
P
os
te
d
on

1
A
u
g
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
50
52
84
8.
v
1
—

T
h
is

is
a
p
re
p
ri
n
t.

V
er
si
on

of
R
ec
or
d
av
ai
la
b
le

at
h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
80
/0
95
11
92
X
.2
02
2.
20
28
18
8

HardOps: Utilising the software development toolchain for

hardware design

Julian Stirling 1, Kaspar Bumke 2, Joel Collins 2, Vimal Dhokia 2, and Richard Bowman 2

1University of Bath
2Affiliation not available

October 30, 2023

Abstract

Preprint of journal article.

Abstract:

Collaborative design of physical products between remote partners poses unique challenges. This is due to both the complex and

interconnected data required for product design and manufacture, and to the centralised computing infrastructure traditionally

used to manage product lifecycle data. While modern cloud based solutions to collaborative design are gaining popularity, they

diminish the control of each design partner. In contrast, software designers readily collaborate on highly complex software, while

retaining direct control of the files they are editing due to the dominance of distributed version control. This version control can

be coupled with “Developer Operations” or DevOps tools to automate critical processes and facilitate communication. In this

paper we explore how DevOps workflows can be adapted to the development of hardware. We include concrete examples of how

this can be implemented in practice from a case study of the OpenFlexure Microscope project. While much ground remains

to be broken in this field, we believe DevOps for hardware can support a new paradigm of distributed hardware development,

with enormous benefits for both commercial and open-source hardware.

1



HardOps: Utilising the software development toolchain for hardware

design

Julian Stirlinga, Kaspar Bumkea, Joel Collinsa, Vimal Dhokiab, and Richard
Bowmana

a Department of Physics, University of Bath, UK; b Department of Mechanical Engineering,
University of Bath, UK;

ARTICLE HISTORY

Compiled July 15, 2021

ABSTRACT
Collaborative design of physical products between remote partners poses unique
challenges. This is due to both the complex and interconnected data required for
product design and manufacture, and to the centralised computing infrastructure
traditionally used to manage product lifecycle data. While modern cloud based
solutions to collaborative design are gaining popularity, they diminish the control
of each design partner. In contrast, software designers readily collaborate on highly
complex software, while retaining direct control of the files they are editing due to
the dominance of distributed version control. This version control can be coupled
with “Developer Operations” or DevOps tools to automate critical processes and
facilitate communication. In this paper we explore how DevOps workflows can be
adapted to the development of hardware. We include concrete examples of how this
can be implemented in practice from a case study of the OpenFlexure Microscope
project. While much ground remains to be broken in this field, we believe DevOps
for hardware can support a new paradigm of distributed hardware development,
with enormous benefits for both commercial and open-source hardware.

KEYWORDS
Collaborative design; Product Data; Product Lifecycle Management; Version
Control; DevOps; Open Design

1. Introduction

Open source hardware, from scientific instruments (Collins et al. 2020; Sharkey et al.
2016; Fobel, Fobel, and Wheeler 2013; Baden et al. 2015) to prototypes of medical
equipment (Collins et al. 2020; Metcalfe et al. 2021)1, is a young yet rapidly develop-
ing field of endeavour. Open source projects such as the Rep-Rap (Jones et al. 2011)
and Arduino (Banzi and Shiloh 2014) projects have revolutionised hardware proto-
typing by significantly lowering the barrier for entry to both 3D printing and micro-
controller technologies. Major research organisations such as CERN have also backed
open hardware as a framework to facilitate knowledge exchange. For example, their
White Rabbit project (Serrano et al. 2013) now controls the timing synchronisation of

CONTACT Julian Stirling. Email: j.stirling@bath.ac.uk
1We are careful to separate the design of medical equipment from a certified product that can be labeled as

a “medical device”.



many of the world’s largest scientific instruments. The White Rabbit project’s open
source design model has allowed numerous organisations and companies to develop
a thriving ecosystem of inter-operable synchronisation circuitry with sub-nanosecond
accuracy, increasing adaptability by avoiding vendor lock-in.

A key difficulty for open hardware projects is how to allow multiple designers to si-
multaneously contribute to a design, and for all contributors to have unfettered access
to to all of the product data (Stirling and Bowman 2021). Collaborative development
of proprietary hardware is more established, but faces similar challenges due to the
centralised nature of the IT infrastructure that stores product data (PROSTEP 2016).
For both proprietary and open hardware it is essential that each designer’s contribu-
tions are adequately recorded, as this design history is essential for issues ranging from
design compliance to ownership and licensing agreements.

As open hardware is beginning to mature (Wilson Center 2020), so is the legal and
regulatory framework that supports it. In 2020, CERN released version 2.0 of its Open
Hardware License (CERN 2021a), and DIN released a standardised definition of Open
Source Hardware (DIN 2020). The toolchain and workflow for the open source hard-
ware development is also beginning to standardise. Distributed version control systems
such as Git allow distributed teams to work on their own branch of development rather
than relying on a traditional Product Data Management paradigm where one organ-
isation has centralised control over the design and its history. Git-based developer
operations (DevOps) platforms such as GitHub and GitLab are seeing an increasing
number of hardware projects, and CERN’s Open Hardware Repository (CERN 2021b)
is also an instance of the open source GitLab platform. While adopting platforms orig-
inally designed for managing software has its drawbacks (Stirling et al. 2020), it also
unlocks a number of powerful tools for automating time consuming processes.

In this paper, we discuss DevOps for hardware (henceforth HardOps). HardOps
utilises DevOps toolchains to capture and control the design process, and to automate
computational tasks necessary for design and manufacturing. We use the workflow
developed for the OpenFlexure Project to demonstrate how HardOps can be imple-
mented in practice, whilst also considering the more general utility of HardOps. Our
focus on the design of open source hardware and automation using open source tools is
due to these examples being publicly available. However, the same principles could be
used for proprietary hardware design using an internal or private repository. We note
that the concept of DevOps for hardware was previously introduced by Keysight Tech-
nologies (Keysight 2019). However, Keysight’s “TestOps” was focused on automating
simulated testing of circuitry rather than a more general approach to using DevOps
tools for hardware development.

By “hardware” we are referring to mechanical devices or components that can be
machined or assembled, and also to electronics such as circuit boards, sensors, and
cables. In this work we do not consider field programmable gate arrays (FPGAs) or
application specific integrated circuits (ASICs), nor any other form of custom silicon
chips. We would refer to FPGAs and ASICs not as hardware but as “gateware” sitting
somewhere between firmware and hardware. Gateware is generally written in hardware
description languages (HDLs) that can be simulated and are compiled to binary bit-
streams that configure the FPGAs. As such, software source control and automation
can more easily be applied to Gateware. Hardware, as we define it, faces a different
set of challenges; with HardOps we are seeking to address these.

We begin with a brief description of DevOps for software development, this is pro-
vided for context. We then present our HardOps workflow, which we have divided into
six stages: Plan, Design and Document, Prepare and Verify, Distributed Production,

2



Figure 1. A graphical representation of a CI pipeline produced by the DevOps platform GitLab. The pipeline
has 4 stages, each which can have multiple jobs. Here, the code is first analysed statically (i.e. without running

the code) for style and quality. If this analysis passes, the code is compiled in the “Build” stage and tested
on both Linux and Windows in the “Test” stage. Finally, if all tests pass, the code is deployed to a package

repository so it can be installed.

Physical Testing, and Feedback.

2. Software DevOps

In software engineering, developers increasingly take on more responsibility for the
operational side of deploying and running their code. These operations include run-
ning cloud services, packaging code for download, or responding to service tickets.
Traditionally, the role of developers and operations managers were separate but now
we often see these responsibilities merged into “DevOps” roles. As part of this shift we
see increased automation used by software teams to run tests, deploy and to release
code continuously. Feedback from testing, bug reporting, etc. is then recorded and
used to guide ongoing development. DevOps is an umbrella term used in job titles,
but also refers to these practices and the tools that enable them.

DevOps toolchains generally include version control software, project management
tools, and tools to automate computational tasks in a reproducible manner. Version
control allows the work of multiple software engineers to be combined, and creates a
permanent record of the history of the code. Project management tools include issue
tracking systems used to assign units of work and monitor their progress. This issue
tracking may integrate with more advanced tools for creating project timelines and
roadmaps.

Task automation is organised into “Continuous Integration” (CI) pipelines. CI refers
to a workflow where code changes from each developer are merged into the master
copy of the source code regularly. To enable this regular merging of code, automated
building and testing of the modified codebase is required to ensure that changes do
not conflict or cause unexpected behaviour. A CI pipeline is a set of scripts that are
run on a server which perform different functions such as code analysis, compiling
executable programs, and testing the software functionality. Outputs from one stage
of a pipeline can be passed on to following stages. An example pipeline is shown in
Figure 1. Due to the general applicability of CI pipelines to most workflows, the term
CI is now often used to refer to these pipelines and the tools that run then, rather
than to the workflow itself.

3



3. HardOps

The Computer Aided Design (CAD) files and other associated design files for physical
products are generally controlled within Product Data Management (PDM) systems.
Large enterprises control the entire lifecycle of a product from conception through
design, production, and service with Product Lifecycle Management (PLM) systems,
of which PDM is just a single aspect. PDM can be considered a form of version con-
trol for hardware designs. PLM has considerable synergy with DevOps, as it provides
the tools to manage not just the design but the entire workflow. There are numer-
ous differences in the features, technical implementation, and the interfaces between
PDM/PLM systems and between Version-Control/DevOps platforms. This is partially
due to the differences between hardware and software lifecycle and design, and also
due to the interfaces that these communities are familiar with. While full considera-
tion of these aspects is important for efficiency and ease of use, there is one key and
fundamental difference between PLM and DevOps: centralisation.

DevOps platforms have built up around distributed version control systems (DVCS).
DVCS were largely pioneered by the Free-Libre / Open Source Software (FLOSS)
community to allow engineers from across the world to simultaneously work on large,
complex projects such as the Linux kernel Over the past decade, DVCS usage has seen
a sharp rise (Deepa et al. 2020), becoming the most common form of version control
used for both FLOSS and proprietary software development, for both small teams
and large enterprises. More details on DVCS are given in Section 3.2. With DVCS it
is possible to have continuous, collaborative development at multiple organisations,
where each organisation retains full control over what enters their copy of the design.
In contrast to DVCS, PDM/PLM systems are highly centralised. Moving information
between PDM systems at different companies is a challenging task, usually requiring
third-party software and rarely preserving full history or metadata.

HardOps is a paradigm which unlocks the huge benefit of DVCS for hardware devel-
opment. HardOps covers more than just the DVCS, but also covers the workflows and
management of the design process (Figure 2). We have produced a working framework
and associated workflows for distributed design and prototyping, which are in active
use in the OpenFlexure project. This has reached the stage of small-scale production,
including some commercial production, in multiple countries. Unlike PLM, HardOps
has not yet been used for production, procurement, and service at large scale. Many of
our processes remain project and technology specific and need generalising for a wider
audience. Our current HardOps infrastructure is the GitLab DevOps platform, but
other inter-operable platforms such as GitHub, BitBucket, Gitea, etc. provide similar
functionality.

While our implementation of HardOps uses public cloud service, it relies on open
source DVCS which allows each party to store all files locally, and to share information
directly between parties. This local storage and control of files of any type differs from
fully cloud-based design collaboration platforms such as Fusion 360 or GrabCAD.

3.1. Plan

The initial planning phase of hardware and software projects follows a similar process.
Mapping out requirements, collating early sketches and ideas, dividing work into tasks,
assigning tasks to people, and tracking progress. HardOps planning is centred around
ticketing systems called “issue trackers” on DevOps platforms. Each issue in the tracker

4



HardOps

Plan

Design and

Document

Prepare and Verif
y

DistributedProduction

Ph
ys

ic
al

Te
st

in
gFeedback

CI automation
Version tracking
Merge requests discussion and review
Display bundled documentation

Project management (Milestones, Assingees, etc)
Issues (Actionable items)
Version controlled/auditable minutes Offline

Create issues/incident report
Discuss open merge requests

Offline

Figure 2. A graphical representation of the HardOps cycle, demonstrating the closed nature of the cycle.

Automatically generated production files from designers directly reach production and prototyping teams via
the Prepare and Verify stage, and the feedback from production and testing forms the inputs for future plans.

This can bridge the gap between the design and production in a large organisation, but can also automate

enough tasks to allow a very small team to function with high efficiency and reproducibility.

can represent a body of work to be done, a topic under discussion, a report of an
incident or a result that requires attention.

Just as with any ticket based project management system, the issues form a threaded
conversation where files can be attached, and the issue can be assigned to users. Issues
can be grouped by tags, filtered by status, and manipulated on interfaces such as
Kanban boards. Basic project management functionality could be provided by any
number of external tools. However, issues tracked through a DevOps platform can
be linked to proposed changes (“merge requests” or “pull requests”) in the DVCS,
allowing the progress of a task to be automatically updated as work continues. Unifying
project planning, feedback from manufacturing and quality control, and version control
of designs and documents in a single platform, DevOps (and hence HardOps) closes
the loop of the development cycle (Figure 2). Planning becomes an ongoing, cyclical
process that engages people throughout the team, rather than a top-down exercise for
management.

The OpenFlexure project also uses its DVCS to store auditable records of other
important documents. This includes detailed planning documents for enhancing the
project, and minutes from design review meetings. Keeping these documents in the
DVCS means the same automation tools discussed in Section 3.3 can automatically
collate, process, and publish documents, and could be used to warn if minutes are
incomplete or not uploaded in a timely fashion.

5



The DVCS repository is the centre of the HardOps workflow, with each repository
having its own issue tracker, permissions, automation scripts etc. However, for complex
projects it does not always make sense to have a single repository for all files. The
OpenFlexure project, for example, has separate repositories for hardware, software,
embedded operating system, electronics, project website, failure mode analysis, and
more. These repositories are grouped together so issues can be linked, share labels,
and be managed in the same milestones. Managing all these aspects of the project
with the same tools creates a highly integrated workflow. This allows a small team,
such as our academic group that runs the OpenFlexure project, to effectively manage
a complex project.

3.2. Design and Document

In the HardOps workflow all design files and documents are version controlled using a
DVCS. We concentrate on Git as the most common DVCS, but note that other systems
such as mercurial have similar underlying technology. Git uses SHA-1 cryptographic
hashes to uniquely identify files and snapshots of the design (known as commits).
Each commit includes a description, an author, a complete snapshot of the files, a
timestamp, and the hash of the previous commit. This content is then hashed to
create a unique identifier for the commit. As the hash of each commit depends on the
the hash of the previous commit, this creates a Merkle tree—the same technology that
underpins blockchains. The entire Merkle tree is stored on the machine of any design
participant. While changes can be synced directly between participants, they are more
commonly shared via a server on the DevOps platform.

The use of a Merkle tree provides a cryptographic record of all changes that includes
the time and author of each change. Retroactive changes to any part of the history
affect the hashes of all subsequent commits, making the system secure against tamper-
ing without the overhead of “proof of work” used in many cryptocurrencies (Krause
and Tolaymat 2018). This tamper resistance can be further improved by authors cryp-
tographically signing individual commits to allow verifying their origin. The system
remains secure even when large or proprietary files are stored separately, provided
those files are identified within the DVCS by cryptographic hashes, and tools exist to
automate this.

Each designer or design team can then have their “branch” of this tree where they
make their own changes to the design without needing permission from the manager
of the central server. These changes can also be synced to the server in their own
branch. Information then transfers between teams by merging the changes from one
branch into another (See Figure 3). Data can flow two ways between branches, and
also between servers. This is essential for creating equitable collaborations as it allows
teams at different companies to have full control of what data enters their branch of
the design.

Git, originally written to control the source code for the Linux kernel, has been
demonstrated to be appropriate for huge collaborative projects with thousands of
engineers contributing. However, one key difference between hardware and software is
the file types used for both design and documentation. Computer code is plain text,
and most code documentation is also written in a plain text markup language such as
markdown. Git can automatically scan changes in these files, and record the lines of
text or code that have changed. This has two benefits. Firstly, it significantly reduces
data storage as only the changes are recorded. Secondly, it allows changes from two

6



Pr
ot

ot
yp

in
g

Des
ig

n 
fo

r

M
an

uf
ac

tu
re

M
an

uf
ac

tu
rin

g

Ru
ns

Version with
Company X

V1.0
Cryptographically
hashed snapshot

of the design
status Tag snapshots

Automatic quality
testing results

Design for

M
anufacture

COMPANY X COMPANY Y

V1.1
X-V1.0

M
anufacturing

Runs

Figure 3. Schematic depiction of the DVCS. Each team can have their own branch of the design, each with

their own cryptographically hashed snapshots. Design information can flow both ways between teams and even
between different organisation running the DVCS on different servers.

branches to be merged as long as the same lines were not changed. In the case where
conflicting changes occur, they can be highlighted for review.

Hardware development documentation could be stored in a markup language rather
than binary files from word processors. However, the major obstacle is CAD files as
these are often highly complex binary file types. As such, any small changes to CAD
files that happen on two separate branches require an engineer to assess the changes
in both branches and manually combine the changes. Even text-based CAD formats
(such as the KiCad .kicad_pcb file) require considerable manual effort or specialist
tools to compare or combine changes. This is due to the complex relationships between
the data stored in the file.

The complex nature of CAD files is the largest barrier to adoption of HardOps.
However, some mitigations are available. In the case of the OpenFlexure project, all
designs are created in the constructive solid geometry language OpenSCAD, and as
such the design itself is computer code. This is a powerful workflow that enables highly
parametric design, but requires significant programming experience. Another option
is to set up centralised storage for specific files, and lock them when they are being
edited. Git extensions allow centralised files to be managed using the DVCS, but this
loses some benefits of the version control system being distributed. The preferred way
to solve this problem is to using external software tools for comparing modified files,

7



or for merging changes. As editable CAD files are are not standardised, the onus is on
each CAD proprietor to provide this comparison and merge functionality; Git already
provides mechanisms to integrate such tools with the DVCS.

In our HardOps workflow, important branches are protected so that designs cannot
be changed without approval. Changes are merged into these branches only through
an interface on the DevOps platform. A designer can open a request for changes to be
merged. These merge requests have unique IDs, threaded discussion, and can be linked
to issues. Alongside the threaded discussion the platform can report the results of
automated quality checking (Section 3.3) and require approvals from specific people or
roles. This automated workflow ensures clear and consistent scrutiny, documentation,
and approval of changes to protected branches.

3.3. Prepare and Verify

The most powerful aspect of the HardOps workflow we present is the customisable
automation that can be used to ensure that tasks are performed in a repeatable way.
HardOps utilises the CI pipelines that are integrated into DevOps platforms. As the
CI pipelines are a series of computer scripts, any task that can be automated via
scripting can also be performed as a job in a CI pipeline. In practice, tasks that take a
significant amount of time or require significant resources may not be appropriate for a
CI pipeline due to the frequency with which they will be run. However, most DevOps
platforms provide the ability to run the pipelines on external computing infrastructure,
allowing for tasks that are resource intensive or require software licenses.

The OpenFlexure project uses CI pipelines to automate numerous processes. Fig-
ure 4 shows a simplified representation of the OpenFlexure Microscope pipelines, where
multiple repositories build assets that are essential for creating the microscope. These
assets are then published on a public facing website, but could equally be stored on
in internal server for a non-open project.

The key benefit of using this automation is de-duplication of design information,
having a single source of truth, and a guarantee that essential production files remain
up to date. For example, an engineer will design parts using a CAD or electronics design
automation (EDA) package, and save them in the native format of their CAD/EDA
package. The native format retains essential parameterisation for future adjustment,
but before the part can be produced the data needs to be exported either in an
exchange format (e.g. STEP, STL), as technical drawings or schematics, or as computer
numerical control (CNC) production files (e.g. G-code, Gerber). Saving these output
files within the DVCS not only rapidly increases data storage, but also runs the risk
of out of date production files being used.

CI pipelines allow just the native CAD/EDA files to be stored in the DVCS. Each
time these design files are updated, a pipeline can be triggered with numerous jobs. An
example pipeline would be to first ensure that the changes to the input CAD files does
not fail quality checks. These quality checks could be running interference detection
on assemblies, or running finite element analysis. Once all quality checks pass, the
necessary production files can be recreated in a reproducible manner, guaranteeing
the same export settings each time.

The OpenFlexure Microscope follows a similar pipeline to above (Figure 4). When
any OpenSCAD file is changed, a series of unit tests check that our custom OpenSCAD
libraries perform all functions as expected, and a custom static code analyser checks
for potential code errors within all OpenSCAD files. Once these checks pass, we run

8



Quality
Testing

OpenSCAD

Python JavaScript

Build/Package

DocumentationRendersSTLs

Website

Interactive selector

Deploy to
openflexure.org

openflexure-
microscope

openflexure-
server

pi-gen

stl-selector

openflexure.org

Repository

Microscope software

Raspberry Pi OS

Figure 4. A simplified representation of the repository structure and automation pipelines for the OpenFlex-

ure Microscope. Both hardware and software designs undergo quality checks. If these checks pass, print-ready

CAD exchange files (STLs), renders of the assembly process, documentation, software, and other assets such as
the website are all automatically generated. If the changes are marked for release, these files are then transferred

to https://openflexure.org ensuring that all necessary digital assets are up-to-date and available.

OpenSCAD to generate the STL files needed to 3D print the microscope. We also run
OpenSCAD to render the illustrations for our assembly instructions, and finally run
custom software to build our assembly documentation with up-to-date illustrations
and links to up-to-date STL files. The documentation step also produces a bill of
materials from metadata in the assembly instructions (Figure 5). In future, we plan to
generate bills of materials from both CAD and assembly instructions independently
to confirm they remain consistent.

The OpenFlexure Microscope pipeline is enabled by powerful open source software.
This pipeline uses Python, OpenSCAD, Inkscape, ImageMagick and numerous other
software libraries all running in Ubuntu images within Docker containers. As these
programs are not tied to software license keys, we are able to run tasks in parallel.
We also rely on these programs providing a command line interface so their func-
tionality can be accessed by scripting. Such a workflow would require adapting for
proprietary CAD packages, requiring either sequential execution of jobs or multiple
licenses. Many proprietary CAD packages lack effective command line execution, but
their functionality can often still be automated via the exposed software APIs.

CI automation within our HardOps workflow is not limited to the mechanical design.
A key advantage of the workflow being managed on a DevOps platform is that more
traditional CI pipelines can test and build the associated software, and can even build
and deploy the project website (Figure 4). This reduces the person-hours involved in
ensuring that different elements of a large project that spans disciplines is in sync.

DevOps platforms also provide the ability to run jobs on regular schedules rather
than in response to specific actions. This, combined with software “bots” for interacting
with the issue tracker, allows projects to automatically ensure that issues are assigned,
regularly updated, and not overdue. Custom scripts could also be implemented to
check that quality management processes are ongoing, rather than waiting for the next
internal audit. For example, if a project’s quality manual states that design reviews
happen monthly and are minuted, a scheduled pipeline can ensure that minutes are

9

https://openflexure.org


Figure 5. A screen shot from the assembly instructions for the OpenFlexure Microscope. The rendered

illustrations and the associated STL files for 3D printed parts are automatically generated by the CI whenever
the repository is updated. Assembly instructions are then generated using the rendered illustrations and linking

to the STL files.

uploaded at least monthly and contain key information. If this is not happening the
same bot could open an issue assigned to the project’s Quality Manager. As with all
automation, this does not replace the need for dedicated personnel such as the Quality
Manager, but helps them work more efficiently and improves consistency.

3.4. Distributed Production and Distributed Testing

There is considerable overlap between the challenges hardware and software develop-
ment within the “Plan”, “Design and Document”, and “Prepare and Verify” stages
of the HardOps workflow. Where hardware development truly diverges from software
development is in production and physical testing. These sections of the workflow are
discussed together as they face similar challenges. We further note that our model
has been implemented for prototyping, but we have not yet established a complete
workflow for manufacturing.

10



Hardware production and testing requires control of procurement of components
and raw materials, access to machinery and skilled technicians, and the correct tools
to perform quality control. These requirements diverge considerably from the DevOps
workflow, where software is compiled and deployed in an identical fashion on servers
across the planet. HardOps standardises neither the equipment available at distributed
locations, nor the supply chain within which they operate. Instead, it provides a con-
sistent method to document procedures and capture information.

Further evolution of the HardOps workflow could implement essential functionality
provided by PLM. For example, automatically generated bills of materials could be
passed to procurement processes, and applications could be deployed to track man-
ufacturing steps and QA/QC in real time to create a unique record for each device.
However, to date we have concentrated on ensuring that the design inputs to pro-
duction and testing are reproducible, and that information can then be collected for
feedback to the plan stage.

As mentioned in Section 3.3, HardOps enables automatic creation of up-to-date
production files, illustrations, and final documentation. Documentation also should
include any QA/QC procedure that are necessary. In the production and testing phase
partners at any location simply follow the instructions to create the part, opening an
issue tracking ticket for any problems they encounter. These problems can range from
insufficient procurement information and poorly worded documentation, to unmachin-
able parts or parts failing quality testing.

Simply following a procedure and documenting the result is a key part of the Plan-
Do-Check-Act cycle (Abuhav 2011) that underpins international quality control stan-
dards. HardOps provides a transparent way for teams that perform the “Do” and
“Check” procedures to remain part of the overall process, by taking part in the “Act”
and “Plan” discussions, as described in Section 3.5. Crucially, it enables this cycle
even across teams in different locations, organisations, and contexts, where sharing a
central PLM platform is impractical.

3.5. Feedback

The issue tracker in a DevOps platform provides an effective way to capture feedback
from later stages in the process, including discussion between different people involved
in the process to clarify the feedback. As previously mentioned, the DVCS is the
lifeblood of the HardOps workflow, and changes to the design can reference issues
in the issue tracker. Modifications to a product can be made on a local copy of the
design, and proposed for adoption through a “merge request” in the DevOps platform,
referencing the issues that prompted the change. When changes to the design are
proposed in a merge request, the prepare and verify pipelines will create the necessary
digital assets for production. Production and quality teams can then be assigned to
to this request, allowing them to trial production and perform quality tests. These
results can be fed back within the threaded discussion for the merge request itself. As
a result the changes can be approved, rejected, or further revisions could be requested.
Once approved, a user with sufficient privileges can merge this request into a team’s
protected branch. This not only allows distributed testing before the result is merged,
it keeps the auditable record of the discussion linked directly to the changes themselves.

Any production or quality issues noticed after a change has been merged can be
opened as an issue in the issue tracker. Similarly, a flexible workflow can be adopted
where a change may be accepted before all discussions are resolved, to ensure that

11



conflicting changes do not build up. In this case, issues can be created that link to the
merge request or the commit that introduced the change. If needed, the issue could
be labeled to be clear that the design cannot reach production until the problem has
been addressed.

4. Conclusion

We have demonstrated that widely available, open DevOps platforms can be utilised
for product design. The key difference between the HardOps paradigm we propose
and the more traditional PDM/PLM is that decentralisation is core to the model.
HardOps can be used by independent designers, or within a single organisation, even
if external collaboration is not planned. Having all data stored centrally on company
infrastructure within HardOps repositories reduces the barrier to forming collabora-
tions. As open source and free-to-use hosted DevOps platforms exist, this opens up
key automation to SMEs and start-ups that are priced out of PDM/PLM, though
we see cost-saving as a secondary benefit. As HardOps scales to larger more complex
projects, costs will arise for dedicated computing infrastructure for automation and
the development of company specific integrations.

Despite the decentralised nature of HardOps, it still brings the core benefit of a
centralised system—joined up, standardised workflows and efficient flow of informa-
tion between different teams. However, one key area where HardOps falls down is on
the usability of the interface. As HardOps is built upon DevOps platforms, numerous
features in the interface are not relevant to hardware, and previews for many hardware
files are also lacking. However, the biggest barrier to HardOps adoption is the software
used to interact with the DVCS. As DVCS, such as Git, have been designed for soft-
ware development, the standard tools are complex command line applications which
require programming skills to operate. Even graphical interfaces for these systems have
been designed for programmers and are difficult to integrate into an engineering work-
flow. However, as the underlying technology that powers DevOps platforms is both
technically capable of managing hardware design and is open source, what is required
is simply an appropriate user interface.

DVCS and DevOps have revolutionised software development, allowing international
collaboration to be second nature, and opening state-of-the-art distributed workflows
to even the smallest teams. HardOps has the potential to do this for hardware devel-
opment, but is at a very early stage. Not only do the user interfaces need significant
adjustment for hardware developers, but we need a toolchain of scripts and interfaces
to CAD packages and associated utilities. The fragmentation of computer aided design
hurts collaborative engineering. Each CAD package having its own data format, its own
APIs, its own PDM, and complex licencing agreements make building a collaboration
ecosystem very difficult. Software engineers have demonstrated the benefits that open
standards and API interoperability can bring to automated workflows. If bolstered by
a standardised interface to CAD packages, HardOps has the potential to bring many
of the benefits of PLM to both distributed design teams, and to organisations that are
too small to invest in PLM.

12



References

Abuhav, I. 2011. ISO 13485: A Complete Guide to Quality Management in the Medical Device
Industry. CRC Press. https://books.google.co.uk/books?id=9fTRBQAAQBAJ.

Baden, Tom, Andre Maia Chagas, Greg Gage, Timothy Marzullo, Lucia L Prieto-Godino, and
Thomas Euler. 2015. “Open Labware: 3-D printing your own lab equipment.” PLoS biology
13 (3): e1002086.

Banzi, Massimo, and Michael Shiloh. 2014. Getting started with Arduino: the open source
electronics prototyping platform. Maker Media, Inc.

CERN. 2021a. CERN Open Hardware License v2 https://cern-ohl.web.cern.ch/.
CERN. 2021b. CERN Open Hardware Repository openhardwarerepo.
Collins, Joel, Joe Knapper, Julian Stirling, Joram Mduda, Catherine Mkindi, Valeriana Maya-

gaya, Grace Anyelwisye, et al. 2020. “Robotic microscopy for everyone: the OpenFlexure
Microscope.” Biomedical Optics Express 11 (5): 2447–2460. https://www.osapublishing.
org/boe/abstract.cfm?doi=10.1364/BOE.385729.

Deepa, N, B Prabadevi, LB Krithika, and B Deepa. 2020. “An analysis on Version Control
Systems.” In 2020 International Conference on Emerging Trends in Information Technology
and Engineering (ic-ETITE), 1–9. IEEE.

DIN. 2020. “Open Source Hardware - Teil 1: Requirements for technical documentation
(DIN SPEC 3105-1).” https://www.beuth.de/en/technical-rule/din-spec-3105-1/

324805763.
Fobel, Ryan, Christian Fobel, and Aaron R Wheeler. 2013. “DropBot: An open-source digital

microfluidic control system with precise control of electrostatic driving force and instanta-
neous drop velocity measurement.” Applied Physics Letters 102 (19): 193513.

Jones, Rhys, Patrick Haufe, Edward Sells, Pejman Iravani, Vik Olliver, Chris Palmer, and
Adrian Bowyer. 2011. “RepRap – the replicating rapid prototyper.” Robotica 29 (1): 177–
191.

Keysight. 2019. “TestOps: Blueprint for Connected, Agile Design and Test.” https://www.

keysight.com/gb/en/assets/7018-06546/white-papers/5992-3771.pdf.
Krause, Max J, and Thabet Tolaymat. 2018. “Quantification of energy and carbon costs for

mining cryptocurrencies.” Nature Sustainability 1 (11): 711–718.
Metcalfe, B., P. Iravani, J. Graham-Harper-Cater, R. Bowman, J. Stirling, and P. Wilson.

2021. “A Cost-Effective Pulse Oximeter Designed in Response to the COVID-19 Pandemic.”
Journal of Open Hardware 5: 1.

PROSTEP. 2016. “The Challenges Of PLM Collaboration.” https://prostep.us/

wp-content/uploads/2019/01/Whitepaper_PLM-Collaboration_EN_web.pdf.
Serrano, Javier, M Lipinski, T Wlostowski, E Gousiou, Erik van der Bij, M Cattin, and

G Daniluk. 2013. “The White Rabbit Project.” In Proceedings of International Beam In-
strumentation Conference, THBL2.

Sharkey, James P, Darryl CW Foo, Alexandre Kabla, Jeremy J Baumberg, and Richard W
Bowman. 2016. “A one-piece 3D printed flexure translation stage for open-source mi-
croscopy.” Review of Scientific Instruments 87 (2): 025104.

Stirling, Julian, and Richard Bowman. 2021. “The COVID-19 Pandemic Highlights the Need
for Open Design Not Just Open Hardware.” The Design Journal 24 (2): 299–314.

Stirling, Julian, Valerian L. Sanga, Paul T. Nyakyi, Grace A. Mwakajinga, Joel T. Collins, Kas-
par Bumke, Joe Knapper, Qingxin Meng, Samuel McDermott, and Richard Bowman. 2020.
“The OpenFlexure Project: The technical challenges of Co-Developing a microscope in the
UK and Tanzania.” In 2020 IEEE Global Humanitarian Technology Conference (GHTC),
1–4.

Wilson Center. 2020. “Building Blocks for Better Science: Case Studies in Low-
Cost and Open Tools for Science.” https://www.wilsoncenter.org/publication/

building-blocks-better-science-case-studies-low-cost-and-open-tools-science.

13

https://books.google.co.uk/books?id=9fTRBQAAQBAJ
https://cern-ohl.web.cern.ch/
openhardwarerepo
https://www.osapublishing.org/boe/abstract.cfm?doi=10.1364/BOE.385729
https://www.osapublishing.org/boe/abstract.cfm?doi=10.1364/BOE.385729
https://www.beuth.de/en/technical-rule/din-spec-3105-1/324805763
https://www.beuth.de/en/technical-rule/din-spec-3105-1/324805763
https://www.keysight.com/gb/en/assets/7018-06546/white-papers/5992-3771.pdf
https://www.keysight.com/gb/en/assets/7018-06546/white-papers/5992-3771.pdf
https://prostep.us/wp-content/uploads/2019/01/Whitepaper_PLM-Collaboration_EN_web.pdf
https://prostep.us/wp-content/uploads/2019/01/Whitepaper_PLM-Collaboration_EN_web.pdf
https://www.wilsoncenter.org/publication/building-blocks-better-science-case-studies-low-cost-and-open-tools-science
https://www.wilsoncenter.org/publication/building-blocks-better-science-case-studies-low-cost-and-open-tools-science

	Introduction
	Software DevOps
	HardOps
	Plan
	Design and Document
	Prepare and Verify
	Distributed Production and Distributed Testing
	Feedback

	Conclusion

