a mid-gray value, and we only considered
the rectangular region formed by the union of the foregrounds
of the reference and the distorted projections, as suggested by
Alexiou et al. [38].

D. Results

Table III shows the average gain of the NNI+LS and the
LUT approaches when compared to the NNI upsampling. As
we can see from it, the proposed method is superior than
the baseline or its smoothed counterpart, for every content
in almost every metric. Note that there are odd cases for
resampling such as totally occluded voxels with a different
colour than its neighbours (occurs in queen), cropped edges
(in MUVB), and noisy geometry scans in almost every scanned
PC. Thus, we expect better results from “well-behaved” PCs.

Geometry distortion comparisons are presented in Figs.
9 and 10, for some of the PCs, to illustrate the behavior
over different values of s. From these plots, we can see the
consistent gain of the proposed method. Also it is possible to
observe that the proposed method is able to generate better
results when the input PCs are somewhat dense (Thaidancer
and Biplane). This is because, in denser PCs, the geometry
changes are smaller than in sparser ones with the increasing
of s, which is a desired property for the creation of the
dictionaries. Also, in general, we observe better results for
the proposed method for lower values of s. This is expected,
as s increases more guesses must be made (less uniparous
parents), less information is available to create the LUTs
(coarser geometry).

We can see that the proposed method outperforms the others
for all PCs but Biplane, in the Y-PSNR plots of Fig. 11. As it is
possible to see in Fig. 8(i), Biplane has a significant amount of

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

75

80

85

P
S

N
R

 [
d
B

]

D1 PSNR 8i_vox12

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

80

85

90

P
S

N
R

 [
d
B

]

D1 PSNR Thaidancer

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

65

70

75

P
S

N
R

 [
d
B

]

D1 PSNR Biplane

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

70

75

80

P
S

N
R

 [
d
B

]

D1 PSNR House

NNI
NNI+LS
LUT

Fig. 9: D1 metric for PCs (b), (c), (h) and (l). NNI is
the baseline upsampling, NNI+LS is the latter followed by
Laplacian smoothing, and LUT is the proposed method.

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

80

82

84

86

88

P
S

N
R

 [
d
B

]

D2 PSNR 8i_vox12

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

80

85

90

P
S

N
R

 [
d
B

]

D2 PSNR Thaidancer

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

70

75

80

P
S

N
R

 [
d
B

]

D2 PSNR Biplane

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

75

80

85
P

S
N

R
 [

d
B

]
D2 PSNR House

NNI
NNI+LS
LUT

Fig. 10: D2 metric for PCs (b), (c), (h) and (l).

noise in its texture, which is hard to replicate considering that
both texture interpolation solutions are based on smoothing
neighboring colors.

Plots with PPSNR distortion metric are shown in Fig.
12. Holes caused by missing occupied children affect more
this metric than the others, which occurs more frequently
for the sparser clouds. The low values of PPSNR observed,
particularly for sparse PCs, occur because of the way we
chose to render the projections. The majority of errors made
by NNI upsampling-related methods are usually of excess
nature, i.e., they add more points than necessary in their
attempts to recreate the original PC. In sparse PCs, those
errors are more apparent, reducing the absolute level of the



PREPRINT OF SUBMISSION TO IEEE TRANS. ON IMAGE PROCESSING 8

TABLE III: Average gain over the NNI.

Point clouds D1 PSNR [dB] D2 PSNR [dB] Y-PSNR [dB] PPSNR [dB] PSSIM PVIFP

NNI+LS LUT NNI+LS LUT NNI+LS LUT NNI+LS LUT NNI+LS LUT NNI+LS LUT

(a) 8i vox10 3.27 5.47 4.29 5.91 0.17 1.95 2.06 3.80 0.02 0.03 0.06 0.04
(b) 8i vox12 -0.63 1.58 1.24 2.75 -2.79 2.87 -1.60 0.27 -0.13 -0.02 -0.16 0.02
(c) Thaidancer 2.85 4.57 3.67 5.26 0.14 2.92 2.42 4.28 0.01 0.02 0.06 0.05
(d) owlii 3.39 6.47 4.41 6.77 0.04 1.61 2.37 3.97 0.01 0.02 0.05 0.05
(e) queen 3.18 6.24 4.66 7.12 -0.99 0.76 1.27 3.84 0.01 0.02 0.05 0.08
(f) MVUB 2.72 3.98 4.10 4.80 -0.37 1.31 0.12 1.72 0.01 0.02 0.02 0.03
(g) Head 2.86 4.32 4.23 5.42 -0.69 -0.12 0.01 1.43 0.01 0.04 -0.03 -0.03
(h) Biplane 2.10 3.25 3.41 4.22 -0.82 -0.28 -0.54 0.86 -0.01 0.01 -0.05 -0.05
(i) Statue Klimt 0.88 0.75 1.75 1.16 -0.94 1.29 -0.55 0.30 -0.02 0.01 -0.06 -0.03
(j) Arco Valentino 0.00 0.93 0.03 1.02 -3.59 0.01 -0.09 1.02 -0.01 -0.03 -0.08 -0.30
(k) Facade 00009 0.61 1.43 1.88 2.29 -1.61 1.58 -0.93 0.04 -0.05 -0.01 -0.12 -0.06
(l) House 0.89 1.64 2.18 2.77 -1.16 0.74 -0.79 -0.04 -0.02 -0.01 -0.09 -0.04

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

40

45

50

55

P
S

N
R

 [
d
B

]

Y-PSNR 8i_vox12

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

35

40

45

P
S

N
R

 [
d
B

]

Y-PSNR Thaidancer

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

20

22

24

26

P
S

N
R

 [
d
B

]

Y-PSNR Biplane

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

30

35

40

P
S

N
R

 [
d
B

]

Y-PSNR House

NNI
NNI+LS
LUT

Fig. 11: Y-PSNR metric for PCs (b), (c), (h) and (l).

PPSNR. If a different rendering approach was used, probably
different values were to be observed. Still, the proposed
method achieves better results in almost all cases.

Viewpoint projections for redandblack viewdep vox12 and
Biplane are shown in Fig. 13 for visual comparison.

V. CONCLUSIONS

In this work, we presented a method for super-resolving
voxelized PCs at fractional scales, in which self-similarities at
lower scales are used to define which of the possible children
should be occupied. Extensive results show that the proposed
method yields lower distortion results when compared to
upsampling by NNI, and to the NNI followed by smoothing.
Although only static point-clouds were used, the proposed
method can be transferred to dynamic ones, with probably
even better results [26], as more frames are available to create
the LUT. Future works may focus on robustness against outlier
regions in the PC. We also plan to improve the super-resolution
of sparse PCs, and of texture attributes.

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

20

25

30

P
S

N
R

 [
d
B

]

Projected PSNR 8i_vox12

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

30

35

40

45

P
S

N
R

 [
d
B

]

Projected PSNR Thaidancer

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

20

25

30

P
S

N
R

 [
d
B

]

Projected PSNR Biplane

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

22

24

26

28

30

P
S

N
R

 [
d
B

]

Projected PSNR House

NNI
NNI+LS
LUT

Fig. 12: Projected PSNR metric for PCs (b), (c), (h) and (l).

REFERENCES

[1] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and
A. Tabatabai, “An overview of ongoing point cloud compression stan-
dardization activities: video-based (V-PCC) and geometry-based (G-
PCC),” APSIPA Transactions on Signal and Information Processing,
vol. 9, 2020.

[2] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A.
Chou, R. A. Cohen, M. Krivokuća, S. Lasserre, Z. Li, J. Llach,
K. Mammou, R. Mekuria, O. Nakagami, E. Siahaan, A. Tabatabai, A. M.
Tourapis, and V. Zakharchenko, “Emerging mpeg standards for point
cloud compression,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 9, no. 1, pp. 133–148, 2019.

[3] 3DG, “V-PCC Codec Description,” ISO/IEC JTC 1/SC 29/WG 11,
Geneva, CH, Approved WG 11 doc. N18892, Oct. 2019.

[4] ——, “G-PCC codec description v5,” ISO/IEC MPEG JTC 1/SC 29/WG
11, Geneva, CH, Approved WG 11 doc. N18891, Oct. 2019.

[5] D. Meagher, “Geometric modeling using octree encoding,” Computer
Graphics and Image Processing, vol. 19, no. 2, pp. 129–147, Jun 1982.

[6] R. L. de Queiroz and P. A. Chou, “Compression of 3D point clouds
using a region-adaptive hierarchical transform,” IEEE Transactions on
Image Processing, vol. 25, no. 8, pp. 3947–3956, aug 2016.

[7] E. d’Eon, B. Harrison, T. Myers, and P. A. Chou, “8i Voxelized
Full Bodies, version 2 – A Voxelized Point Cloud Dataset,” ISO/IEC
JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG), Geneva, input document
m40059/M74006, January 2017.

[8] M. Krivokuća, P. A. Chou, and P. Savill, “8i Voxelized Surface



PREPRINT OF SUBMISSION TO IEEE TRANS. ON IMAGE PROCESSING 9

ground truth

LR NNI NNI+LS LUT LR NNI NNI+LS LUT

ground truth

Fig. 13: Projections for redandblack viewdep vox12 and Biplane for different values of s.

Light Field (8iVSLF) Dataset,” ISO/IEC JTC1/SC29 Joint WG11/WG1
(MPEG/JPEG), Ljubljana, input doc. m42914, July 2018.

[9] C. Loop, Q. Cai, S. Escolano, and P. Chou, “Microsoft voxelized upper
bodies - a voxelized point cloud dataset,” ISO/IEC JTC1/SC29 Joint
WG11/WG1 (MPEG/JPEG), input doc. m38673/M72012, May 2016.

[10] 3DG, “Common test conditions for point cloud compression,” ISO/IEC
JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG), Gothenburg, SE, Ap-
proved WG 11 doc. N18883, July 2019.

[11] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T.
Silva, “Computing and rendering point set surfaces,” IEEE Transactions
on Visualization and Computer Graphics, vol. 9, no. 1, pp. 3–15, 2003.

[12] G. Guennebaud and M. Gross, “Algebraic point set surfaces,” ACM
Transactions on Graphics, vol. 26, no. 3, p. 23, jul 2007.

[13] A. C. Öztireli, G. Guennebaud, and M. Gross, “Feature preserving point
set surfaces based on non-linear kernel regression,” Computer Graphics
Forum, vol. 28, no. 2, pp. 493–501, apr 2009.

[14] H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher, and H. R. Zhang,
“Edge-aware point set resampling,” ACM Trans. Graph., vol. 32, no. 1,
Feb. 2013.

[15] A. Hamdi-Cherif, J. Digne, and R. Chaine, “Super-resolution of point
set surfaces using local similarities,” Computer Graphics Forum, vol. 37,
no. 1, pp. 60–70, jun 2017.

[16] C. Dinesh, G. Cheung, and I. V. Bajić, “3D point cloud super-resolution
via graph total variation on surface normals,” in IEEE International
Conference on Image Processing (ICIP). IEEE, sep 2019.

[17] C. Dinesh, G. Cheung, and I. V. Bajić, “Super-resolution of 3D color
point clouds via fast graph total variation,” in ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2020, pp. 1983–1987.

[18] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “PU-net:
Point cloud upsampling network,” in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition. IEEE, jun 2018.

[19] ——, “EC-net: An edge-aware point set consolidation network,” in
Computer Vision – ECCV 2018. Springer International Publishing,
2018, pp. 398–414.

[20] W. Yifan, S. Wu, H. Huang, D. Cohen-Or, and O. Sorkine-Hornung,
“Patch-based progressive 3d point set upsampling,” in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, jun 2019.

[21] R. Li, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “PU-GAN:
a point cloud upsampling adversarial network,” in IEEE International
Conference on Computer Vision (ICCV), Oct. 2019.

[22] H. Wu, J. Zhang, and K. Huang, “Point Cloud Super Resolution with
Adversarial Residual Graph Networks,” BMVC 2020, 2020.

[23] G. Qian, A. Abualshour, G. Li, A. Thabet, and B. Ghanem, “PU-GCN:
Point cloud upsampling using graph convolutional networks,” in 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

[24] Y. Qian, J. Hou, S. Kwong, and Y. He, “PUGeo-net: A geometry-centric
network for 3d point cloud upsampling,” in Computer Vision – ECCV
2020. Springer International Publishing, 2020, pp. 752–769.

[25] S. Ye, D. Chen, S. Han, Z. Wan, and J. Liao, “Meta-PU: An arbitrary-
scale upsampling network for point cloud,” IEEE Transactions on
Visualization and Computer Graphics, pp. 1–1, 2021.

[26] D. C. Garcia, T. A. Fonseca, R. U. Ferreira, and R. L. de Queiroz,
“Geometry coding for dynamic voxelized point clouds using octrees and
multiple contexts,” IEEE Transactions on Image Processing, vol. 29, pp.
313–322, 2019.

[27] D. C. Garcia, T. A. Fonseca, and R. L. de Queiroz, “Example-
based super-resolution for point-cloud video,” in IEEE International
Conference on Image Processing (ICIP). IEEE, 2018, pp. 2959–2963.

[28] M. Corsini, P. Cignoni, and R. Scopigno, “Efficient and flexible sampling
with blue noise properties of triangular meshes,” IEEE Transactions on
Visualization and Computer Graphics, vol. 18, no. 6, pp. 914–924, 2012.

[29] A. B. Yutaka and E. B. Y. Ohtake, “A comparison of mesh smoothing
methods,” in In Proceedings of the Israel-Korea BiNational Conference
on Geometric Modeling and Computer Graphics, 2003, pp. 83–87.

[30] S. Lasserre and D. Flynn, “[G-PCC][new proposal] On an improve-
ment of RAHT to exploit attribute correlation,” ISO/IEC MPEG
JTC1/SC29/WG11, Geneva, CH, Tech. Rep. m47378, Mar. 2019.

[31] Y. Xu, Y. Lu, and Z. Wen, “Owlii Dynamic Human Textured Mesh
Sequence Dataset,” ISO/IEC MPEG JTC1/SC29/WG11, Macau, China,
Tech. Rep. m41658, Oct. 2017.

[32] D. Girardeau-Montaut, M. Roux, R. Marc, and G. Thibault, “Change
detection on points cloud data acquired with a ground laser scanner,” in
Proceedings of the ISPRS Workshop Laser scanning 2005, G. Vosselman
and C. Brenner, Eds., vol. XXXVI-3/W19. Enschede, the Netherlands:
International Society for Photogrammetry and Remote Sensing, Sep.
2005, pp. 30–35.

[33] D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro, “Geometric dis-
tortion metrics for point cloud compression,” in 2017 IEEE International
Conference on Image Processing (ICIP), Sep. 2017, pp. 3460–3464.

[34] E. M. Torlig, E. Alexiou, T. A. Fonseca, R. L. de Queiroz, and
T. Ebrahimi, “A novel methodology for quality assessment of voxelized
point clouds,” in Applications of Digital Image Processing XLI, A. G.
Tescher, Ed., vol. 10752, International Society for Optics and Photonics.
SPIE, 2018.

[35] R. L. de Queiroz and P. A. Chou, “Motion-compensated compression
of dynamic voxelized point clouds,” IEEE Transactions on Image
Processing, vol. 26, no. 8, pp. 3886–3895, Aug 2017.

[36] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. S. Simoncelli, “Image
Quality Assessment: From Error Visibility to Structural Similarity,”
IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612,
apr 2004.

[37] H. R. Sheikh and A. C. Bovik, “Image information and visual quality,”
IEEE Transactions on Image Processing, vol. 15, no. 2, pp. 430–444,
Feb 2006.

[38] E. Alexiou, I. Viola, T. M. Borges, T. A. Fonseca, R. L. de Queiroz, and
T. Ebrahimi, “A comprehensive study of the rate-distortion performance
in MPEG point cloud compression,” APSIPA Transactions on Signal and
Information Processing, vol. 8, p. e27, 2019.


	Introduction
	Point cloud resampling
	Downsampling
	Upsampling

	Intra-frame super-resolution of voxelized point clouds
	Proposed method
	Implementation Issues
	Color interpolation

	Performance assessment and analysis
	Datasets and test conditions
	Self-similarities at different scales
	Evaluation framework
	Results

	Conclusions
	References

