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Abstract

In this paper, we present an integrated and fire neuron designed in a 22-nm FDSOI technology. In this novel design, we deploy

the back-gate terminal of FDSOI technology for a tunable design. For the first time, we show analytically and with pre- and

post-layout simulations a neuron with tunable spiking frequency using the back-gate voltage of FDSOI technology. The neuron

circuit is designed in the sub- hreshold region and dissipates an ultra-low energy per spike of the order of Femto Joules per

spike. With the layout area of only 30 um2, this is the smallest neuron circuit reported to date.
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Abstract—In this paper, we present an integrated and fire
neuron designed in a 22-nm FDSOI technology. In this novel
design, we deploy the back-gate terminal of FDSOI technology for
a tunable design. For the first time, we show analytically and with
pre- and post-layout simulations a neuron with tunable spiking
frequency using the back-gate voltage of FDSOI technology.
The neuron circuit is designed in the sub-threshold region and
dissipates an ultra-low energy per spike of the order of Femto
Joules per spike. With the layout area of only 30 µm2, this is
the smallest neuron circuit reported to date.

Index Terms—Spiking Neural Networks, Integrated Circuits,
Neuromorphic Computing, Neuron and Synapse, FDSOI, Fre-
quency Modulation

I. INTRODUCTION

Artificial neural networks (ANN) are a promising solution
to address the bottlenecks of the Von Neumann paradigms
[1]–[18]. Brain-inspired spiking neural networks (SNN) have
been introduced as the third generation of ANN emulating
biological brain functions in hardware. The basic computing
unit in the spiking neural networks (SNNs) are neurons com-
municating with each other through synapses via the electrical
pulses called spikes [2]–[6], [9]–[16], [19]–[24].

Each standard neuronal topology in SNN structures must
mimic the known dynamics of a biological neurons such as
the adaptive spike-frequency with the biologically plausible
time constants. To mimic brain-like functionality a very large
number of neurons are required in SNNs. So, the size of
the neuronal hardware is also very important. This underlines
the need for simple neuronal circuits with minimum number
of transistors. The Axon-Hillock [25], Hodgkin-Huxley [26],
Morris-Lecar [27], Fitz-Nagumo [28], Resonate and Fire [29],
[30], Hindmarsh–Rose [31], Mihalas-Niebur and Izhikevich
model [32]–[36] were the leading models inspiring the next
generations of the neuromorphic circuit over the last decades
[1], [2], [4], [7], [15], [18], [22], [24]. Among these, the Leaky
Integrate-and-Fire (I&F) neurons are claimed to be compact,
and computationally more efficient. The I&F neurons integrate
the pre-synaptic signal through a membrane capacitor and
generate spikes once the integrated signal exceeds the spiking
threshold [3], [5], [9], [12]–[17], [19]–[21], [23], [32], [37]–
[40].

To address the energy issue, the transistors are prefer-
ably biased in the sub-threshold region. However, nano-scale
CMOS devices suffer from significant leakage currents in
sub-threshold. Therefore, novel technologies like the Fully
Depleted Silicon on Insulator (FDSOI) have been emerged
showing superior performance in terms of leakage and power
consumption [1], [16], [18], [41], [42]. The use of back-gate
bias is a new possibility in the FDSOI technology to tune

the circuit performance. In this paper, for the first time, we
propose a neuron design which can use back-gate voltage to
modulate the spiking frequency of a compact I&F neuron.
Frequency can be modulated in a broad range from 36.8 kHz
to 416.67 kHz. The proposed neuron operates in the sub-
threshold region and consumes an ultra-low energy per spike.
The final layout, including the core neuron, six output buffers
for measurement purposes, one level-shifter (required for the
following I/O block), and all capacitors designed to ensure
biological time constants, is only 30 µm2 in size.

The paper is organized as follows. Neuron circuit topology
and its functionality are presented in the next section. An
analytical model of the the frequency modulation as well as
the temperature compensation based on the back-gate biasing
are also presented in section II. In Section III, the post-
layout analysis and the Monte-Carlo simulation results are
presented, validating the neuron performance against the pro-
cess variations, mismatch, leakage, and parasitic components.
Conclusions are drawn in the Section IV.

II. FDSOI-BASED I&F NEURON AND FREQUENCY
MODULATION

A. Neuron Operation

The proposed Integrate-and-Fire neuron is designed in 22-
nm FDSOI technology. The topology is shown in Fig. 1.
The supply voltage Vdd is set to 0.3V for the sub-threshold
operation. The input synaptic current Isyn is a fixed bias
current. It is set it to 10 nA. Each spike consists of three
main transient responses: charging, firing, and resetting. The
proposed neuron performs these steps through different parts
highlighted in black, green, and red in Fig. 1, respectively.
Figure 2 correspondingly illustrate the contribution of each
step in the the simplified characteristic of the spikes with the
same colour.

The charging step is implemented by Cmem and the After
Hyper-Polarization (AHP) mechanism composing the transis-
tors M4−6 and capacitor Cahp. The AHP mechanism is also
used to modulate the spiking-frequency. Cmem is responsible
for integrating the difference of the synaptic current Isyn
and the AHP current Iahp and, then, creating the membrane
voltage Vmem. The charging starts when Isyn > Iahp. The
membrane voltage increases from zero at point A and the
charging continues until Vmem reaches the spiking threshold
Vth−s at point B. This step, therefore, takes a charging time
tAB that is a function of Cmem, Isyn, and Iahp. tAB can be
calculated by integrating the membrane voltage from zero to
the spiking threshold as,
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Fig. 1. The proposed I&F neuron with frequency adaptation mechanism.

Fig. 2. Simplified spiking characteristic of the neuron in Fig. 1. Each spike
composes three steps named the charging (from A to B), firing (between
points B and C), and resetting (from C to D).

∫ Vth−s

0

Cmem dVmem =

∫ tAB

0

(Isyn − Iahp) dt (1)

Assuming a fixed pre-synaptic current Isyn, the charging
time tAB is obtained to be,

tAB =
Cmem · Vth−s
Isyn − Iahp

(2)

Once Vmem exceeds the spiking threshold, transistors M1

turns on. This then turns on M3. Then, a firing current Ifb
flows through M3 which pulls up the membrane voltage
Vmem to the supply voltage Vdd (See point C in Fig. 2). The
membrane voltage changes from Vth−s to Vdd in the firing
step. The firing time tBC is calculated as,

tBC =
Cmem · (Vdd − Vth−s)

Isyn − Iahp + Ifb
≈ Cmem · (Vdd − Vth−s)

Ifb
(3)

As soon as M1 switches on, the inverter (M7 and M8)
sees a zero bias as its input. As a result the output capacitor
Cout starts to charge. The output capacitance should be greater
than the membrane capacitance to guarantee the sequence of
firing and resetting steps. Once Cout charges to voltage which
can turn M9 on, the reset current Ireset starts to flow. Ireset
discharges the membrane capacitor to point D (zero volt in
our design). The ∆Vmem in this step is Vdd and the resetting
time tCD is given by,

tCD =
Cout · Vdd

Isyn − Iahp − Ireset
≈ Cout · Vdd

Ireset
(4)

The neuron remains at this point as long as Ireset >
Isyn-Iahp. Subsequently M1 switches off and the inverter is

Fig. 3. Id-Vg characteristics of two NMOS and PMOS device with the same
channel width W = 1.28 µm as functions of their back-gate bias.

connected to Vdd through M2. Then the next charging starts.
tBC and tCD are very small due to the relatively high charging
currents Ifb and Ireset.

B. Frequency Modulation

The total period of each spike is the summation of tAB ,
tBC , and tCD. The spiking frequency fspike is, then, defined
as

fspike =
1

tAB + tBC + tCD
(5)

Note that the firing and resetting currents are constant, so,
tBC and tCD do not change by back-gate biases Vbg5 and
Vbg6. Also, these two time steps are shorter than tAB . To
modulate the frequency, we modulate tAB through the AHP
current Iahp. FDSOI devices offer unique way to modulate the
device current through the back-gate. Figure 3 plots the drain
current versus gate voltage (Id-Vg) characteristics of n- and
p-types FDSOI devices with the channel width and length of
W = 1.28 µm and L = 20 nm, respectively, and the drain
voltage Vd = 1.5V . The back-gate voltage Vbg is set to −2.5V ,
0V , and 2.5V . As seen, the higher Vbg , the smaller threshold
voltage, and the greater drain current will be. We use the back-
gate bias voltage over of M6 to change Iahp and, subsequently,
the charging time tAB . The back-gate voltages Vbg5 and Vbg6
are used to tune the AHP current. Our analytical calculations
are validated by comparing with the simulations of tAB with
the foundry PDK.

The capacitors are designed by considering the sequence of
the charging, firing, and resetting steps. To ensure appropriate
sequencing we use Cmem = 3 fF , Cout = 9 fF , and
Cahp = 40 fF . Back-gate voltages are tuned between the
allowed range of 0V to 1.2V . Figure 4 sketches the transient
characteristics of Vmem, derivative of Vmem (V ′mem), Iahp,
Ifb, and Ireset for Vbg5 = 0V and Vbg6 = 1.2V . This is the
back-gate voltage condition of the lowest spiking frequency.

As shown in Fig. 4 Ifb and Ireset are equal to the off-
current Ioff and Iahp is constant during the charging period.
The rate of charging remains roughly constant from point A
to B. However, the firing current Ifb starts increasing at point
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Fig. 4. Calculation of the charging time tAB for the back-gate voltages of
Vbg5 = 0V and Vbg6 = 1.2V . The charging, firing, and resetting steps
correspond to the time intervals of A to B, B to C, and C to D, respectively.

Fig. 5. V ′
mem versus the membrane voltage for two opposite case of the

maximum (blue) and minimum (green) spiking frequencies. The part from
point A to point B indicates a relatively fixed slope.

B and V ′mem increases. This indicates that the charging step
is terminated and the firing step has started.

The maximum Vmem in the charging step (at point B)
defines the spiking threshold Vth−s. Figure 5 provides easier
visualization of the spiking threshold. Fig. 5 shows transient
simulation results for V ′mem as a function of Vmem during
switching up-to time ttran = 100µs. This is shown for two
back-gate bias conditions which result in minimum and max-
imum spiking frequency. As seen, V ′mem is almost constant
from point A to B and, then, changes at membrane voltage
of close to Vdd/2 = 0.15V which is taken as the spiking
threshold. Table I compares the spiking frequency calculated
by Eq. (5) with the simulation results for four different bias
sets (cases 1-4). From this table, there is an excellent fit
between the theoretical analysis and simulation. Plotted in Fig.
6 also illustrates the modulation of the spiking frequency for

TABLE I
COMPARISON BETWEEN THE CALCULATED AND SIMULATED SPIKING

FREQUENCY FOR DIFFERENT COMBINATIONS OF Vbg5 AND Vbg6

Case 1 Case 2 Case 3 Case 4

Vbg5 = 1.2V

Vbg6 = 1.2V

Vbg5 = 0V

Vbg6 = 0V

Vbg5 = 0V

Vbg6 = 1.2V

Vbg5 = 1.2V

Vbg6 = 0V

fspike
Calculation 2.5 MHz 3.2 MHz 355 kHz 4.4 MHz

Simulation 2.2 MHz 2.8 MHz 337 kHz 3.8 MHz

Fig. 6. Variation of the spiking frequency as a function of two back-gate
biases Vbg5 and Vbg6.

two back-gate biases Vbg5 and Vbg6 swept from 0 V to 1.2 V .

C. Monte-Carlo Analysis

To validate the performance of the neuron in terms of
mismatch, we performed the Monte-Carlo (M-C) analysis with
200 runs for the firing rate of the neuron. Figures 7(a) and
(b), respectively, represent the variations of the maximum and
minimum spiking-frequencies with the deviations lower than
the standard deviation 3σ.

III. POST-LAYOUT RESULTS AND DISCUSSION

A. Layout and the process-variation analysis

The 22nm FDSOI process has many flavors of FETs. After
performing I-V simulations of different flavors it become
clear that high-threshold FETs (HVTFETs) offer the lowest
leakage current as compared to other flavors of FETs in the
process. HVTFET is selected to design the neuron circuit. FET
widths are optimized with respect to minimize mismatch. The
triple well structure, e.g. PMOS in NWELL and NMOS in
PWELL, is used for all FETs. This structure allows us to
isolate the NMOS device from the global substrate through an
NWELL ring surrounding the device and facilitates applying
an independent bias to the back-gate node [43]. An n-type
current mirror with an input pulse generates the pre-synaptic
current Isyn. Two 4-bit digital-to-analog converters (DACs)
are also designed to generate the two back-gate biases used in
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(a)

(b)

Fig. 7. The Monte-Carlo analysis for (a) the minimum and (b) maximum
spiking frequencies.

the neuron circuit (see Fig. 1). These DACs are added to the
neuron in the final layout but their areas are excluded from
the neuron layout size for a fair comparison with the literature.
A level-Shifter circuit [44] is inserted in the neuron layout to
generate the output pulses with amplitudes of 0.8V needed
for the following I/O block. In addition, six output buffers are
added for measurement purposes [45].

The Metal-Oxide-Metal (MOM) capacitors are chosen for
the capacitors of the circuits as they offer acceptable capac-
itance density [43]. The final layout is presented in Fig. 8.
Transistors with back-gate bias M5 and M6, level shifter, and
other parts of neuron and buffers are shown in this figure.
Total area is 30µm2 in size considering all blocks and MOM
capacitors. Figure 9 shows the output of the level-shifter for
the minimum and maximum firing rates. Although the spiking
frequency is reduced by the parasitic components [39], [46],
[47], the proposed neuron offers a wide frequency range from
36.8kHz to 416.67kHz. The capacitors must take the values
to trade-off the area and operating in the real time constants.
However, small capacitors in the order of few femto-Farads are
vulnerable to the parasitics. We run post-layout simulations for
two extreme capacitor corners in PDK (Cmin and Cmax) and
compare the ratio between fmax and fmin with the nominal
case. The results are summarized in Table II denoting that the
frequency ratio remains roughly similar to the nominal case.
This means that the capacitors are designed correctly.

B. Energy Dissipation

The energy consumed per spike is an important figure of
merit (FoM) for neuron circuit. This FoM has been considered

Fig. 8. The final layout including the proposed neuron in Fig. 1, the level-
shifter, and all buffers needed for measurement. All capacitors are placed on
top of the transistors layout, offering a more compact layout.

Fig. 9. The output charcteristics of the level-shifter for fmax (blue) and
fmin (red).

TABLE II
CAPACITIVE CORNER-ANALYSIS OF THE NEURON AND COMPARISON THE

RESULT WITH THE NOMINAL DESIGN

Corners fmin(kHz) fmax(kHz)
fmax
fmin

Cmin 38.28 441 11.52

Nominal 36.8 416.67 11.32

Cmax 35.52 416.67 11.73

in various works to fairly evaluate the energy efficiency of
the neuron circuits [6], [21], [22], [24]. Energy per spike is
calculated by dividing the average power consumption Pave

by the spiking frequency fspike. The averaged power is given
by,

Pave =
1

tsim

∫ tsim

0

idd(t) · Vdd dt (6)

or, equivalently,

Pave =
fspike
N

∫ tsim

0

idd(t) · Vdd dt (7)

where tsim is the simulation time, idd(t) represents the total
(static and dynamic) current flowing through the supply volt-
age Vdd, and N indicates the number of spikes in the simulation
time tsim. The energy per spike Es is, then, extracted from
Eq. (7) and is written as

Es =
Pave

fspike
=

1

N

∫ tsim

0

idd(t) · Vdd dt (8)
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TABLE III
COMPARISON BETWEEN THE PERFORMANCE OF THE PROPOSED NEURON WITH OTHER TOPOLOGIES AND TECHNOLOGIES REPORTED IN THE LITERATURE

Reference Technology No. Transistors Vdd (V ) Power Es Frequency Area
[40] 0.35 µm CMOS 21 3.3 − 900 pJ 100 Hz < 10 mm2∗
[24] 0.35 µm CMOS 14 3.2 8− 40 µW 8.5− 9 pJ − 2800 µm2

[37] 1.5 µm CMOS 20 5 0.3− 1.5 µW 3− 15 pJ 100 Hz −
[1] 28 nmFDSOI 21 1 − 50 pJ ∗ ∗ 30 Hz 50 µm2

[5] 0.18 µm CMOS 21 1.8 − 883 pJ 30 Hz 1188 µm2

[39] 28 nmCMOS 22 0.7− 1 1.9 mW † 2.3− 30 nJ 1− 100 kHz 64.6 µm2

[13] 0.18 µm CMOS 19 1.8 2− 50 µW − − −
[48] CMOS 27− 30 5 60 µW − − −
[49] 0.35 µm CMOS 21 3.3 − 7 pJ − −
[50] 0.35 µm TSMC > 32 − 3.2 nW 45.7 pJ 70 Hz 0.108 mm2

[22] 65 nm TSMC 6 † † 0.2 100 pW 4 fJ 25 kHz 35 µm2

[51] 0.35 µm CMOS 8 − 1.74 µW 17.4 pJ 100 Hz 1887 µm2

[12] 65 nm CMOS > 19 − 78.16 nW 41.2 pJ 1.9 MHz 538 µm2

[23] 90 nm CMOS 14 0.6 40.2 pW 0.4 pJ 100 Hz 442 µm2

[6] 28 nm FDSOI 2 − − 35 fJ 56 kHz 12 µm2

[7] 28 nm TSMC 5 † † 0.2 30 pW 2 fJ 15.6 kHz 31 µm2

[11] 28 nm CMOS − 1.2 − 35 pJ 100 MHz 1.99 mm2 ‡
[21] 0.35 µm AMS CMOS 21 3.3 − 7 pJ − 913 µm2

[16] 28 nm FDSOI − 0.4− 0.8 12− 49 nW 64− 280 fJ 16.9− 524 MHz 574.2 µm2

This Work
LF

22 nm FDSOI 9 0.3
1.22 nW 32.36 fJ 36.8 kHz

30 µm2

HF 4.7 nW 11.28 fJ 416.67 kHz

LF: Low Frequency, HF: High Frequency, * Total area for 32 neurons and 8000 synapses, ** Energy per spike of the whole processor, † Power consumption
of the whole neuromorphic system, †† These topologies lack the frequency-adaptation mechanism, ‡192 neurons and 6144 synapses.

The averaged power consumption of the neuron at fmin =
36.8 kHz and fmin = 416.67 kHz are, respectively,
1.22 nW and 4.7 nW that correspond to Es of 33 fj/s
and 11.28 fj/s. Table III compares the performance of the
proposed neuron with other works. Our design compares well
with other silicon neurons in the literature particularly with
regards to the energy consumption and the layout size. In
addition, it allows frequency modulation in a broad range
which is promising for larger SNN systems.

IV. CONCLUSION

In this paper we have presented an Integrate and Fire neuron
designed in 22 nm FDSOI technology. The proposed circuit
allows spiking frequency modulation. For the first time we
propose that the back-gate bias of the FDSOI technology can
be used to create this desirable tunability. The performance
of the neuron was validated through analytical models, pre-
, and post-layout simulations. The proposed adaptive neuron
consumes an ultra-low energy with a small layout size.

ACKNOWLEDGMENT

The authors would like to thank Perceptia Device Company
(https://perceptia.com/) for providing the PDK of the 22-nm
FDSOI technology.

REFERENCES

[1] N. Qiao and G. Indiveri, “Scaling mixed-signal neuromorphic processors
to 28 nm fd-soi technologies,” in 2016 IEEE Biomedical Circuits and
Systems Conference (BioCAS). IEEE, 2016, pp. 552–555.

[2] J. H. Wijekoon and P. Dudek, “Spiking and bursting firing patterns
of a compact vlsi cortical neuron circuit,” in 2007 International Joint
Conference on Neural Networks. IEEE, 2007, pp. 1332–1337.

[3] J. Grollier, D. Querlioz, K. Camsari, K. Everschor-Sitte, S. Fukami, and
M. D. Stiles, “Neuromorphic spintronics,” Nature electronics, vol. 3,
no. 7, pp. 360–370, 2020.

[4] J. H. Wijekoon and P. Dudek, “Simple analogue vlsi circuit of a cortical
neuron,” in 2006 13th IEEE International Conference on Electronics,
Circuits and Systems. IEEE, 2006, pp. 1344–1347.

[5] K. I. Papadimitriou, S.-C. Liu, G. Indiveri, and E. M. Drakakis, “Neu-
romorphic log-domain silicon synapse circuits obey bernoulli dynamics:
a unifying tutorial analysis,” Frontiers in neuroscience, vol. 8, p. 428,
2015.

[6] T. Bédécarrats, C. Fenouillet-Béranger, S. Cristoloveanu, and P. Galy, “A
bimos-based 2t1c analogue spiking neuron circuit integrated in 28 nm
fd-soi technology for neuromorphic application,” Solid-State Electronics,
vol. 168, p. 107717, 2020.

[7] F. Danneville, C. Loyez, K. Carpentier, I. Sourikopoulos, E. Mercier, and
A. Cappy, “A sub-35 pw axon-hillock artificial neuron circuit,” Solid-
State Electronics, vol. 153, pp. 88–92, 2019.

[8] N. K. Upadhyay, H. Jiang, Z. Wang, S. Asapu, Q. Xia, and
J. Joshua Yang, “Emerging memory devices for neuromorphic com-
puting,” Advanced Materials Technologies, vol. 4, no. 4, p. 1800589,
2019.

[9] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition
using spike-timing-dependent plasticity,” Frontiers in computational
neuroscience, vol. 9, p. 99, 2015.

[10] T. J. Hamilton, S. Afshar, A. van Schaik, and J. Tapson, “Stochastic
electronics: A neuro-inspired design paradigm for integrated circuits,”
Proceedings of the IEEE, vol. 102, no. 5, pp. 843–859, 2014.

[11] Y. Liu, K. Qian, S. Hu, K. An, S. Xu, X. Zhan, J. Wang, R. Guo,
Y. Wu, T.-P. Chen et al., “Application of deep compression technique in
spiking neural network chip,” IEEE transactions on biomedical circuits
and systems, vol. 14, no. 2, pp. 274–282, 2019.

[12] A. Joubert, B. Belhadj, O. Temam, and R. Héliot, “Hardware spiking
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G. Ellguth, and R. Schüffny, “A biological-realtime neuromorphic sys-
tem in 28 nm cmos using low-leakage switched capacitor circuits,” IEEE
transactions on biomedical circuits and systems, vol. 10, no. 1, pp. 243–
254, 2015.

[40] G. Indiveri, E. Chicca, and R. Douglas, “A vlsi array of low-power
spiking neurons and bistable synapses with spike-timing dependent
plasticity,” IEEE transactions on neural networks, vol. 17, no. 1, pp.
211–221, 2006.

[41] D. Rajasekharan, P. Kushwaha, S. S. Chauhan, and Y. S. Chauhan, “Non-
boolean associative processing using fdsoi mosfet-based inverter,” IEEE
Transactions on Nanotechnology, vol. 17, no. 6, pp. 1235–1243, 2018.

[42] A. Carbon, J.-M. Philippe, O. Bichler, R. Schmit, B. Tain, D. Briand,
N. Ventroux, M. Paindavoine, and O. Brousse, “Pneuro: A scalable
energy-efficient programmable hardware accelerator for neural net-
works,” in 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2018, pp. 1039–1044.

[43] L. Le Guevel, G. Billiot, B. Cardoso Paz, M. Tagliaferri,
S. De Franceschi, R. Maurand, M. Cassé, M. Zurita, M. Sanquer,
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